Praktikum Metode Komputasi (Vector Spaces)

dokumen-dokumen yang mirip
Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 1 dari Buku J. Leon Aljabar Linear) Program Scilab

Praktikum Metode Komputasi (Matriks dalam Scilab)

Laporan Praktikum 14 Metode Komputasi Matematika (Latihan Bab 3 dari Buku J. Leon Aljabar Linear) Program Scilab

Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

Laporan praktikum Metode Komputasi Matematika 17 Desember 2015

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

Nama Soal Pembagian Ring Road Batas Waktu 1 detik Nama Berkas Ringroad[1..10].out Batas Memori 32 MB Tipe [output only] Sumber Brian Marshal

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

MAKALAH BASIS RUANG SOLUSI

TIF APPLIED MATH 1 (MATEMATIKA TERAPAN 1) Week 3 SET THEORY (Continued)

BAB I PENDAHULUAN Latar Belakang Masalah

bilqis 1

Reduksi Rank pada Matriks-Matriks Tertentu

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul

Data Structures. Class 5 Pointer. Copyright 2006 by The McGraw-Hill Companies, Inc. All rights reserved.

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES

1/5. while and do Loops The remaining types of loops are while and do. As with for loops, while and do loops Praktikum Alpro Modul 3.

Pertemuan 4 Aljabar Linear & Matriks

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan

Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar

BAB 5 RUANG VEKTOR A. PENDAHULUAN

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK

REDUKSI RANK PADA MATRIKS-MATRIKS TERTENTU

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

Pembagi Bersama Terbesar Matriks Polinomial

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

PERANCANGAN PERANGKAT LUNAK KRIPTOGRAFI VISUAL TANPA EKSPANSI PIKSEL DAN ALGORITMA RLE

Linear Discrimant Model

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN

12/8/2012 MODUL -10. Apa itu SPSS? Apa yang bisa dilakukan SPSS? Apa kesamaan SPSS dengan Microsoft Office Excel?

MODULE 1 GRADE XI VARIATION OF EXPRESSIONS

Fadly Ramadhan, Thresye, Akhmad Yusuf

BAB II TINJAUAN PUSTAKA

DIAGONALISASI MATRIKS HILBERT

PERCOBAAN 1 PENGENALAN MATLAB UNTUK STATISTIK

CHAPTER 6. Ruang Hasil Kali Dalam

Euclidean n & Vector Spaces. Matrices & Vector Spaces

Aplikasi Matriks Leslie Untuk Memprediksi Jumlah Dan Laju Pertumbuhan Perempuan Di Provinsi Riau Pada Tahun 2017

Statistik Farmasi Probabilitas

Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3

BAB 3. Vektor dan Matriks

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,

PRAKTIKUM 4. Pemrograman Berorientasi Objek

JARINGAN KOMPUTER : ANALISA TCP MENGGUNAKAN WIRESHARK

Aplikasi Sistem Persamaan Linier dalam Persoalan Dunia Nyata (real world problem)

Subnetting & CIDR. Fakultas Rekayasa Industri Institut Teknologi Telkom

ANALISIS KEAMANAN KRIPTOSISTEM KUNCI PUBLIK BERDASARKAN MATRIKS INVERS TERGENERALISASI

Karakterisasi Matriks Leslie Ordo Empat

BAB 4. TEOREMA FERMAT DAN WILSON

APLIKASI DEKOMPOSISI NILAI SINGULAR PADA KOMPRESI UKURAN FILE GAMBAR

Outline. Struktur Data & Algoritme (Data Structures & Algorithms) Pengantar. Definisi. 2-3 Trees

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS

OFVSBM!OFUXPSL. Latar Belakang

Pemrograman dengan MATLAB. Pengantar

OBJECT ORIENTED PROGRAMMING. Day 3 : Operator dan Assignment

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

UML USE CASE DIAGRAM

ANALISIS LAPORAN KEUANGAN. Ratio Analysis Limitations of ratio analysis Du Pont system

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

SIMULASI MONTE CARLO RISK MANAGEMENT DEPARTMENT OF INDUSTRIAL ENGINEERING

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS

32-bit and 64-bit Windows: Frequently asked questions

Pengantar Matematika Asuransi. Winita Sulandari

Rahasia Cermat & Mahir Menguasai Akuntansi Keuangan Menengah (Indonesian Edition)

I PENDAHULUAN II LANDASAN TEORI

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Apa yang harus kita kenali?

