GESERAN atau TRANSLASI

dokumen-dokumen yang mirip
VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain

Matematika II : Vektor. Dadang Amir Hamzah

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

Aljabar Linier Elementer. Kuliah ke-9

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

MATEMATIKA. Sesi VEKTOR A. DEFINISI VEKTOR. a. Unsur-Unsur Vektor. b. Notasi Vektor

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti

Aljabar Linier & Matriks

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Vektor Ruang 2D dan 3D

erkalian Silang, Garis & Bidang dalam Dimensi 3

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

BAB II BESARAN VEKTOR

ALJABAR LINEAR DAN MATRIKS

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd.

Vektor di Bidang dan di Ruang

MAKALAH VEKTOR. Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,

VEKTOR. Oleh : Musayyanah, S.ST, MT

DIKTAT MATEMATIKA II

VEKTOR II. Tujuan Pembelajaran

MATRIKS & TRANSFORMASI LINIER

BESARAN VEKTOR B A B B A B

Ruang Vektor Euclid R 2 dan R 3

Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.

ALJABAR LINEAR DAN MATRIKS VEKTOR

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

Geometri pada Bidang, Vektor

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

VEKTOR. Makalah ini ditujukkan untuk Memenuhi Tugas. Disusun Oleh : PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3

Geometri pada Bidang, Vektor

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

BESARAN, SATUAN & DIMENSI

BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor

SEGITIGA DAN SEGIEMPAT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =

Relasi, Fungsi, dan Transformasi

Aljabar Linier & Matriks

FISIKA UNTUK UNIVERSITAS OLEH

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.

MODUL MATEMATIKA VEKTOR

Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q

----- Garis dan Bidang di R 2 dan R

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Vektor di ruang dimensi 2 dan ruang dimensi 3

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

dengan vektor tersebut, namun nilai skalarnya satu. Artinya

Rudi Susanto, M.Si VEKTOR

Matematika Semester IV

MAKALAH GEOMETRI TRANSFORMASI

PanGKas HaBis FISIKA. Vektor

Materi Aljabar Linear Lanjut

Bab 1 : Skalar dan Vektor

BAB V GEOMETRI DAN TRANSFORMASI

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah.

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

TRANSFORMASI GEOMETRI

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

OLEH : PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU SEKOLAH TINNGI KEGURUAN DAN ILMU PENDIDIKAN

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA

MODUL 1 SISTEM KOORDINAT KARTESIUS

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini

KESEIMBANGAN BENDA TEGAR

9.1. Skalar dan Vektor

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1

L mba b ng n g d a d n n n o n t o asi Ve V ktor

C. 9 orang B. 7 orang

ISOMETRI & HASIL KALI TRANSFORMASI

MODUL 4 LINGKARAN DAN BOLA

SIMETRI BAHAN BELAJAR MANDIRI 3


GEOMETRI TRANSFORMASI SETENGAH PUTARAN

Geometri di Bidang Euclid

MATEMATIKA. Pertemuan 2 N.A

1 P E N D A H U L U A N

Aplikasi Aljabar Geometri dalam Menentukan Volume Parallelepiped Beserta Penurunan ke Rumus Umum dengan Memanfaatkan Sifat Aljabar Vektor

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis

Transkripsi:

GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3. NETTI VERAYANTI 1111050025 4. TRI LESTARI CAHYA N. 1111050065 5. YEARA WIDITA HEPRINA 1111050024 KELAS C PENDIDIKAN MATEMATIKA FAKULTAS TARBIYAH dan KEGURUAN INSTITUT AGAMA ISLAM NEGERI (IAIN) RADEN INTAN LAMPUNG 2014 1

