BAB II PERSAMAAN DIFERENSIAL BIASA

dokumen-dokumen yang mirip
Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

Hendra Gunawan. 25 April 2014

BAB I PENDAHULUAN 1.1 Latar Belakang

KONSEP DASAR PERSAMAAN DIFERENSIAL

Persamaan Diferensial

J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA. TKS-4101: Fisika. Hukum Newton. Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

Persamaan Diferensial

KISI KISI UJI COBA SOAL

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I


Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

Integral yang berhubungan dengan kepentingan fisika

SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1993

D. 30 newton E. 70 newton. D. momentum E. percepatan

PERSAMAAN DIFERENSIAL BIASA ORDE SATU

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

BAB II TINJAUAN PUSTAKA

MODUL MATEMATIKA TEKNIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

KERJA DAN ENERGI. 4.1 Pendahuluan

digunakan untuk menyelesaikan integral seperti 3

USAHA DAN ENERGI. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MT., MS.

K13 Revisi Antiremed Kelas 10 Fisika

1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar.

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

Kinematika Sebuah Partikel

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

Antiremed Kelas 10 FISIKA

LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM

D. 6,25 x 10 5 J E. 4,00 x 10 6 J

ANTIREMED KELAS 11 FISIKA

UM UGM 2017 Fisika. Soal

PEMBENTUKAN MODEL : AYUNAN (OSILASI) BEBAS. Husna Arifah,M.Sc

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

BAB I PENDAHULUAN. Kompetensi

USAHA DAN ENERGI 1 USAHA DAN ENERGI. Usaha adalah hasil kali komponen gaya dalam arah perpindahan dengan perpindahannya.

MOMENTUM LINEAR DAN IMPULS MOMENTUM LINEAR DAN IMPULS

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

GMBB. SMA.GEC.Novsupriyanto93.wordpress.com Page 1

TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika.

SOAL TRY OUT FISIKA 2

Pelatihan Ulangan Semester Gasal

BAB I PENDAHULUAN. Kompetensi

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

Department of Mathematics FMIPAUNS

Antiremed Kelas 11 FISIKA

BAB I INTEGRAL TAK TENTU

perpindahan, kita peroleh persamaan differensial berikut :

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

SOAL REMEDIAL KELAS XI IPA. Dikumpul paling lambat Kamis, 20 Desember 2012

BAB I BESARAN DAN SISTEM SATUAN

SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1984

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

BAB IV MOMENTUM, IMPULS DAN TUMBUKAN

SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay

I PENDAHULUAN II LANDASAN TEORI

Integral Tak Tentu. Modul 1 PENDAHULUAN

Xpedia Fisika DP SNMPTN 05

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

Persamaan Diferensial Biasa

Uji Kompetensi Semester 1

Persamaan Diferensial

D. 30 newton E. 70 newton. D. momentum E. percepatan

Persamaan Diferensial

BAB II LANDASAN TEORI

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak?????

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

DASAR PENGUKURAN MEKANIKA

BERKAS SOAL BIDANG STUDI : FISIKA

K 1. h = 0,75 H. y x. O d K 2

D. 80,28 cm² E. 80,80cm²

Hendra Gunawan. 16 Oktober 2013

SASARAN PEMBELAJARAN

Pilihan ganda soal dan impuls dan momentum 15 butir. 5 uraian soal dan impuls dan momentum

BAB 2 TINJAUAN PUSTAKA

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

USAHA, ENERGI & DAYA

Bab 7 Persamaan Differensial Non-homogen

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

SELEKSI MASUK UNIVERSITAS INDONESIA

Antiremed Kelas 11 Fisika

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

Antiremed Kelas 11 FISIKA

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

BAB 2 GAYA 2.1 Sifat-sifat Gaya

UN SMA IPA 2008 Fisika

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

Transkripsi:

BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan masalah-masalah teknik Tujuan Pembelajaran Khusus: 1 Mahasiswa mampu menjelaskan pengertian persamaan diferensial 2 Mahasiswa mampu menyelesaikan persamaan diferensial orde satu dengan metode pemisahan variabel, substitusi, faktor pengintegralan, dan persamaan Bernoulli 3 Mahasiswa mampu menyelesaikan persamaan diferensial linear orde dua dengan metode koefisien tak tentu tentu dan metode variasi parameter 4 Mahasiswa mampu menyelesaikan masalah penerapan persamaan diferensial dalam bidang teknik mesin, seperti mekanika dan lenturan pada batang 31 Pendahuluan Beberapa pemodelan pada masalah teknik dinyatakan dalam bentuk persamaan diferensial, misalnya masalah mekanika dan lenturan pada batang Oleh karena itu, materi persamaan diferensial penting dipelajari oleh mahasiswa jurusan teknik agar dapat menyelesaikan masalah teknik yang ditekuninya Sebuah persamaan diferensial adalah persamaan yang mengandung turunan atau diferensial Orde sebuah persamaan diferensial ditentukan oleh turunan tertinggi yang terdapat dalam persamaan Persamaan diferensial orde satu adalah persamaan dengan turunan tertingginya turunan pertama, demikian seterusnya Sebagai contoh, dapat dilihat persamaan-persamaan berikut ini adalah persamaan diferensial orde satu adalah persamaan diferensial orde dua Persamaan diferensial biasa (ordinary differential equation) adalah persamaan yang hanya melibatkan satu variabel bebas, sedangkan persamaan diferensial yang melibatkan lebih dari satu variabel bebas disebut persamaan diferensial parsial (partial differential equation) Persamaan diferensial yang disertai nilai awal disebut masalah nilai awal, sedangkan yang disertai nilai batas disebut masalah nilai batas Nilai awal sebuah persamaan diferensial adalah nilai fungsi ataupun nilai turunan fungsi yang diberikan pada kondisi awal, misalnya y(0) = 2, y (0) = 1, dan Matematika Terapan 2 untuk TPKM 1

seterusnya Nilai batas adalah nilai fungsi ataupun nilai turunan fungsi yang diberikan pada kondisi tertentu, misalnya y(1) = 0, y (5) = 12, dan seterusnya Penyelesaian persamaan diferensial adalah persamaan berbentuk atau berbentuk, dengan C konstanta Penyelesaian persamaan diferensial ada dua macam, yaitu 1 penyelesaian umum yaitu penyelesaian yang masih mengandung konstanta, penyelesaian ini diperoleh jika tidak diberikan nilai awal ataupun nilai batas; 2 penyelesaian khusus yaitu penyelesaian yang tidak mengandung konstanta karena telah disubstitusi oleh nilai awal dan nilai batas yang diberikan Metode penyelesaian persamaan diferensial bergantung pada orde dan bentuk persamaannya Untuk persamaan diferensial orde satu terdapat beberapa metode Metode penyelesaian yang cocok untuk persamaan pada contoh nomor satu di atas adalah metode pemisahan variabel Teknik penyelesaiannya akan diuraikan dibawah ini 32 Penyelesaian Persamaan Diferensial Orde Satu Metode penyelesaian persamaan diferensial orde satu bergantung pada bentuk persamaannya Pembahasan akan diawali dari bentuk persamaan yang paling sederhana yang dapat diselesaikan dengan pemisahan variabel, sampai pada persamaan yang agak rumit yaitu persamaan Bernoulli 321 Persamaan dengan Variabel Terpisah Persamaan diferensial ini berbentuk Penyelesaian persamaan ini diperoleh dengan metode pemisahan variabel, yaitu: Contoh 1: Soal: Tentukan penyelesaian persamaan diferensial orde satu Langkah 1 Pisahkan suku-suku yang mengandung variabel dan variabel, sehingga persamaan menjadi Langkah 2 Kemudian lakukan integral pada kedua ruas Matematika Terapan 2 untuk TPKM 2