JARINGAN KOMPUTER. 2. What is the IP address and port number used by gaia.cs.umass.edu to receive the file. gaia.cs.umass.edu :

Problem 1. Implementasi Interface. Diberikan definisi interface BentukDuaDimensi berikut:

Kompresi Citra Menggunakan Truncated Singular Value Decomposition (TSVD), Sebuah Eksplorasi Numerik

04-Ruang Vektor dan Subruang

Lampiran 1 Pembuktian Teorema 2.3

PENENTUAN PRIORITAS TEKNIK SAMPLING MENGGUNAKAN ANALYTICAL HIERARCHY PROCESS (AHP)

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Semi Definit dan Indefinit Menggunakan Metode Kuasa Invers dengan Shift

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

UJI HIPOTESIS STATISTIK NON PARAMETRIK.

HUKUM HAM INTERNASIONAL: SEBUAH PENGANTAR KONTEKSTUAL (RANGKAIAN STUDI IMR) BY PRANOTO ISKANDAR

Pengenalan Sistem Bilangan Biner dan Gerbang Logika

Modul Praktikum Basis Data 7 Membuat Form Lebih Lanjut

SUMMARY ALJABAR LINEAR

Distribusi probabilitas dan normal. Statisitik Farmasi 2015

Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus

SISTEM DINAMIK TUGAS 3. Oleh RIRIN SISPIYATI ( ) Program Studi Matematika

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 7-8

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Fungsi wavrecord. Praktikum Pengenalan Bahasa Alami Pertemuan Pertama: Pengenalan Fungsi Dasar Pemrosesan Suara di Matlab

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR

PENYELESAIAN MAGIC SQUARE SEBAGAI PERMASALAHAN SISTEM PERSAMAAN LINEAR (SPL) RISMANTO FERNANDUS SIRINGO-RINGO

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

Ekspresi Reguler Definisi. Notasi Ekspresi Regular. Contoh Ekspresi Reguler [2]

Petunjuk Pengerjaan soal

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR

Ekonomi Manajerial dalam Perekonomian Global

PENERAPAN MULTIMETODE BERBASIS MATRIKS PADA SELEKSI PENERIMAAN CALON ASISTEN LABOR.

Transkripsi:

Praktikum Metode Komputasi (Vector Spaces) Vina Apriliani January 17, 016 Soal Latihan MATLAB Bab 3 Buku Leon Aljabar Linear Berikut 1 Soal Latihan MATLAB Bab 3 Buku Leon Aljabar Linear yang saya ambil untuk ditulis dengan LaTeX dan harus dikerjakan ( digit terakhir NRP modulo jumlah soal di Latihan) yaitu Soal Nomor (): Rank-Deficient Matrices In this exercise we consider how to use MATLAB to generate matrices with specified ranks. a In general, if A is an m x n matrix with rank r, then r <= min(m,n). Why? Explain. If the entries of A are random numbers, we would expect that r = min(m,n). Why? Explain. Check this out by generating random 6 x 6, 8 x 6, and 5 x 8 matrices and using the MATLAB command rank to compute their ranks. Whenever the rank of an m x n matrix equals min(m,n), we say that the matrix has full rank. Otherwise, we say that the matrix is rank deficient. Jika A adalah matriks m x n dengan rank r, maka r <= min(m,n) karena rank r adalah dimensi dari ruang baris sehingga rank r <= m, sedangkan dimensi ruang baris = dimensi ruang kolom sehingga rank r <= min(m,n). (Teorema) Jika entri dari matriks A adalah bilangan acak, kita dapat menduga bahwa r=min(m,n) karena antar baris tidak pernah merupakan kelipatan satu dengan yang lain. Generating random 6 x 6, 8 x 6, 5 x 8 matrices and compute their ranks using MATLAB command: A = rand(6,6) 0.8147 0.785 0.957 0.79 0.6787 0.7060 0.9058 0.5469 0.4854 0.9595 0.7577 0.0318 A = 0.170 0.9575 0.8003 0.6557 0.7431 0.769 0.9134 0.9649 0.1419 0.0357 0.39 0.046 0.634 0.1576 0.418 0.8491 0.6555 0.0971 0.0975 0.9706 0.9157 0.9340 0.171 0.835 1