KATA PENGANTAR Dengan menyebut nama Allah Yang Maha Pengasih lagi Maha Penyayang, syukur Alhamdulillah kami ucapkan kehadirat Allah SWT. yang telah memberikan taufiq, hidayah, dan ma una Nya kepada kami sehingga dengan bekal kemampuan yang ada pada kami, kami dapat menyelesaikan makalah Geometri Transformasi ini. Makalah ini kami suguhkan kepada semua pembaca yang ingin mengetahui sekitar Translasi (Geseran). Paling tidak makalah ini akan menjadi ilmu baru bagi para pembaca. Walaupun makalah ini belum sempurna tapi kami akan berusaha memperbaikinya pada makalah yang akan datang. Semoga saja makalah ini dapat bermanfaat bagi kita semua. Amiin Kepada Allah kami bermohon semoga tetaplah tercurahkan inayat-nya dan memberikan taufiq-nya kepada kami dan para pembaca. Bandar Lampung, April 2014 Penulis 2

DAFTAR ISI KATA PENGANTAR... 2 DAFTAR ISI... 3 BAB I PENDAHULUAN 1.1 Latar Belakang... 4 1.2 Rumusan Masalah... 4 1.3 Tujuan... 4 BAB II PEMBAHASAN 2.1 Ruas Garis Berarah... 5 2.2 Pengertian Geseran atau Translasi... 11 2.3 Rumus Geseran dalam Bidang Koordinat... 14 BAB III KESIMPULAN... 16 DAFTAR PUSTAKA 3

BAB I PENDAHULUAN 1.1 Latar Belakang Banyak besaran fisika, seperti luas, panjang, massa dan suhu, teruraikan secara lengkap ketika besar besaran tersebut diberikan. Besaran-besaran seperti itu disebut skalar. Besaranbesaran fisika lainnya, yang disebut vektor, tidak secara lengkap terdefinisikan sampai besar dan arahnya ditentukan (Suryanto, 2015). Vektor dapat disajikan secara geometris sebagai ruas garis berarah atau panah dalam ruang dimensi 2 dan ruang dimensi 3. Berkenaan dengan definisi vektor sebagai ruas garis berarah maka vektor menjadi pengantar untuk memperkenalkan definisi translasi (pergeseran). 1.2 Rumusan Masalah Rumusan masalah dalam makalah ini adalah: 1. Definisi ruas garis berarah 2. Operasi terhadap vektor 3. Pengertian geseran atau translasi 4. Rumus geseran dalam bidang koordinat 1.3 Tujuan Tujuan dari makalah ini adalah: a. Siswa mampu memahami pengertian geseran atau translasi beserta teorema-teorema pada geseran. b. Siswa mampu membuktikan teorema pada geseran atau translasi c. Siswa mampu mengerjakan soal mengenai geseran atau translasi 4

BAB II PEMBAHASAN 2.1 Ruas Garis Berarah 1. Pengertian ruas garis berarah Berkenaan dengan definisi geseran yang menggunakan istilah ruas garis berarah, maka perlu didefinisikan dan dijelaskan lebih dulu tentang ruas garis berarah. Definisi : Ruas garis berarah (vektor) adalah suatu besaran yang mempunyai besar dan arah. Disini dapat kita lihat bahwa suatu vektor hanya ditentukan oleh besar dan arahnya saja. Dengan demikian dua vektor dikatakan sama jika besar dan arahnya sama itdak peduli letaknya dimana(suryanto, n.d.). Suatu vektor secara geometri digambarkan sebagai suatu anak panah, diaman panjang anak panah menyatakan besarnya vektor sedang arah anak panah menunjukan arah vektor. B A Titik A disebut titik pangkal vektor atau titik tangkap vektor. Titik B disebut ujung vektor. Suatu vektor yang titik pangkalnya A dan titik ujungnya B ditulis atau ditulis dengan huruf kecil bergaris atau huruf kecil tebal a. Besar atau panjangnya vektor a ditulis 2. Operasi Terhadap Vektor \ Untuk memperoleh jumlah, atau resultante dua vektor u dan v, gerakanlah v tanpa mengubah besar dan arahnya hingga pangkalnya berimpit dengan ujung u maka u + v adalah vektor yang menghubungkan pangkal u dan ujung v(yazid & SURYANTO, 2017). Cara ini disebut hukum segitiga. (lihat gambar dibawah) 5