Penyelesaian yang diperoleh adalah Contoh 2: Soal: Tentukan penyelesaian persamaan diferensial orde satu Langkah 1 Pemisahan suku-suku yang mengandung variabel, menghasilkan persamaan dan variabel Langkah 2 Sebelum menghitung integral, sederhanakan dulu fungsi-fungsi integran di kedua ruas, sehingga persamaan di atas menjadi Setelah diintegralkan dan disederhanakan bentuknya maka penyelesaian yang diperoleh adalah 322 Persamaan yang Direduksi menjadi Persamaan Terpisah (Pemisalan) Proses reduksi dari persamaan yang variabelnya tidak dapat dipisahkan menjadi dapat dipisahkan adalah dengan substitusi Secara khusus pada subbab ini dibahas persamaan yang berbentuk sehingga disubstitusi oleh persamaan Metode ini dikenakan pada persamaan diferensial linear orde satu homogen yaitu persamaan diferensial yang mengandung variabel x dan variabel y yang berderajat sama (pangkat tertinggi variabel x dan y sama) Persamaan diferensial homogen ini disubstitusi oleh persamaan, dengan dan oleh turunannya yaitu sehingga hasilnya dapat diselesaikan dengan metode pemisahan variabel Uraiannya dapat dilihat pada contoh berikut Contoh 1: Soal: Tentukan penyelesaian persamaan diferensial orde satu Matematika Terapan 2 untuk TPKM 3

Langkah 1 Substitusi persamaan dan pada persamaan diferensial, sehingga persamaan menjadi atau Ini adalah persamaan diferensial baru yang dihasilkan setelah substitusi Perhatikan, variabelnya sekarang adalah v dan x! Langkah 2 Lakukan penyelesaian dengan metode pemisahan variabel! Penyelesaian yang diperoleh adalah Contoh 2: Soal: Tentukan penyelesaian persamaan diferensial orde satu Langkah 1 Substitusi persamaan dan pada persamaan diferensial sehingga persamaan menjadi Langkah 2 Lakukan penyelesaian dengan metode pemisahan variabel Penyelesaian yang diperoleh adalah 323 Persamaan Diferensial Linear Orde Satu Metode yang digunakan untuk menyelesaikan persamaan diferensial linear (persamaan diferensial yang variabel y -nya berderajat satu) yaitu metode faktor pengintegralan Bentuk umum persamaan diferensial linear ini yaitu dengan P dan Q masing-masing konstanta atau fungsi dalam x Faktor pengintegralan (Fi) adalah eksponen pangkat integral dari fungsi P terhadap variabel x Ditulis dengan atau konstanta Matematika Terapan 2 untuk TPKM 4

Langkah-langkah penyelesaian: 1 Kalikan Fi dengan semua suku pada persamaan diferensial, yaitu Perhatikan bahwa ruas kiri ekivalen dengan sehingga diperoleh jika kedua ruas dikalikan dengan dx 2 Integralkan ruas kiri dan ruas kanan, diperoleh Karena setiap penyelesaian langkah-langkahnya sama, untuk selanjutnya setelah diperoleh Fi, persamaan yang diperoleh pada langkah kedua dapat langsung digunakan Perhatikan contoh-contoh berikut ini! Contoh 1: Soal: Tentukan penyelesaian persamaan diferensial orde satu! Langkah 1 Bandingkan persamaan diferensial pada soal dengan bentuk umum persamaan diferensial Linear, diperoleh fungsi dan fungsi Langkah 2 Tentukan Fi yaitu Perhatikan, walaupun integral tak tentu, hasil akhirnya tidak ditambahkan konstanta C Langkah 3 Tuliskan persamaan, dalam hal ini ekivalen dengan persamaan Langkah 4 Selesaikan integral pada ruas kanan dengan metode pengintegralan parsial Penyelesaian yang diperoleh adalah Contoh 2: Soal: Tentukan penyelesaian persamaan diferensial orde satu! Matematika Terapan 2 untuk TPKM 5

