BAB-4. METODE PENELITIAN

dokumen-dokumen yang mirip
BAB-2. TINJAUAN PUSTAKA Persamaan Dasar

BAB-5. HASIL DAN PEMBAHASAN

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

1.1 Latar Belakang dan Identifikasi Masalah

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI

BAB I PENDAHULUAN Latar Belakang Masalah

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB)

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah

Bab I Pendahuluan I.1 Latar Belakang

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN UMUM

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

I.1 Latar Belakang I-1

BAB I PENDAHULUAN Latar Belakang Masalah

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

BAB 2 TINJAUAN PUSTAKA


BAB I PENDAHULUAN. Desain yang baik dari sebuah airfoil sangatlah perlu dilakukan, dengan tujuan untuk meningkatkan unjuk kerja airfoil

PENGEMBANGAN PENGHALUSAN JARING ELEMEN SEGITIGA REGANGAN KONSTAN SECARA ADAPTIF

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

PENDAHULUAN METODE NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

STUDI ANALISIS PEMODELAN TULANGAN BAJA VANADIUM DAN TEMPCORE DENGAN SOFTWARE KOMPUTER

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

TUGAS AKHIR. OLEH : Mochamad Sholikin ( ) DOSEN PEMBIMBING Prof.DR.Basuki Widodo, M.Sc.

Penerapan Metode Meshless Local Petrov Galerkin untuk Simulasi Profil Aliran Limbah di Sungai

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

BAB 2 TINJAUAN PUSTAKA

Penggunaan Metode Numerik dan MATLAB dalam Fisika

BAB I PENDAHULUAN Latar Belakang Masalah

Aplikasi Metode Meshless Local Petrov- Galerkin (MLPG) Pada Permasalahan Sedimentasi Model Sungai Shazy Shabayek BY SOFWAN HADI

PENGEMBANGAN PROGRAM ANALISIS STRUKTUR BERBASIS INTERNET UNTUK PEMBELAJARAN DAN PENELITIAN METODE ELEMEN HINGGA

PENGEMBANGAN MODEL ADVEKSI-DISPERSI BERBASIS SPREADSHEET ELEKTRONIK, STUDI KASUS SIMULASI KONSENTRASI BIOCHEMICAL OXYGEN DEMAND SKRIPSI

IMPLEMENTASI METODE ELEMEN HINGGA DALAM PERSOALAN ALIRAN DARAH PADA PEMBULUH DARAH SKRIPSI ABNIDAR HARUN POHAN

STUDI ANALISIS PEMODELAN BENDA UJI KUBUS DAN SILINDER UNTUK MENETUKAN KUAT TEKAN BETON DENGAN MENGGUNAKAN SOFTWARE KOMPUTER

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

Bab III Metodologi Penelitian

BAB V HASIL SIMULASI

Bab V Implementasi Dan Pembahasan Metode Elemen Hingga Pada Struktur Shell

BAB I PENDAHULUAN. keadaan dari suatu sistem. Dalam aplikasinya, suatu sistem kontrol memiliki tujuan

ANALISIS MORFOLOGI SUNGAI PADA POLA DISTRIBUSI SEDIMENTASI. Oleh : Kamiran Danang Bagiono

BAB 1 PENDAHULUAN. Metode Numerik

MATA KULIAH ANALISIS NUMERIK

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

BAB 2 TINJAUAN PUSTAKA

Hidraulika Komputasi

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

Bab II Konsep Dasar Metode Elemen Batas

UJIAN AKHIR SEMESTER METODE NUMERIS I

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

LU DECOMPOSITION (FAKTORISASI MATRIK)

BAB 1 PENDAHULUAN. Gambar 1.1: Aliran Darah Yang Terjadi Pada Pembuluh Darah Tanpa Penyempitan Arteri Dan Dengan Penyempitan Arteri

JURUSAN TEKNIK ELEKTRO

1. BAB I PENDAHULUAN Latar Belakang

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method)

JURUSAN TEKNIK ELEKTRO

BAB I PENDAHULUAN Latar Belakang Masalah

ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH

BAB 3 PE GEMBA GA METODE DA ALGORITMA PEMESI A MULTI AXIS

BAB I PENDAHULUAN Latar Belakang Masalah

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

BAB 1 PENDAHULUAN. metode REP menggunakan patch sebagai media untuk. perhitungannya.