v u u + v v Cara lain melukis u+v adalah menggerakan v sehingga pangkalnya berimpit dengan pangkal u. Kemudian vektor u+v adalah vektor sepangkal dengan u dan yang berimpit dengan diagonal jajaran genjang yang sisinya adalah u dan v. Cara ini disebut hukum jajaran genjang. Seperti gambar dibawah ini. u u+v v v Dengan menggunakan gambar seperti diatas dapat dibuktikan bahwa penjumlahan vektor bersifat komutatif dan assosiatif, yaitu: u + v = v + u dan (u+v)+w = u+(v+w) Selanjutnya jika u suatu vektor, maka 3u adalah vektor yang searah dengan u tetapi panjangnya tiga kali panjangnya u; vektor -2u adalah vektor yang arahnya berlawanan dengan arah u dan panjangnya dua kali panjang u. Secara umum, cu adalah kelipatan skalar vektor u, yang panjangnya adalah kali panjang u, searah dengan u jika c positif, dan berlawanan arah apabila c negatif. 6

Khususnya (-1)u (juga ditulis u sama panjangnya dengan u arahnya berlawanan dengan u). Vektor ini disebut vektor negatif u sebab jika dijumlahkan dengan u hasilnya adalah vektor nol (yaitu suatu titik). Vektor nol adalah satu-satunya vektor yang tanpa arah tertentu, dinamakan vektor nol dinotasikan dengan 0. Vektor ini merupakan unsur satuan penjumlahan yaitu u + 0 = 0 + u = u. Sehingga kita dapat mendefinisikan pengurangan sebagai : u - v = u + (-v). 3. Pembahasan Vektor dengan Pendekatan Aljabar Dari uraian terdahulu dengan pendekatan geometri dapat disimpulkan bahwa sebuah vektor adalah keluarga anak panah yang panjangnya dan arahnya sama. Sekarang kita akan membahas vektor secara aljabar. (lihat gambar dibawah) Y (u 1, u 2 ) Y Kita mulai dengan mengambil sebuah sistem koordinat cartesius pada bidang, sebagai wakil dari vektor u, kita pilih sebuah anak panah yang berpangkal dititik asal. Anak panah ini ditentukan secara tunggal oleh koordinat u 1 dan u 2 pada titik ujungnya; ini berarti bahwa vektor u ditentukan oleh pasangan terurut <u 1, u 2 >. Jadi selanjutnya kita anggap <u 1, u 2 > adalah vektor u. Pasangan terurut <u 1, u 2 > ini merupakan vektor secara aljabar. Kita gunakan simbol pasangan terurut <u 1, u 2 > karena (u 1, u 2 ) sudah mempunyai pengertian tersendiri yaitu koordinat titik pada bidang. 4. Panjang dan Hasil Kali Titik Definisi : Jika u dan v adalah vektor vektor di ruang 2 dan ruang 3 dan adalah sudut di antara u dan v, maka hasil kali titik (dot product) atau hasil kali dalam euclidis (Euclidean inner product) u.v diddefinisikan oleh u.v = u v cos, jika u 0 dan v 0 0, jika u = 0 dan v = 0 7

u artinya panjang suatu vektor u dan didefinisikan sebagai u = (jika di ruang2) dan v = (jika di ruang3). Panjang suatu vektor juga dikenal dengan norma. Secara geometris dapat digambarkan sebagai berikut ini. Gambar Vektor di Ruang 2 Jika kita perhatikan, vektor u yang melalui titik asal tersebut membentuk sudut siku siku terhadap sumbu x. Sisi miring atau u dapat dicari dengan menggunakan Rumus 2 2 Phytagoras, yaitu u = u 1 + u 2 = u 2 =. Gambar Vektor di Ruang 3 Dengan Rumus Phytagoras juga diperoleh : u 2 = (OR) 2 + (RP) 2 = (RS) 2 + (OS) 2 + (RP) 2 = (OQ) 2 + (OS) 2 + (RP) 2 = u 2 1 + u 2 2 2 + u 3 u 2 = 8