Langkah 1 Tuliskan persamaan diferensial pada soal sesuai dengan bentuk umum persamaan diferensial Linear Hal ini penting dilakukan untuk mendapatkan fungsi P dan Q dengan tepat Untuk persamaan diferensial pada contoh ini, bagi setiap sukunya dengan x sehingga persamaan diferensial menjadi Langkah 2 Bandingkan persamaan diferensial ini dengan bentuk umum persamaan diferensial Linear maka diperoleh fungsi dan fungsi Langkah 3 Tentukan Fi yaitu Langkah 4 Tuliskan persamaan, dalam hal ini ekivalen dengan persamaan Langkah 5 Selesaikan integral pada ruas kanan Penyelesaian yang diperoleh adalah Contoh 3: Soal: Tentukan penyelesaian persamaan diferensial orde satu Langkah 1 Bandingkan persamaan diferensial ini dengan bentuk umum persamaan diferensial linear maka diperoleh fungsi dan fungsi Langkah 2 Tentukan Fi yaitu Langkah 3 Tuliskan persamaan, dalam hal ini ekivalen dengan persamaan Langkah 4 Selesaikan integral pada ruas kanan Karena hasil integral pada langkah 4 ada dua macam, penyelesaian yang diperoleh juga dua macam, yaitu atau Matematika Terapan 2 untuk TPKM 6

324 Persamaan Bernoulli Bentuk umum Persamaan Bernoulli adalah dengan P dan Q masing-masing konstanta atau fungsi dalam x, dan n bilangan asli Langkah-langkah Penyelesaian: 1 Bagi setiap suku persamaan diferensial dengan 2 Misalnya, kemudian tentukan 3 Substitusi persamaan diferensial dengan y dan dy pada langkah 2 sehingga diperoleh persamaan yang baru yaitu 4 Selesaikan dengan metode faktor pengintegralan Untuk lebih jelas, perhatikan contoh berikut ini! Contoh 1: Langkah 1 Bandingkan persamaan diferensial pada soal dengan bentuk umum persamaan bernoulli, diperoleh Bagilah persamaan diferensial dengan, diperoleh Langkah 2 Misalnya, diperoleh Langkah 3 Substitusikan hasil langkah 2 pada persamaan diferensial di langkah 1, diperoleh persamaan diferensial yang baru yaitu Langkah 4 Selesaikan persamaan diferensial di langkah 3 dengan metode faktor Matematika Terapan 2 untuk TPKM 7

pengintegralan Penyelesaian yang diperoleh adalah Contoh 2: Soal: Tentukan penyelesaian persamaan diferensial orde satu Langkah 1 Tuliskan persamaan diferensial pada soal dalam bentuk umum persamaan bernoulli, untuk mendapatkan n yang tepat, yaitu diperoleh Bagilah persamaan diferensial ini dengan, diperoleh Langkah 2 Misalnya, diperoleh Langkah 3 Substitusikan hasil langkah 2 pada persamaan diferensial di langkah 1 sehingga diperoleh persamaan diferensial yang baru yaitu Langkah 4 Selesaikan persamaan diferensial di langkah 3 dengan metode faktor pengintegralan Penyelesaian yang diperoleh adalah Matematika Terapan 2 untuk TPKM 8

Latihan 1 A Tentukan penyelesaian umum persamaan diferensial orde satu berikut ini dengan metode pemisahan variabel atau metode substitusi! B Tentukan penyelesaian khusus persamaan diferensial orde satu berikut ini dengan metode pemisahan variabel atau metode substitusi! 5 Matematika Terapan 2 untuk TPKM 9

Latihan 2 A Tentukan Penyelesaian Umum dari Persamaan Diferensial Orde Satu berikut ini dengan Metode Faktor Pengintegralan atau Metode untuk Persamaan Bernoulli! B Tentukan penyelesaian khusus persamaan diferensial orde satu berikut ini dengan metode faktor pengintegralan! 33 Penerapan Persamaan Diferensial Orde Satu Pada subbab ini akan dibahas penerapan persamaan diferensial orde satu untuk masalah mekanika (gerak lurus) dan tekanan udara Langkah-langkah penyelesaian: 1 Rumuskan model matematika soal yang diberikan, yaitu dalam bentuk persamaan diferensial orde satu! 2 Tentukan penyelesaian umum dan khususnya! 3 Jawab pertanyaan pada soal! Matematika Terapan 2 untuk TPKM 10