Gambar 4.1 Macam-macam Komponen dengan Bentuk Kompleks

KOMPUTASI DISTRIBUSI SUHU DALAM KEADAAN MANTAP (STEADY STATE) PADA LOGAM DALAM BERBAGAI DIMENSI

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024

BAB I PENDAHULUAN. Dalam perkembangan kedirgantaraan desain kelayakan kecelakan. (crashworthiness) akan terus menjadi perhatian utama dalam

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

BAB III METODOLOGI DAN PENGOLAHAN DATA

Triyana Muliawati, S.Si., M.Si.

BAB 2 PENGEMBANGAN MODEL MATEMATIS BERDASARKAN MEKANISME ADVEKSI DISPERSI DAN PAKET SOFTWARE QUAL2K

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

Bab 1. Pendahuluan Metode Numerik Secara Umum

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB I PENDAHULUAN Latar Belakang Masalah

Bab V Prosedur Numerik

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

SIMULASI NUMERIK ALIRAN FLUIDA PADA TINGKAT PERTAMA KOMPRESOR DALAM INSTALASI TURBIN GAS DENGAN DAYA 141,9MW MENGGUNAKAN CFD FLUENT 6.3.

Dosen Pembimbing: 1. Tavio, ST, MS, Ph.D 2. Bambang Piscesa, ST, MT

BAB III METODE KAJIAN

BAB III PEMODELAN SISTEM POROS-ROTOR

ISBN. PT SINAR BARU ALGENSINDO

Aljabar Linier, Vektor, dan Eksplorasinya dengan Maple

Konsep Metode Numerik. Workshop Metode Numerik Ahmad Zainudin, S.ST

BAB 2 TINJAUAN PUSTAKA

Pendahuluan Metode Numerik

DASAR-DASAR PEMROGRAMAN SIMULINK MATLAB SERTA ANTAR MUKA MENGGUNAKAN PCI1710HG

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

6.6 Rantai Markov Kontinu pada State Berhingga

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

Pendahuluan Metode Numerik Secara Umum

B. Peralatan penelitian

BAB I PENDAHULUAN. Universitas Sumatera Utara

Prasyarat : - Status Matakuliah. Deskripsi Singkat Matakuliah :

Transkripsi:

BAB-4. METODE PENELITIAN 4.1. Bahan Penelitian Untuk keperluan kalibrasi dan verifikasi model numerik yang dibuat, dibutuhkan data-data tentang pola penyebaran polutan dalam air. Ada beberapa peneliti baik dari luar maupun dari dalam negeri yang telah melakukan pemodelan fisik di laboratorium tentang pola penyebaran polutan, sehingga untuk kalibrasi dan verifikasi cukup memakai data-data tersebut. 4.2. Alat yang Digunakan Alat-alat yang digunakan untuk melakukan penelitian ini adalah sebagaimana diuraikan berikut ini. 1. Untuk menyusun algoritma program komputer dalam pembuatan model numerik diperlukan seperangkat komputer beserta software pembuatan model, disket, CD, dan Iain-lain. pendukung 2. Untuk membuat software aplikasi dari model numerik yang dikembangkan, dibutuhkan compiler dalam hal ini dipakai dari Compaq Visual Fortran. 4.3. Prosedur Penelitian Pelaksanaan penelitian ini dimulai dengan menyusun suatu persamaan matematis yang mempresentasikan suatu fenomena penyebaran polutan. Persamaan tersebut biasa dikenal sebagai persamaan adveksi-difusi. Diskritisasi metode elemen hingga dilakukan untuk mencari solusi dari persamaan matematis yang telah dibuat. Diskritisasi dilakukan dengan jalan menyusun persamaan-persamaan diskrit dengan metode elemen hingga. Penyusunan formulasi elemen hingga dilakukan dengan cara interpolasi dan 18