rank(a) = 6 B = rand(8,6) 0.6948 0.1869 0.6551 0.7513 0.1493 0.1966 0.3171 0.4898 0.166 0.551 0.575 0.511 0.950 0.4456 0.1190 0.5060 0.8407 0.6160 B = 0.0344 0.6463 0.4984 0.6991 0.543 0.4733 0.4387 0.7094 0.9597 0.8909 0.8143 0.3517 0.3816 0.7547 0.3404 0.9593 0.435 0.8308 0.7655 0.760 0.5853 0.547 0.993 0.5853 0.795 0.6797 0.38 0.1386 0.3500 0.5497 rank(b) = 6 C = rand(5,8) 0.81 0.7317 0.7447 0.656 0.4868 0.5108 0.8116 0.550 0.0154 0.6477 0.1890 0.780 0.4359 0.8176 0.538 0.65 C = 0.0430 0.4509 0.6868 0.0811 0.4468 0.7948 0.3507 0.5870 0.1690 0.5470 0.1835 0.994 0.3063 0.6443 0.9390 0.077 0.6491 0.963 0.3685 0.7757 0.5085 0.3786 0.8759 0.301 rank(c) = 5 b MATLAB s rand and round commands can be used to generate random m x n matrices with integer entries in a given range [a,b]. This can be done with a command of the form For example, the command A = round((b-a)*rand(m,n))+a A = round(4*rand(6,8))+3 will generate a 6 x 8 matrix whose entries are random integers in the range from 3 to 7. Using the range [1,10], create random integer 10 x 7, 8 x 1, and 10 x 15 matrices and in each case check the rank of the matrix. Do these integer matrices all have full rank? Random integer 10 x 7 matrix in the range [1,10]: A1 = round(9*rand(10,7))+1

8 7 7 5 3 8 9 10 1 1 4 7 3 10 9 3 8 7 6 9 5 9 1 8 7 A1 = 7 8 7 3 9 8 8 5 5 10 4 5 8 7 5 10 6 6 9 5 4 7 4 10 8 7 10 7 6 10 10 3 1 8 3 3 rank(a1) = 7 This integer matrix has full rank because r = min(10,7) = 7. Random integer 8 x 1 matrix in the range [1,10]: A = round(9*rand(8,1))+1 9 7 8 9 4 5 4 5 4 3 5 8 6 5 5 6 1 8 4 4 6 3 3 9 5 9 8 3 8 6 5 6 9 10 8 6 A = 10 5 9 6 1 3 1 5 6 3 5 3 4 6 1 4 7 8 8 9 5 5 3 9 6 7 6 8 3 9 3 4 3 4 8 8 8 10 9 3 7 3 9 rank(a) = 8 This integer matrix has full rank because r = min(8,1) = 8. Random integer 10 x 15 matrix in the range [1,10]: A3 = round(9*rand(10,15))+1 3

9 7 4 6 9 3 5 4 5 7 4 9 7 10 8 10 8 7 6 6 3 4 6 5 7 4 9 7 8 6 7 8 8 7 3 3 5 3 4 7 8 6 8 5 8 6 5 5 6 5 10 7 3 6 5 3 6 9 7 3 4 6 10 1 A3 = 1 3 7 4 4 8 4 4 9 3 3 6 9 7 8 3 7 6 8 8 5 8 5 5 6 8 6 9 5 6 9 1 10 1 3 5 6 3 3 7 1 3 8 8 5 1 7 1 7 5 4 9 9 3 9 5 7 9 5 6 8 3 3 4 9 3 10 8 7 3 9 6 3 5 rank(a3) = 10 This integer matrix has full rank because r = min(10,15) = 10. c Suppose that we want to use MATLAB to generate matrices with less than full rank. It is easy to generate matrices of rank 1. If x and y are nonzero vectors in R m and R n, respectively, then A = xy T will be an m x n matrix with rank 1. Why? Explain. Verify this in MATLAB by setting x = round(9*rand(8,1))+1, y = round(9*rand(6,1))+1 and using these vectors to construct an 8 x 6 matrix A. Check the rank of A with the MATLAB command rank. Jika x dan y adalah vektor-vektor taknol masing-masing di R m dan R n, maka A = xy T akan menjadi matriks m x n dengan rank 1 karena setiap baris pada matriks A (baris ke- sampai baris ke-m) merupakan kelipatan baris pertama, dapat dilihat dari bentuk eselon baris tereduksi dari matriks A. Construct an 8 x 6 matrix A: x = round(9*rand(8,1))+1 4