Contoh 1 (Gerak Lurus) Soal: Sebuah benda bergerak sepanjang garis lurus Jarak tempuh pada saat t dinyatakan oleh y, kecepatan benda pada saat t dinyatakan oleh v Jika diketahui kecepatan benda linear, yaitu Jika, Tentukan jarak tempuh y pada saat! 1 Persamaan diferensial orde satu dengan syarat 2 Penyelesaian: Jadi, penyelesaian umum: Penyelesaian khusus diperoleh dengan mensubstitusi syarat pada penyelesaian umum maka, atau Jadi, penyelesaian khusus: 3 Jadi, atau jarak tempuh pada saat adalah 65 m Contoh 2: (Tekanan Udara) Soal: Dari pengamatan diketahui bahwa makin tinggi jarak dari permukaan laut maka makin rendah tekanan udaranya Laju perubahan tekanan sebanding dengan tekanan pada ketinggian tersebut Misalkan tekanan permukaan laut dinyatakan oleh Jika tekanan pada ketinggian 6000 m adalah ½ dari tekanan permukaan laut, tentukan tekanan udara pada setiap ketinggian! Diketahui: y = tekanan pada ketinggian x = tekanan pada setiap ketinggian x = ketinggian dari permukaan laut Syarat batas: Syarat awal: tekanan permukaan laut Persamaan diferensial: (k negatif karena y mengecil ketika x membesar) Matematika Terapan 2 untuk TPKM 11

Ditanyakan: Penyelesaian: Jadi, penyelesaian umumnya adalah Substitusi syarat awal pada penyelesaian umum, diperoleh Jadi, (*) Substitusi syarat batas pada (*), diperoleh Jadi, penyelesaian khususnya adalah Dengan demikian, tekanan udara pada setiap ketinggian (pada ketinggian x) adalah dengan tekanan permukaan laut Contoh 3: (Hukum Pendinginan Newton) Soal: Dari pengamatan diketahui bahwa jika sebuah benda dimasukkan ke dalam sebuah medium yang suhunya berbeda dengan suhu benda tersebut maka terjadi perubahan suhu terhadap waktu Laju perubahan suhu ini berbanding lurus dengan selisih suhu benda terhadap suhu medium Misalnya, sebuah bola tembaga dipanaskan sampai suhu 100 0 C Kemudian bola panas ini dicelupkan ke dalam air yang suhunya dipertahankan tetap sebesar 30 0 C Setelah 3 menit suhu bola menjadi 70 0 C Tentukan waktu t ketika suhu bola menjadi 31 0 C! Diketahui: = suhu benda pada saat t ( 0 C) t = waktu (menit) t = 0 (saat bola panas mulai dicelupkan ke dalam air) laju perubahan suhu benda terhadap waktu Syarat awal: Syarat batas: Matematika Terapan 2 untuk TPKM 12

Persamaan diferensial: (k negatif karena T mengecil ketika t membesar) Ditanyakan: Penyelesaian: Jadi, penyelesaian umumnya adalah Substitusi syarat awal pada penyelesaian umum, diperoleh Jadi, (*) Substitusi syarat batas pada (*), diperoleh Jadi, penyelesaian khususnya adalah Pada saat suhu bola mencapai diperoleh Dengan demikian, waktu yang dibutuhkan agar suhu bola mencapai 22,75 menit adalah Latihan 3 1 Volume air dalam bejana adalah V m 3 pada kedalaman h m Jika kecepatan perubahan V terhadap h adalah, tentukan volume air di dalam bejana pada kedalaman 2 m! 2 Sebuah mobil mulai dalam keadaan diam kemudian berjalan hingga mencapai kecepatan 100 m/detik selama 30 detik Jika percepatannya konstan, berapakah jarak yang ditempuh selama 30 detik itu? Matematika Terapan 2 untuk TPKM 13