integrasi pada domain hitungan yang ditentukan, sehingga dihasilkan suatu persamaan matrik. Penyusunan algoritma program komputer dilakukan untuk mencari penyelesaian persamaan matrik yang telah dihasilkan. Dalam penyusunan algoritma program komputer dipakai bahasa pemrograman dari bahasa FORTRAN, dengan compiler Compaq Visual FORTRAN. Pemilihan bahasa pemrograman ini didasarkan pada kecepatan proses hitungannya (Sadtopo, 2001). Luaran (output) dari program/model yang dibuat berupa konsentrasi polutan pada setiap titik dalam domain hitungan yang dibuat. Domain yang dibuat untuk kasus 3 dimensi dilakukan dengan mesh generator yang dibuat oleh Lab. Komputasi Jurusan Teknik Sipil UGM melalui riset Hibah Bersaing IV (Rahardjo, dkk 1998). Verifikasi model dilakukan untuk pemeriksaan unjuk kerja model numeris yang telah dibuat. Kasus sederhana digunakan untuk pemeriksaan unjuk kerja model pada tahap awal. Pemeriksaan awal cukup memperhatikan kecenderungankecenderungan (kualitatif). Untuk selanjutnya pemeriksaan unjuk kerja model dilakukan dengan data lapangan. Dengan data lapangan dapat dilihat kemampuan kalibrasi model. Secara skematis, penelitian tentang Pengembangan Model Penyebaran Polutan 3D untuk Pedoman Pembuangan Limbah Cair ini dilakukan mengikuti bagan alir sebagai berikut.

Mulai i Perumusan Masalah dan Tujuan Penelitian i Studi Pustaka Dan Landasan Teori Diskretisasi dan Pemilihan Konfigurasi Elemen Penyusunan Formulasi Elemen Hingga Penyusunan Algoritma Program Komputer Kalibrasi dan Verifikasi Model Numerik Analisis Hasil Model Numerik, i ; Kesimpulan, ^., Gambar 4. 1. Bagan Selesai Alir Penelitian 4.4. Diskretisasi dan Pemilihan Konfigurasi Elemen Bentuk persamaan angkutan dan sebaran material (Persamaan 2.6) bisa dijabarkan lagi dalam bentuk persamaan interpolasi. Interpolasi tersebut adalah usaha untuk mendapatkan C disuatu tempat dalam koordinat (x,y,z) dari nilai-nilai C di titik-titik sudut elemen yang bersangkutan, sehingga persamaannya menjadi : ^ dc dn, -, d-n dt ox, OX' Dengan mengaplikasikan Metode Sisa Berbobot, dimana integrasi perkalian antara fungsi kesalahan dan suatu fungsi pembobot adalah sama dengan nol, maka diperoleh persamaan berikut ini,

dt dx: (4.2) Fungsi pembobot yang dipakai adalah fungsi pembobot berdasarkan Metode Petrov-Galerkin sebagaimana ditunjukkan pada Persamaan 2.21. Selanjutnya pembentukan formulai numeris dari masing-masing suku pada persamaan tersebut diuraikan berikut ini. 4.4.1. Suku laju perubahan fungsi terhadap waktu Formulasi numeris pada suku laju perubahan fungsi terhadap waktu dipakai fungsi pembobot berdasarkan metode Bubnov-Galerkin, yaitu sama dengan fungsi dasar yang dipakai dalam proses interpolasi {Wj=Nj). W.N dt n dc do. (4.3a) M] C"^' ~C" At (4.3b) Matriks [M] disebut sebagai matriks massa (mass matrix). Nilai matriks [M] ini tidak berubah dalam tiap langkah waktu, sehingga matriks [M] dihitung hanya pada langkah waktu pertama saja untuk kemudian digunakan pada langkahlangkah waktu selanjutnya. 4.4.2. Suku konveksi Dengan menggunakan fungsi pembobot berdasarkan Metode Petrov-Galerkin, maka formulasi numeris pada suku konveksi menjadi sebagai berikut, ah M dn dx. -' 2 u Ni dx. \do. (4.4a) dn, ah u, ^, dx. + u N, dn, dx. k\dn (4.4b) (4.4c) dengan [K^] adalah matriks kekakuan (stiffness matrix) untuk suku konveksi. Matriks ini mengandung interpolasi dari fungsi kecepatan u sehingga