5 8 x = 3 5 8 8 y = round(9*rand(6,1))+1 5 y = 6 5 7 7 10 5 30 5 35 35 16 40 48 40 56 56 4 10 1 10 14 14 A = x y = 4 10 1 10 14 14 6 15 18 15 1 1 10 5 30 5 35 35 16 40 48 40 56 56 16 40 48 40 56 56 d In general, rank(a) = 1 rank(ab) <= min(rank(a),rank(b)) (1) (See Exercise 8 in Section 6.) If A and B are noninteger random matrices, the relation (1) should be an equality. Generate an 8 x 6 matrix A by setting X = rand(8,), Y = rand(6,), A = X*Y What would you expect the rank of A to be? Explain. Test the rank of A with MATLAB. X = rand(8,) 5

0.90 0.4897 0.4317 0.3395 0.0155 0.9516 X = 0.9841 0.903 0.167 0.057 0.106 0.7379 0.374 0.691 0.1981 0.48 Y = rand(6,) 0.5479 0.6663 0.947 0.5391 Y = 0.4177 0.6981 0.9831 0.6665 0.3015 0.1781 0.7011 0.180 0.4863 0.5393 0.4638 0.6134 0.175 0.674 0.467 0.5900 0.4173 0.6506 0.1906 0.3461 0.646 0.576 0.6708 0.6495 0.174 0.137 A = X Y = 1.154 1.439 1.0536 1.5808 0.4606 0.8077 0.167 0.1860 0.1066 0.1994 0.0598 0.139 0.5499 0.4979 0.5595 0.596 0.1635 0.1689 0.3834 0.496 0.3434 0.5455 0.160 0.955 0.3903 0.4147 0.3779 0.4766 0.1350 0.1930 Menurut dugaan saya, rank(a) = karena matriks X dan matriks Y adalah matriks yang berisi bilangan acak takbulat sehingga rank(x)= dan rank(y)=rank(y )=. Oleh karena itu, persamaan (1) berlaku sehingga rank(a)=rank(x*y )=min(rank(x),rank(y ))=min(,)=. Test the rank of A with MATLAB: rank(a) = rank(x) = rank(y) = rank(y ) = e Use MATLAB to generate matrices A, B, and C such that (i) A is 8 x 8 with rank 3. (ii) B is 6 x 9 with rank 4. (iii) C is 10 x 7 with rank 5. 6