3 Sebuah roket ditembakkan lurus ke atas dengan kecepatan Jika setelah 20 detik mesin roket itu dimatikan, berapakah ketinggian yang dicapai roket itu sebelum jatuh kembali? (tekanan udara diabaikan) 4 Sebuah benda yang suhunya 100 dibawa ke ruangan yang suhunya 22 Setelah 20 menit, suhu benda berubah menjadi 70 Berapa waktu yang dibutuhkan agar suhu benda tersebut mencapai 40? 5 Harga sebuah suku cadang sebuah mesin Rp 8 juta Harga suku cadang ini mengalami penurunan dengan rumus H menunjukkan harga suku cadang setelah t tahun pembelian Berapakah harga suku cadang tersebut setelah 4 tahun? 6 Muatan listrik yang diterima oleh kondensor dari sebuah rangkaian listrik yang dialiri arus sebesar I ampere dalam waktu t detik adalah Q coulomb Jika arus dan Q = 0 pada saat detik, tentukan muatan positif terbesar pada kondensor! 34 Penyelesaian Persamaan Diferensial Orde Dua Bentuk umum dari Persamaan Diferensial Orde Dua adalah Jika (31) persamaan (31) disebut persamaan diferensial orde dua tak homogen, tetapi jika persamaan ini disebut persamaan diferensial orde dua homogen Sebagai contoh persamaan diferensial orde dua tak homogen yaitu persamaan Pada contoh ini, berarti dan 341 Penyelesaian Persamaan Diferensial Orde Dua Homogen Persamaan diferensial orde dua homogen diselesaikan dengan dua langkah yaitu: 1 Tuliskan persamaan karakteristik dari persamaan (32), yaitu: Kemudian tentukan akar-akarnya 2 a Jika dan real, penyelesaian homogennya adalah (32) b Jika dan real, maka penyelesaian homogennya adalah c Jika (bilangan kompleks), maka penyelesaian homogennya adalah Matematika Terapan 2 untuk TPKM 14

Penyelesaian umum dari persamaan diferensial orde dua homogen ini adalah penyelesaian homogennya Contoh 1: Tentukan penyelesaian persamaan diferensial orde dua homogen Persamaan karakteristiknya adalah Karena kedua akarnya real dan berbeda, yaitu dan 1, maka penyelesaian homogennya adalah Jadi penyelesaian umumnya adalah Contoh 2: Tentukan penyelesaian khusus persamaan diferensial orde dua tak homogen atau tentukan penyelesaian masalah nilai awal berikut ini! Karena ruas kiri persamaan ini sama dengan contoh 1 umumnya adalah maka penyelesaian Untuk memperoleh nilai dari konstanta A dan B, substitusikan syarat awal pada penyelesaian umum Karena, diperoleh Karena dan, diperoleh Jadi dan Jadi, penyelesaian khususnya adalah 342 Penyelesaian Persamaan Diferensial Orde Dua Tak Homogen Penyelesaian umum dari persamaan diferensial orde dua tak homogen adalah gabungan dari penyelesaian homogen dan integral khusus ditulis Penyelesaian ini disebut juga penyelesaian umum lengkap Penyelesaian homogen diperoleh dengan cara yang telah dijelaskan pada subbab 341 Persamaan diferensial orde dua tak homogen dimisalkan sebagai persamaan diferensial orde dua homogen dalam hal ini Integral Khusus dapat diperoleh dari metode koefisien tak tentu ataupun metode variasi parameter Kedua metode ini memiliki kekurangan dan kelebihan Metode koefisien tak tentu terbatas hanya untuk integral khusus berbentuk fungsi eksponen, polinom, trigonometri (sinus dan cosinus) ataupun kombinasi ketiganya Pada metode variasi parameter, bentuk fungsi integral khususnya tidak terbatas pada tiga jenis fungsi tadi Akan tetapi, Matematika Terapan 2 untuk TPKM 15

dalam metode ini digunakan penghitungan integral pada bagian akhir penyelesaiannya a Metode Koefisien Tak Tentu Untuk memperoleh dengan metode koefisien tak tentu, perhatikan pada ruas kanan persamaan diferensial orde dua tak homogen dan tabel berikut! Tabel 2 Bentuk Umum Integral Khusus No Bentuk Umum dari 1 Eksponen x, yaitu 2 Polinom berderajat n 3 atau 4 atau Bentuk umum dari adalah pemisalan untuk integral khusus Jika telah ditentukan bentuk umumnya, selanjutnya bentuk umum ini dihitung turunan pertama dan turunan keduanya Setelah itu, hasilnya disubstitusikan pada persamaan diferensial orde dua tak homogen sehingga diperoleh yang sesungguhnya Contoh 1: Tentukan penyelesaian umum persamaan diferensial orde dua tak homogen Dari contoh sebelumnya, diketahui bahwa penyelesaian homogennya adalah Karena ruas kanan merupakan polinom berderajat dua, pemisalan untuk adalah, dan,! Substitusikan atas, diperoleh pada persamaan diferensial orde dua tak homogen di Matematika Terapan 2 untuk TPKM 16