komponennya tergantung dari nilai u. Berhubung nilai kecepatan selalu berubah terhadap waktu, maka matriks kekakuan ini dihitung pada setiap langkah waktu pula. 4.4.3. Suku Difusi Dengan menggunakan fungsi pembobot berdasarkan Metode Petrov-Galerkin, maka formulasi numeris pada suku difusi menjadi sebagai berikut. " dx] = n ' 2 dx. -k. " dx] C, \dq. (4.5a) = -A: ' dx ' k \ -u, " I n. dx] ' (4.5b) Suku kedua dalam persamaan tersebut diabaikan karena nilainya kecil, sedangkan pada suku pertama mengandung turunan kedua fungsi interpolasi, sehingga dalam usaha untuk menyederhanakan formulasi diskret dapat digunakan Hukum Integrasi Bagian dari Green. Aplikasi teorema Green pada suku pertama pada persamaan tersebut akan memberikan. -k^ N^^C,dQ = -k! dx. ^ dx, dx. ' ' dx. ' ' (4.6) sehingga formulasi numeris untuk suku difusi menjadi : = K dx. (4.7a) (4.7b) dengan [KZ] adalah matriks kekakuan {stifness matrix) untuk suku difusi, dan integrasi suku kedua pada Persamaan 4.7a dihitung dengan menggunakan integrasi numeris pada bidang batas (boundary) dari elemen yang ditinjau. Integrasi batas ini diterapkan pada batas dari domain hitungan yang tidak mempunyai kondisi batas (boundan/ condition).

Bidang batas dari elemen yang ditinjau terdiri dari 8 titik nodal. Nilai normal ni pada integrasi batas tersebut tergantung pada bidang batas yang ditinjau. Pada proses integrasi pada bidang batas digunakan titik-titik Gauss, dengan 3 titik pada tiap arah pada koordinat lokal. Jadi untuk integrasi pada bidang batas digunakan 9 titik Gauss. Secara keseluruhan formulasi numerik untuk Persamaan Konveksi dan Difusi adalah sebagai berikut ini. dx. "dk dx ^"^^u ^dnq-k {N,^n drc, (4.8) r dengan indeks i, j, I = 1, 2, 3,..., M; M adalah jumlah titik pada domain hitungan indeks m, n = 1, 2, 3. Persamaan di atas merupakan persamaan diskret untuk persamaan diferensial unsteady konveksi-difusi. Untuk menyelesaikan Persamaan (4.8) selanjutnya persamaan disusun dalam persamaan matriks dan vektor. [M])C"*'}+[A:]{C''}= 0 (4.9) Dalam persamaan matriks tersebut, hanya vektor yang tidak diketahui, sehingga persamaan tersebut bisa diselesaikan dengan penyelesaian persamaan matriks biasa. 4.5. Kondisi Awal dan Kondisi Batas Penyelesaian kasus transport polutan dimulai pada saat awal yaitu t=0, dengan kondisi awal diasumsikan air belum terkontaminasi dengan limbah, atau dengan kata lain konsentrasi polutan di semua titik adalah nol. Secara matematis bisa dirumuskan sebagai berikut. C,(x,0)=0 (4.10) dengan i=1,2,3...n, dimana N adalah jumlah titik.

Kondisi batas yang diterapkan adalah kondisi batas berupa besaran nilai konsentarasi yang diberikan (prescribed) pada titik-titik lokasi yang diberikan. Pada aplikasinya, titik-titik tersebut disesuaikan dengan lokasi dimana limbah cair tersebut dibuang (lokasi pabrik), C{x,t)=c (4.11) dimana c adalah suatu besaran yang diketahui. 4.6. Penyusunan Algoritma Program Komputer Secara keseluruhan algoritma program komputer yang disusun terdiri dari dua bagian hal yang mendasar. Yang pertama adalah algoritma peyelesaian persamaan Navier-Stokes dan yang kedua adalah algoritma penyelesaian persamaan transport konveksi-difusi. Pada penelitian ini dititikberatkan pada penyusunan algoritma persamaan transport konveksi-difusi, sedangkan untuk peyelesaian persamaan Navier-Stokes yang memberikan nilai kecepatan pada titik-titik hitungan digabungkan dengan penelitian yang pernah oleh Sadtopo 2001. sebelumnya Algoritma program komputer dapat disusun berpedoman pada formulasi elemen hingga yang telah diperoleh. Dalam penyusunan algoritma program komputer dipakai bahasa pemrograman dari bahasa FORTRAN, dengan compiler Watcom FORTRAN. Pemilihan bahasa pemrograman ini didasarkan pada proses hitungannya. kecepatan Algoritma program komputer penyelesaian Persamaan Konveksi-Difusi disusun mengikuti urutan sebagai berikut, dengan source code secara lengkapnya dapat dilihat pada Lampiran 1, 1. deklarasi variabel, 2. input data, 3. inisiasi variabel dan penyusunan integral fungsi basis dan turunannya, dan 4. hitungan berulang sesuai langkah waktu. 24