A = rand(8,3)*(rand(8,3)) 0.083 0.6345 0.180 0.1190 0.688 0.053 0.804 0.8018 1.4601 0.7884 0.914 0.9057 1.593 1.0568 0.7963 0.853 0.966 1.0366 0.6461 0.858 1.046 0.6704 0.79 0.8407 A = 1.3117 0.639 0.804 0.808 1.3843 0.944 0.6347 0.6607 0.59 0.095 0.3044 0.1700 0.5791 0.411 0.904 0.815 0.9719 0.6895 0.5750 0.4090 1.3615 0.778 1.0466 1.0381 0.9671 0.5660 0.5787 0.4440 1.308 0.7514 0.883 0.861 1.4447 0.7678 0.889 0.770 1.683 1.085 0.9693 0.981 rank(a) = 3 B = rand(6,4)*(rand(9,4)) 0.7531 1.068 0.7318 0.6118 0.7794 0.718 0.3805 0.4644 0.6317 1.0753 0.7531 0.893 0.376 0.7485 0.6787 0.393 0.4070 0.613 B = 1.67 1.3797 1.1597 0.9838 1.857 1.655 0.6159 0.6135 0.8341 0.5357 0.4910 0.4839 0.393 0.5376 0.5356 0.396 0.165 0.316 1.1837 1.553 1.0144 1.0303 1.1841 1.431 0.7365 0.775 0.7685 1.464 1.7888 1.301 1.3010 1.5305 1.593 0.8581 0.833 0.9349 rank(b) = 4 C = rand(10,5)*(rand(7,5)) 1.6690 1.1011 1.149 1.5487 1.3678 1.5599 0.8984 1.6030 1.387 1.903 1.4143 1.40 1.7860 0.8303 1.4676 0.9909 1.1964 1.17 1.4084 1.5996 0.6791 1.737 1.5759 1.3959 1.8946 1.3098 1.707 0.8481 C = 1.569 1.18 1.1454 1.5636 1.335 1.5670 0.8530 1.6974 1.398 1.4 1.6564 1.5433 1.8807 1.044 0.9967 0.6554 0.7303 0.9195 0.8361 0.9369 0.4867.3488 1.6155 1.6456.1504 1.9043.048 1.41 1.6103 1.0115 0.916 1.3443 1.183 1.3549 0.9847 1.8619 1.49 1.6167 1.7787 1.5841 1.8804 0.7314 rank(c) = 5 Berikut Modifikasi Soal Nomor () menjadi soal untuk dikerjakan dalam Scilab: Rank-Deficient Matrices In this exercise we consider how to use SCILAB to generate matrices with specified ranks. a In general, if A is an m x n matrix with rank r, then r <= min(m,n). Why? Explain. If the entries of A are random numbers, we would expect that r = min(m,n). Why? Explain. Check this out by generating random 7

6 x 6, 8 x 6, and 5 x 8 matrices and using the SCILAB command rank to compute their ranks. Whenever the rank of an m x n matrix equals min(m,n), we say that the matrix has full rank. Otherwise, we say that the matrix is rank deficient. Jika A adalah matriks m x n dengan rank r, maka r <= min(m,n) karena rank r adalah dimensi dari ruang baris sehingga rank r <= m, sedangkan dimensi ruang baris = dimensi ruang kolom sehingga rank r <= min(m,n). (Teorema) Jika entri dari matriks A adalah bilangan acak, kita dapat menduga bahwa r=min(m,n) karena antar baris tidak pernah merupakan kelipatan satu dengan yang lain. Generating random 6 x 6, 8 x 6, 5 x 8 matrices and compute their ranks using SCILAB command: A = rand(6,6) 0.8147 0.785 0.957 0.79 0.6787 0.7060 0.9058 0.5469 0.4854 0.9595 0.7577 0.0318 A = 0.170 0.9575 0.8003 0.6557 0.7431 0.769 0.9134 0.9649 0.1419 0.0357 0.39 0.046 0.634 0.1576 0.418 0.8491 0.6555 0.0971 0.0975 0.9706 0.9157 0.9340 0.171 0.835 rank(a) = 6 B = rand(8,6) 0.6948 0.1869 0.6551 0.7513 0.1493 0.1966 0.3171 0.4898 0.166 0.551 0.575 0.511 0.950 0.4456 0.1190 0.5060 0.8407 0.6160 B = 0.0344 0.6463 0.4984 0.6991 0.543 0.4733 0.4387 0.7094 0.9597 0.8909 0.8143 0.3517 0.3816 0.7547 0.3404 0.9593 0.435 0.8308 0.7655 0.760 0.5853 0.547 0.993 0.5853 0.795 0.6797 0.38 0.1386 0.3500 0.5497 rank(b) = 6 C = rand(5,8) 0.81 0.7317 0.7447 0.656 0.4868 0.5108 0.8116 0.550 0.0154 0.6477 0.1890 0.780 0.4359 0.8176 0.538 0.65 C = 0.0430 0.4509 0.6868 0.0811 0.4468 0.7948 0.3507 0.5870 0.1690 0.5470 0.1835 0.994 0.3063 0.6443 0.9390 0.077 0.6491 0.963 0.3685 0.7757 0.5085 0.3786 0.8759 0.301 rank(c) = 5 8