sehingga Jadi, Dengan demikian, penyelesaian umum (lengkap) dari persamaan diferensial orde dua tak homogen di atas adalah Contoh 2 Tentukan penyelesaian umum persamaan diferensial orde dua tak homogen Bentuk homogen persamaan diferensial orde dua tak homogen di atas adalah Jadi, persamaan karakteristiknya adalah Akar-akar dari persamaan karakteristik ini Menurut langkah 2 penyelesaian homogennya adalah Bentuk pada persamaan diferensial ini berupa fungsi trigonometri dengan sehingga dengan bantuan tabel diperoleh pemisalan yaitu,, dan! Substitusikan pada persamaan diferensial tak homogen, diperoleh sehingga Jadi, Dengan demikian, penyelesaian umum (lengkap) dari persamaan diferensial orde dua tak homogen di atas adalah Matematika Terapan 2 untuk TPKM 17

Contoh 3: Tentukan penyelesaian umum persamaan diferensial orde dua tak homogen Dari contoh sebelumnya, diketahui bahwa penyelesaian umumnya adalah Karena ruas kanan merupakan kombinasi dari polinom berderajat satu dan eksponen, pemisalan untuk adalah, dan,! Substitusikan di atas, diperoleh pada persamaan diferensial orde dua tak homogen sehingga Jadi, Dengan demikian, penyelesaian umum (lengkap) dari persamaan diferensial orde dua tak homogen di atas adalah Contoh 4: Tentukan penyelesaian umum persamaan diferensial orde dua tak homogen! Dari contoh sebelumnya, diketahui bahwa penyelesaian umumnya adalah Karena ruas kanan merupakan eksponen x, pemisalan untuk adalah Matematika Terapan 2 untuk TPKM 18

Hasil dari substitusi homogen di atas adalah pada persamaan diferensial orde dua tak Hasil dari substitusi ini tidak diperoleh simpulan apa pun karena bentuk umum sama dengan salah satu suku pada penyelesaian homogen Jadi, harus dipilih pemisalan yang lain, yaitu (dikalikan dengan variabelnya) Jika masih sama dengan suku lain pada penyelesaian homogen, dikalikan dengan variabelnya satu kali lagi Pada soal ini, pemisalan tidak lagi sama dengan salah satu suku pada penyelesaian homogennya sehingga tidak perlu diganti dengan pemisalan yang lain Hasil dari substitusi homogen di atas adalah pada persamaan diferensial orde dua tak sehingga diperoleh Jadi, Dengan demikian, penyelesaian umum (lengkap) dari persamaan diferensial orde dua tak homogen di atas adalah b Metode Variasi Parameter Integral khusus pada metode variasi parameter diperoleh dengan langkah-langkah sebagai berikut 1 hitung determinan Wronski dari penyelesaian homogen Misalnya penyelesaian homogen adalah, maka determinan Wronskinya adalah Matematika Terapan 2 untuk TPKM 19

2 hitung integral khususnya, yaitu Contoh: Tentukan penyelesaian umum persamaan diferensial orde dua tak homogen ini dengan metode variasi parameter! Dari contoh 2 pada pembahasan metode koefisien tak tentu, diketahui bahwa penyelesaian umum persamaan diferensial orde dua homogen adalah Penyelesaian ini merupakan penyelesaian homogen, maka determinan Wronskinya adalah dan integral khususnya adalah Dengan demikian, penyelesaian umum (lengkap) dari persamaan diferensial orde dua tak homogen di atas adalah atau ( ) Latihan 4 A Tentukan penyelesaian umum dari persamaan diferensial orde dua tak homogen berikut ini! Matematika Terapan 2 untuk TPKM 20

