10 Departemen Statistika FMIPA IPB

dokumen-dokumen yang mirip
8 Departemen Statistika FMIPA IPB

5 Departemen Statistika FMIPA IPB

2 Departemen Statistika FMIPA IPB

10+ Departemen Statistika FMIPA IPB

6 Departemen Statistika FMIPA IPB

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal)

ANALISIS DATA KATEGORIK

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan

Masalah Overdispersi dalam Model Regresi Logistik Multinomial

III. METODE PENELITIAN

ANALISIS REGRESI LOGISTIK ORDINAL PADA FAKTOR-FAKTOR BERPENGARUH TERHADAP PENYAKIT MATA KATARAK BAGI PASIEN PENDERITA DI KLINIK MATA UTAMA GRESIK

STK511 Analisis Statistika. Pertemuan 12 Nonparametrik-Kategorik-Logistik

IV. METODE PENELITIAN

STATISTIK PERTEMUAN XI

Uji Statistik yang Digunakan Untuk ANALISA BIVARIAT

TINJAUAN PUSTAKA Perilaku Pemilih Partai Politik

UJI CHI SQUARE. (Uji data kategorik)

OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011

BAB II LANDASAN TEORI. 2.1 Uji Hipotesis

IV. METODE PENELITIAN

OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010

HASIL. yang berlebihan. kotak garis (box-plot) yaitu, Bersubsidi. untuk KPR Bersubsidi. 2. Membangun. analisis. keseluruhan

STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll.

Resume Regresi Linear dan Korelasi

Kata Kunci: Model Regresi Logistik Biner, metode Maximum Likelihood, Demam Berdarah Dengue

BAB II TINJAUAN PUSTAKA

Model Regresi Binary Logit (Aplikasi Model dengan Program SPSS)

HASIL DAN PEMBAHASAN. Model Regresi Logistik Biner untuk data Hasil Pembangkitan

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI STATISTIKA

STK 211 Metode statistika. Pengajar : Dr. Agus Mohamad Soleh, SSi, MT Dr.Ir. Muhammad Nur Aidi, MS

III. OBJEK DAN METODE PENELITIAN. Dalam skripsi ini objek penelitian adalah konsumen sabun mandi cair LUX pada

IV. METODE PENELITIAN. daerah yang memiliki luas areal yang cukup potensial dalam pengembangan padi

9 Departemen Statistika FMIPA IPB

BAB III METODOLOGI PENELITIAN. sampai dengan bulan mei tahun 2014.

MODEL REGRESI COX PROPORTIONAL HAZARD PADA LAJU TAMAT MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS ANDALAS

di masa yang akan datang dilihat dari aspek demografi dan kepuasannya. PENDAHULUAN

Dosen Pembimbing : Dr. Purhadi, M.Sc

BAB 1 PENDAHULUAN Pengertian dan Kegunaan Statistika

HIPOTESIS ASOSIATIF KORELASI PRODUCT MOMENT -YQ-

BAB 2 TINJAUAN TEORITIS. Metode statistik non parametrik atau sering juga disebut metode bebas sebaran

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1)

ANALISIS DATA KATEGORIK

Parametrik. Memerlukan asumsi sebaran (Normal) Non parametrik. Tidak memerlukan asumsi sebaran (Normal)

BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang

HASIL DAN PEMBAHASAN Deskripsi Karakteristik Responden Berdasarkan Peubah Penjelas

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang

ANALISIS DATA KATEGORI

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di

Lampiran 1. Perhitungan Manual Uji T 2 Hotelling Berbagai Ukuran Tubuh pada Kuda Delman Jantan Manado vs Tomohon. Rumus: T 2 = X X S X X

STK511 Analisis Statistika. Bagus Sartono

Analisis Data kategorik tidak berpasangan skala pengukuran numerik

Analisis dan Pembahsan. Statistika Deskriptif. Regresi Logistik Biner. Uji Independensi

MODEL-MODEL LEBIH RUMIT

BAB II TINJAUAN PUSTAKA. Pengertian lanjut usia menurut undang-undang no.13/1998 tentang

Regresi Logistik Nominal dengan Fungsi Hubung CLOGLOG

BAB II TINJAUAN PUSTAKA. konsep-konsep dasar pada QUEST dan CHAID, algoritma QUEST, algoritma

BAB III METODE PENELITIAN. Surakhmad (Andrianto, 2011: 29) mengungkapkan ciri-ciri metode korelasional, yaitu:

BAB 2 TINJAUAN TEORITIS

BAB III METODE PENELETIAN

TINJAUAN PUSTAKA Teknik Respon Teracak Model Warner

Dimana : a = konstanta b = koefisien regresi Y = Variabel dependen ( variabel tak bebas ) X = Variabel independen ( variabel bebas ) Untuk mencari rum