b SCILAB s rand and round commands can be used to generate random m x n matrices with integer entries in a given range [a,b]. This can be done with a command of the form For example, the command A = round((b-a)*rand(m,n))+a A = round(4*rand(6,8))+3 will generate a 6 x 8 matrix whose entries are random integers in the range from 3 to 7. Using the range [1,10], create random integer 10 x 7, 8 x 1, and 10 x 15 matrices and in each case check the rank of the matrix. Do these integer matrices all have full rank? Random integer 10 x 7 matrix in the range [1,10]: A1 = round(9*rand(10,7))+1 8 7 7 5 3 8 9 10 1 1 4 7 3 10 9 3 8 7 6 9 5 9 1 8 7 A1 = 7 8 7 3 9 8 8 5 5 10 4 5 8 7 5 10 6 6 9 5 4 7 4 10 8 7 10 7 6 10 10 3 1 8 3 3 rank(a1) = 7 This integer matrix has full rank because r = min(10,7) = 7. Random integer 8 x 1 matrix in the range [1,10]: A = round(9*rand(8,1))+1 9

9 7 8 9 4 5 4 5 4 3 5 8 6 5 5 6 1 8 4 4 6 3 3 9 5 9 8 3 8 6 5 6 9 10 8 6 A = 10 5 9 6 1 3 1 5 6 3 5 3 4 6 1 4 7 8 8 9 5 5 3 9 6 7 6 8 3 9 3 4 3 4 8 8 8 10 9 3 7 3 9 rank(a) = 8 This integer matrix has full rank because r = min(8,1) = 8. Random integer 10 x 15 matrix in the range [1,10]: A3 = round(9*rand(10,15))+1 9 7 4 6 9 3 5 4 5 7 4 9 7 10 8 10 8 7 6 6 3 4 6 5 7 4 9 7 8 6 7 8 8 7 3 3 5 3 4 7 8 6 8 5 8 6 5 5 6 5 10 7 3 6 5 3 6 9 7 3 4 6 10 1 A3 = 1 3 7 4 4 8 4 4 9 3 3 6 9 7 8 3 7 6 8 8 5 8 5 5 6 8 6 9 5 6 9 1 10 1 3 5 6 3 3 7 1 3 8 8 5 1 7 1 7 5 4 9 9 3 9 5 7 9 5 6 8 3 3 4 9 3 10 8 7 3 9 6 3 5 rank(a3) = 10 This integer matrix has full rank because r = min(10,15) = 10. 10

c Suppose that we want to use SCILAB to generate matrices with less than full rank. It is easy to generate matrices of rank 1. If x and y are nonzero vectors in R m and R n, respectively, then A = xy T will be an m x n matrix with rank 1. Why? Explain. Verify this in SCILAB by setting x = round(9*rand(8,1))+1, y = round(9*rand(6,1))+1 and using these vectors to construct an 8 x 6 matrix A. Check the rank of A with the SCILAB command rank. Jika x dan y adalah vektor-vektor taknol masing-masing di R m dan R n, maka A = xy T akan menjadi matriks m x n dengan rank 1 karena setiap baris pada matriks A (baris ke- sampai baris ke-m) merupakan kelipatan baris pertama, dapat dilihat dari bentuk eselon baris tereduksi dari matriks A. Construct an 8 x 6 matrix A: x = round(9*rand(8,1))+1 5 8 x = 3 5 8 8 y = round(9*rand(6,1))+1 5 y = 6 5 7 7 10 5 30 5 35 35 16 40 48 40 56 56 4 10 1 10 14 14 A = x y = 4 10 1 10 14 14 6 15 18 15 1 1 10 5 30 5 35 35 16 40 48 40 56 56 16 40 48 40 56 56 rank(a) = 1 11