B Tentukan penyelesaian khusus dari persamaan diferensial orde dua tak homogen berikut ini! 35 Penerapan Persamaan Diferensial Orde Dua Pada subbab ini akan dibahas masalah mekanika dan lenturan pada batang yang mengandung bentuk-bentuk persamaan diferensial orde dua tak homogen Pembahasan ini diharapkan akan memberikan gambaran tentang penerapan persamaan diferensial orde dua tak homogen pada teknik sipil a Mekanika Hukum dasar mekanika atau dinamika adalah hukum Newton, yaitu Matematika Terapan 2 untuk TPKM 21

dengan m massa objek yang bergerak, v kecepatan, t waktu, dan F gaya total yang bekerja pada projek itu Besaran mv dinamakan momentum Jika m konstan, persamaan di atas menjadi dengan a percepatan Pada permukaan bumi, massa m dihubungkan dengan bobot W oleh W = mg dengan g percepatan gravitasi bumi Contoh: Mobil yang sedang melaju dengan kecepatan 144 km/jam tiba-tiba direm, mengakibatkan percepatan negatif konstan 10 m/det 2, berapa lamakah mobil itu akan berhenti dan berapa jarak yang ditempuh mobil sampai berhenti? Misalnya jarak tempuh mobil setelah direm pada waktu t detik adalah y(t) Waktu dan posisi saat mobil di rem diasumsikan pada t = 0 dan y = 0 Jadi, Karena kecepatan mobil 144 km/jam = 40 m/det, kecepatan awal mobil Selanjutnya, percepatan mobil diartikan sebagai turunan kedua yaitu Dengan demikian, model matematika masalah tersebut adalah dengan syarat awal (33) Persamaan (33) merupakan persamaan diferensial orde dua tak homogen Jika diselesaikan dengan cara seperti pada subbab sebelumnya diperoleh persamaan karakteristik sehingga penyelesaian homogennya adalah Jika integral khususnya diperoleh dengan metode koefisien tak tentu, pemisalan untuknya adalah sehingga Oleh karena itu, Jadi, penyelesaian umumnya adalah Matematika Terapan 2 untuk TPKM 22

Dengan mensubstitusikan syarat awal pada penyelesaian umum, diperoleh dan B sehingga diperoleh penyelesaian khusus Persamaan diferensial orde dua tak homogen (33) dengan nilai dapat diselesaikan dengan integral langsung Cara ini akan memberikan penyelesaian khusus yang sama Ketika mobil berhenti, turunan pertama penyelesaian khusus memberikan persamaan dan diperoleh Jadi, mobil hanya bergerak selama 4 detik setelah direm dan jarak tempuh setelah direm adalah b Oscilasi Harmonik Sebuah pegas tergantung secara vertikal pada suatu titik tetap Pada ujung pegas diikatkan beban dengan massa m Jika beban tersebut ditarik ke bawah kemudian dilepaskan, maka beban bergerak naik turun Bagaimana persamaan gerak beban tersebut pada setiap waktu? Untuk merumuskan persamaan gerak beban ini, diambil asumsi gerakan beban hanya vertikal karena massa pegas diabaikan (perbandingan massa beban >> massa pegas) Latihan 5 1 Sebuah mobil mencapai kecepatan 80 km/jam, tanpa kecepatan awal Jika percepatannya konstan, berapakah jarak yang ditempuh dalam waktu 10 menit? 2 Sebuah bola menggelinding di permukaan tanah dengan kecepatan awal 35 kaki/detik Jika bola mengalami perlambatan sebesar 7 kaki/detik 2, berapakah jarak tempuh bola hingga berhenti? 3 Sebuah benda dengan berat 80 Newton dapat meregangkan pegas sejauh 5 cm Tentukanlah persamaan gerak benda tersebut dalam y (t) jika a benda ditarik ke bawah sejauh 8 cm; b benda ditarik ke bawah sejauh 4 cm dengan kecepatan awal 1,5 m/det; c benda didorong ke atas sejauh 8 cm; d benda didorong ke atas sejauh 4 cm dengan kecepatan awal 1,5 m/det! Matematika Terapan 2 untuk TPKM 23

4 Tentukanlah persamaan gerak benda yang dihasilkan pada soal nomor 3, jika sistem diberikan a redaman sebesar 100 kg/detik; b redaman sebesar 120 kg/detik dan gaya luar F(t) = 2 sin t Newton! Matematika Terapan 2 untuk TPKM 24