Contoh : Andaikan u = (4, -3). Tentukan u dan -2u. Tentukan pula vektor yang searah dengan u tetapi dengan panjang 1. Jawab: u = = 5 dan -2u = -2 u = 2.5 = 10 Vektor v yang searah dengan u dan panjangnya 1 yaitu vektor, karena panjang vektor adalah = = 1 Sehingga v = = (4, -3) / 5 = (4/5, -3/5). Sifat sifat pada perkalian titik vektor adalah sebagai berikut. Misalkan u, v dan w adalah vektor di ruang2 atau ruang3 dan k adalah skalar maka: 1. v.v = 2 = = (v.v) 1/2 Bukti: Karena vektor v berhimpit dengan vektor v itu sendiri maka adalah sudut di antara v dan v adalah 0 diperoleh v.v = u u cos = u 2 cos 0 = u 2 2. u. (v + w) = u.v + u.wu.(v + w) = (u 1, u 2, u 3 ).((v 1, v 2, v 3 ) + (w 1, w 2, w 3 )) = (u 1, u 2, u 3 ).(v 1 + w 1, v 2 + w 2, v 3 + w 3 ) = (u 1 (v 1 + w 1 ) + u 2 (v 2 + w 2 )+ u 3 (v 3 + w 3 )) = ((u 1 v 1 + u 1 w 1 ) + (u 2 v 2 + u 2 w 2 )+ (u 3 v 3 + u 3 w 3 )) = ((u 1 v 1 + u 2 v 2 + u 3 v 3 ) + (u 1 w 1 + u 2 w 2 + u 3 w 3 )) = (u 1 v 1 + u 2 v 2 + u 3 v 3 ) + (u 1 w 1 + u 2 w 2 + u 3 w 3 ) = u.v + u.w 3. k(u.v) = (k.u).v = u(kv) Bukti: k(u.v) = k((u 1, u 2, u 3 ).(v 1, v 2, v 3 )) = k(u 1 v 1 + u 2 v 2 + u 3 v 3 ) = (k(u 1 v 1 ) + k(u 2 v 2 ) + k(u 3 v 3 )) 9

= ((ku 1 )v 1 + (ku 2 )v 2 + (ku 3 )v 3 ) Asosiatif = (ku).v = (u 1 (kv 1 ) + u 2 (kv 2 ) + u 3 (kv 3 )) Komutatif = u.(kv) 4. 0. u = 0 Jika u dan v adalah vektor vektor taknol dan adalah sudut di antara kedua tersebut, maka vektor lancip jika dan hanya jika u.v > 0 tumpul jika dan hanya jika u.v < 0 = jika dan hanya jika u.v = 0 Perlu diingat bahwa akan lancip jika dan hanya jika cos > 0, akan tumpul jika dan hanya jika cos < 0 dan akan = (siku-siku) jika dan hanya jika cos = 0. Karena u 0 dan u > 0 serta berdasarkan Definisi Dot Product bahwa u.v= u u cos, maka u.v memiliki tanda sama dengan cos. Karena, maka sudut lancip jika dan hanya jika cos > 0, tumpul jika dan hanya jika cos < 0, dan = jika dan hanya jika cos = 0 5. u.v = v.u Bukti : u.v = (u 1, u 2, u 3 ).(v 1, v 2, v 3 ) = (u 1 v 1 + u 2 v 2 + u 3 v 3 ) = (v 1 u 1 + v 2 u 2 + v 3 u 3 ) Komutatif = (v 1, v 2, v 3 ).(u 1, u 2, u 3 ) = v.u Bentuk hasil kali titik u.v selain dari definisi di atas dapat juga dihitung dengan u. v = u v cos, dimana adalah sudut yang dibentuk oleh vektor u dan v. Dari rumus u.v = u v cos tampak bahwa jika vektor u dan v saling tegak lurus, 10