4.6.1. Deklarasi variabel Sebelum melakukan hitungan, variabel-variabel yang terlibat dalam hitungan harus dideklarasikan lebih dahulu. Bagian deklarasi variabel adalah bagian program yang mempersiapkan ruang dalam memory komputer untuk matriks dan vektor yang diperlukan. Deklarasi variabel memberikan batasan-batasan dan jenis tiap variabel, misalnya jumlah elemen maksimal atau titik nodal maksimal yang bisa dijalankan oleh program. Batasan ini berguna dalam kompilasi program yaitu supaya bila terjadi konflik antar variabel dapat diketahui. 4.6.2. Input data Bagian ini membaca data dari file geometri diskritisasi domain hitungan. Untuk membuat file geometri ini dibantu dengan program mesh senerator yang telah dikembangkan oleh Laboratorium Komputasi Jurusan Teknik Sipil FT UGM, yaitu dengan program "3D Air Bubble Flow Model". Mesh generator tersebut menyajikan keluaran nomor-nomor elemen dan data konektivitas titik-titik nodal global dalam elemen tersebut (GE) dan koordinat global dari semua titiktitik nodal (GNN). Selain membaca data geometri hitungan, bagian ini juga membaca data input sebagai berikut. a. Titik-titik nodal pada batas hilir dan hulu (sesuai arah aliran) dari domain hitungan. b. Parameter yang digunakan dalam hitungan numerik seperti faktor implisit Q, At dan jumlah langkah waktu yang diinginkan. 4.6.3. Inisiasi variabel dan penyusunan integral fungsi basis Data parameter ini digunakan untuk kondisi awal pada hitungan yang berulangulang untuk langkah waktu yang ditentukan.

Fungsi basis, turunannya dan integrasi fungsi basis atau perkaliannya pada semua elemen merupakan fungsi geometri. Hal-hal tersebut tidak berubah selama tidak terjadi perubahan diskretisasi domain hitungan. Pada hitungan langkah-langkah waktu dalam program yang disusun tidak terjadi perubahan diskretisasi domain hitungan sehingga hitungan-hitungan yang hanya melibatkan fungsi geometri dilakukan dalam sekali langkah hitungan. 4.6.4. Hitungan berulang sesuai langkah waktu Hitungan ini dilakukan berkali-kali sesuai dengan jumlah langkah waktu yang ditentukan. Proses hitungan yang dilakukan pada tahap ini adalah sebagai berikut. a. Integrasi numeris Persamaan Konveksi-Difusi. Pada proses ini dihasilkan matriks kekakuan (stiffness matrix) [K] dalam koordinat lokal. Sedangkan untuk suku-suku yang lain, yaitu suku laju perubahan fungsi terhadap waktu, integrasi cukup dilakukan sekali saja, karena matriks yang terbentuk yaitu matriks massa (mass matrix) [M] tidak mengalami perubahan pada langkah-langkah waktu berikutnya. b. Perakitan matiks-matriks yang diperoleh pada proses integrasi menjadi matriks-matriks dalam koordinat global. Proses ini sering disebut dengan Assemble. c. Memasukkan kondisi batas. d. Membentuk vektor ruas kanan (RHS) dengan cara mengalikan matriks [M] dengan variabel C yang telah diketahui dari kondisi awal atau dari hitungan sebelumnya. e. Menghitung nilai-nilai C pada setiap titik dengan cara mengalikan matriks invers yang diperoleh dari hitungan sebelumnya dengan vektor ruas kanan. f. Mencatat semua nilai-nilai C ke dalam file.

4.7. Pemeriksaan Model Numerik Untuk menguji unjuk kerja model numeris yang telah dibuat maka hasil hitungan numerik perlu dibandingkan dengan hasil hitungan analitik atau hasil eksperimental. Pada langkah ini akan dilihat seberapa jauh akurasi hitungan model numerik ini. Selanjutnya hasil-hasil pemeriksaan model numerik dan pembahasannya akan disajikan pada Bab V. 27