d In general, rank(ab) <= min(rank(a),rank(b)) (1) (See Exercise 8 in Section 6.) If A and B are noninteger random matrices, the relation (1) should be an equality. Generate an 8 x 6 matrix A by setting X = rand(8,), Y = rand(6,), A = X*Y What would you expect the rank of A to be? Explain. Test the rank of A with SCILAB. X = rand(8,) 0.90 0.4897 0.4317 0.3395 0.0155 0.9516 X = 0.9841 0.903 0.167 0.057 0.106 0.7379 0.374 0.691 0.1981 0.48 Y = rand(6,) 0.5479 0.6663 0.947 0.5391 Y = 0.4177 0.6981 0.9831 0.6665 0.3015 0.1781 0.7011 0.180 0.4863 0.5393 0.4638 0.6134 0.175 0.674 0.467 0.5900 0.4173 0.6506 0.1906 0.3461 0.646 0.576 0.6708 0.6495 0.174 0.137 A = X Y = 1.154 1.439 1.0536 1.5808 0.4606 0.8077 0.167 0.1860 0.1066 0.1994 0.0598 0.139 0.5499 0.4979 0.5595 0.596 0.1635 0.1689 0.3834 0.496 0.3434 0.5455 0.160 0.955 0.3903 0.4147 0.3779 0.4766 0.1350 0.1930 Menurut dugaan saya, rank(a) = karena matriks X dan matriks Y adalah matriks yang berisi bilangan acak takbulat sehingga rank(x)= dan rank(y)=rank(y )=. Oleh karena itu, persamaan (1) berlaku sehingga rank(a)=rank(x*y )=min(rank(x),rank(y ))=min(,)=. Test the rank of A with SCILAB: 1

rank(a) = rank(x) = rank(y) = rank(y ) = e Use SCILAB to generate matrices A, B, and C such that (i) A is 8 x 8 with rank 3. (ii) B is 6 x 9 with rank 4. (iii) C is 10 x 7 with rank 5. A = rand(8,3)*(rand(8,3)) 0.083 0.6345 0.180 0.1190 0.688 0.053 0.804 0.8018 1.4601 0.7884 0.914 0.9057 1.593 1.0568 0.7963 0.853 0.966 1.0366 0.6461 0.858 1.046 0.6704 0.79 0.8407 A = 1.3117 0.639 0.804 0.808 1.3843 0.944 0.6347 0.6607 0.59 0.095 0.3044 0.1700 0.5791 0.411 0.904 0.815 0.9719 0.6895 0.5750 0.4090 1.3615 0.778 1.0466 1.0381 0.9671 0.5660 0.5787 0.4440 1.308 0.7514 0.883 0.861 1.4447 0.7678 0.889 0.770 1.683 1.085 0.9693 0.981 rank(a) = 3 B = rand(6,4)*(rand(9,4)) 0.7531 1.068 0.7318 0.6118 0.7794 0.718 0.3805 0.4644 0.6317 1.0753 0.7531 0.893 0.376 0.7485 0.6787 0.393 0.4070 0.613 B = 1.67 1.3797 1.1597 0.9838 1.857 1.655 0.6159 0.6135 0.8341 0.5357 0.4910 0.4839 0.393 0.5376 0.5356 0.396 0.165 0.316 1.1837 1.553 1.0144 1.0303 1.1841 1.431 0.7365 0.775 0.7685 1.464 1.7888 1.301 1.3010 1.5305 1.593 0.8581 0.833 0.9349 rank(b) = 4 C = rand(10,5)*(rand(7,5)) 1.6690 1.1011 1.149 1.5487 1.3678 1.5599 0.8984 1.6030 1.387 1.903 1.4143 1.40 1.7860 0.8303 1.4676 0.9909 1.1964 1.17 1.4084 1.5996 0.6791 1.737 1.5759 1.3959 1.8946 1.3098 1.707 0.8481 C = 1.569 1.18 1.1454 1.5636 1.335 1.5670 0.8530 1.6974 1.398 1.4 1.6564 1.5433 1.8807 1.044 0.9967 0.6554 0.7303 0.9195 0.8361 0.9369 0.4867.3488 1.6155 1.6456.1504 1.9043.048 1.41 1.6103 1.0115 0.916 1.3443 1.183 1.3549 0.9847 1.8619 1.49 1.6167 1.7787 1.5841 1.8804 0.7314 rank(c) = 5 13