maka Ө = 90 0 berarti cos Ө = 0 Sehingga diperoleh bahwa u.v = 0. Dari sini dapat disimpulkan bahwa dua vektor u dan v saling tegak lurus (ortogonal) jika dan hanya jika u.v = 0 2.2 Pengertian Geseran/Translasi Definisi: Suatu pemetaan S disebut geseran/translasi, apabila terdapat suatu ruas garis berarah AB sedemikian sehingga untuk setiap titik P dalam bidang V berlaku S(P) = P dengan PQ = AB. Selanjutnya geseran dengan vektor AB dinyatakan sebagai S AB. A P S(P)=P B Karena pengertian geseran didasarkan pada vektor, maka didapat suatu teorema: a. S AB. = S CD jika dan hanya jika AB = CD Bukti: 1. S AB. = S CD maka AB = CD Ambil titik P dan kenakan S dengan vektor geser AB Berarti S AB (P) = (P ) berarti AB = PP Karena S AB. = S CD maka S CD (P) = (P ) berarti CD = PP Karena AB = PP CD = PP Maka akibatnya AB = CD 2. AB = CD maka S AB. = S CD Ambil P dan kenakan S AB berarti S AB (P) = (P ) berarti AB = PP Karena AB = CD maka CD = PP Sehingga S CD (P) = (P ) S AB (P) = (P ) Maka akibatnya S AB. = S CD Dari (1) dan (2) terbukti S AB. = S CD maka AB = CD 11

Ilustrasi: A B C D b. Misalkan tiga titik A, B, dan C tidak segaris. S AB. = S CD jika dan hanya jika CABD berupa jajaran genjang. Bukti: 1. S AB. = S CD maka CABD berupa jajaran genjang. Dengan dalil 2.1 diperoleh bahwa jika S AB. = S CD maka AB = CD Karena S AB. = S CD maka AB = CD berakibat AC = BD Jadi CABD berupa jajaran genjang 2. CABD jajaran genjang maka S AB. = S CD CABD jajaran genjang berarti terdapat 2 pasang sisi yang sejajar dan sama panjang, yaitu AB = CD dan AC = BD Karena AB = CD dengan dalil 2.1 (jika AB = CD maka S AB. = S CD ) jadi S AB. = S CD Dari (1) dan (2) terbukti bahwa S AB. = S CD jika dan hanya jika CABD berupa jajaran genjang. Catatan: Geseran S AB akan merupakan Identitas jika A = B. Jelas, bahwa oleh suatu geseran S AB bukan merupakan identitas, maka setiap titik pasti bukan titik tetap. Jadi tidak ada titik tetap dalam geseran yang bukan identitas. Tetapi geseran punya garis tetap, yaitu semua garis yang sejajar dengan vektor geserannya. Selanjutnya dengan mudah dapat dibuktikan bahwa geseran merupakan transformasi dan inversnya juga merupakan geseran, yaitu: (S AB ) -1 = S BA. c. Geseran adalah suatu isometri. 1. S AB (P) = P =>AB = PP S AB (Q) = Q =>AB = QQ Akibatnya PP = QQ Akan dibuktikan P Q = PQ 12

PP dan Q tidak segaris dengan dalil 2.2 PQQ P jajar genjang berakibat P Q = PQ = P Q = PQ 2. PP dan Q segaris P Q = PQ PP = PQ + QQ PP karena PP = QQ Maka P Q = PQ Akibatnya P Q = PQ Jadi Geseran (S) adalah suatu isometri. d. Geseran mempertahankan arah garis. e. Hasil kali dua geseran S AB dan S CD akan berupa suatu geseran S PQ dengan PQ = AB + CD. Bukti: Q T T Ambil sebarang titik T di bidang V, Akan dibuktikan bahwa S CD ο S AB (T) = S PQ (T) Misal T = S AB (T) dan T = S CD (T ) Maka TT = AB dan T T = TT + T T = AB + CD = PQ 13

Sehingga (T) = T = S AB+CD (T) = S CD ο S AB (T) Terbukti S CD ο S AB (T) = S PQ (T) 2.3 Rumus Geseran Dalam bidang koordinat y A P x Dari gambar dia atas menunjukan bahwa titik P di petakan p oleh suatu translasi. Misal diberikan translasi dengan bentuk vektor yaitu yang menunjukan bahwa translasi Pp di hasilkan oleh 4 satuan secara horisontal ke kanan dan 5 satuan secara vertikal keatas. Dan dapat dimisalkan 4 satuan dengan h dan 5 satuan dengan k. Dari pernytaan tersebut dapat di simpulkan h searah dengan x dan k searah dengan y. Catatan :Pergeseran ke arah kanan dan atas bertanda positif dan sedangkan pergeseran ke arah kiri dan bawah bertanda negatif. Sehingga geseran PP dapat dinyatakan secara analitis sebagai berikut: P(X,Y) P (X,Y ) P (X,Y ) = (x + h, y + k) Dengan diketahuinya rumus tersebut, dapat di katakan bahwa translasi adalah transformasi isometri yakni tidak adanya perubahan dalam bentuk dan ukuran oleh suatu translasi maka bangun dan bayangannya kongruen. 14

Bukti : Misalkan translasi suatu transformasi dengan vektor AB, dimana vektor AB (a,b). Diketahui : P(x,y) dan Q (u,v), P,Q V. Maka = (x + a, y + b ) dan = (u + a, v + b), sehingga, = QP = = Jadi, terbukti bahwa translasi adalah isometri. Teorema Pada saat translasi AB I, tidak mempunyai titik tetap, semua garis yang sejajar akan menjadi garis tetap. Bukti : Akan dibuktikan tidak ada titik tetap secara analitis. Karena pergeseran AB I berarti AB 0. Maka : = (x + a, y + b). Misal P(x, y) adalah titik tetap, maka berlaku x + a = x dan y + b = y. Berarti a = 0 dan b = 0. Ini berarti bertentangan dengan yang diketahui bahwa AB 0. Jadi tidak mungkin terdapat titik tetap. Bukti bahwa garis yang sejajar AB adalah garis tetap. Misalnya h : px +qy +c merupakan garis tetap maka h = h, padahal berdasarkan definisi geseran, persamaan garis: h : p ( - a) + y( - b) + c atau p + q + c ap bq = 0 Agar h = h maka c ap bq = c atau Ap = - bq atau - = gradien garis h. Ini berarti garis h sejajar dengan AB. Sehingga terbukti bahwa garis yang sejajar dengan AB merupakan garis tetap. 15

BAB III KESIMPULAN Dari pembahasan diatas, maka dapat disimpulkan bahwa Suatu pemetaan S disebut geseran/translasi, apabila terdapat suatu ruas garis berarah AB sedemikian sehingga untuk setiap titik P dalam bidang V berlaku S(P) = Q dengan PQ = AB. Selanjutnya geseran dengan vektor AB dinyatakan sebagai S AB. Pengertian geseran didasarkan pada vektor sehingga didapat suatu teorema: a. S AB. = S CD jika dan hanya jika AB = CD b. Misalkan tiga titik A, B, dan C tidak segaris c. Geseran adalah suatu isometri d. Geseran mempertahankan arah garis e. Hasil kali dua geseran S AB dan S CD akan berupa suatu geseran S PQ dengan PQ = AB + CD. Dengan diketahuinya rumus P (X,Y ) =P (x + h, y + k), dapat dikatakan bahwa translasi adalah transformasi isometri yakni tidak adanya perubahan dalam bentuk dan ukuran oleh suatu translasi maka bangun dan bayangannya kongruen. 16

REFERENCES Iswahyudi, Gatut. 2003. Geometri Transformasi. UNS press: Surakarta Amanto.2013.Bahan Ajar Struktur Aljabar. Bandung: IAIN Raden Intan Lampung Alitiningtyas, Nur. Diktat Struktur Aljabar. Bandar Lampung Noormandiri, B.K. 2005. Buku Pelajaran Matematika SMA Untuk Kelas XII. Jakarta: Erlangga Suryanto, T. (n.d.). Islamic Work Ethics and Audit Opinions: Audit Professionalism and Dysfunctional Behavior as Intervening Variables. Suryanto, T. (2015). QUALITY AUDIT IN BANKING INDUSTRY. In Prosiding International conference on Information Technology and Business (ICITB) (pp. 271 279). YAZID, H., & SURYANTO, T. (2017). IFRS, PROFESSIONAL AUDITOR SKEPTICISM, CONFLICT AGENCY TO PREVENTION OF FRAUD AND INVESTOR CONFIDENCE LEVEL. International Journal of Economic Perspectives, 11(1). 17