BAHAN DAN METODE HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

BAB III METODE PENELITIAN. mengunjungi kantor redaksi malangonline.com, Perumahan Pondok Mulia B124,

PENERAPAN REGRESI LOGISTIK ORDINAL MULTILEVEL TERHADAP NILAI AKHIR METODE STATISTIKA FMIPA IPB IIN MAENA

BAB III METODE PENELITIAN. Dalam menentukan desain penelitian maka hal tersebut sangatlah

BAB III METODOLOGI PENELITIAN. Suatu pendekatan metode penelitian digunakan untuk memecahkan

BAB 3 METODE PENELITIAN

BAB III METODE CHAID EXHAUSTIVE

BAB 2 LANDASAN TEORI. kuantitas ataupun kualitatif dari karakteristik tertentu yang berlainan. Dan hasilnya merupakan data perkiraan atau estimate.

BAB 2 LANDASAN TEORI

BAB III PEMBAHASAN. extended untuk mengatasi nonproportional hazard dan penerapannya pada kasus

STATISTIKA 2 IT

Model Log Linier yang Terbaik untuk Analisis Data Kualitatif pada Tabel Kontingensi Tiga Arah

BAB III METODE PENELITIAN. Penelitian ini menggunakan pendekatan kuantitatif untuk menjawab

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. :

MODEL MODEL LEBIH RUMIT

ponsel, purposive sampling, regresi logistik politomus

III. BAHAN DAN METODE

Metode Statistika STK211/ 3(2-3)

Pengaruh brand image IM3terhadap keputusan pembelian simcard Gambar 7. Kerangka pemikiran

ABSTRAK METODE REGRESI LOGISTIK UNTUK MENGANALISIS FAKTOR RISIKO PENYAKIT JANTUNG KORONER

Oleh : Amilia Firda Rahmana ( ) Dosen Pembimbing : Santi Puteri Rahayu, M.Si, Ph.D

Prosedur Uji Chi-Square

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEPUTUSAN KONSUMEN MEMBELI SUATU PRODUK DENGAN METODE ANALISIS REGRESI LOGISTIK ORDINAL

Hubungan antara variabel-variabel dalam contoh tersebut dapat dinyatakan dalam bentuk persamaan matematis yang disebut persamaan regresi.

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

HASIL DAN PEMBAHASAN

Kegiatan Anak Usia Tahun di Jawa Timur Menggunakan Regresi Logistik Multinomial: Suatu Peranan Urutan Kelahiran

ANALISIS NON-PARAMETRIK UJI KOEFESIEN KONTINGENSI. Oleh: M. Rondhi, SP, MP, Ph.D

STATISTIKA II IT

Generalized Ordinal Logistic Regression Model pada Pemodelan Data Nilai Pesantren Mahasiswa Baru FMIPA Universitas Islam Bandung Tahun 2017

Statistik Non-Parametrik. Saptawati Bardosono

TINJAUAN PUSTAKA. i dari yang terkecil ke yang terbesar. Tebaran titik-titik yang membentuk garis lurus menunjukkan kesesuaian pola

BAB 2 LANDASAN TEORI

Oleh : Silvira Ayu Rosalia ( ) Pembimbing : Ir. Sri Pingit Wulandari, M.Si

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

Metode Statistika STK211/ 3(2-3)

Transkripsi:

Suplemen Responsi Pertemuan ANALISIS DATA KATEGORIK (STK35) 0 Departemen Statistika FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referensi Waktu Tabel Kontingensi Struktur peluang tabel kontingensi Perbandingan proporsi pada tabel kontingensi Odds ratio Review uji kebebasan khi-kuadrat Uji kebebasan untuk data ordinal Uji exact untuk contoh kecil Asosiasi dalam tabel tiga-arah An Introduction to Categorical Data Analysis ( nd Edition) Agresti (007) Jumat 7 Desember 0 5.45 7.45 Sebagian bahasan mengenai tabel kontingensi sudah dipelajari mulai pertemuan kelima. Pada pertemuan ini, pembahasan tabel kontingensi akan diarahkan pada beberapa sub-pokok bahasan mencakup : struktur peluang, perbandingan proporsi, odds ratio, review uji kebebasan khi-kuadrat, uji kebebasan untuk data ordinal, uji exact untuk contoh kecil serta uji asosiasi dalam tabel tiga-arah. Untuk memulai pembahasan, perhatikan tabel yang merekam frekuensi contoh berdasarkan jenis kelamin dan perolehan IPK (<3.00 dan 3.00) berikut. Jenis Kelamin Kelompok IPK 3.00 <3.00 Total Putra 3 Putri 4 8 3 Total 45 9 64 Tabel di atas (selanjutnya disebut tabel sebaran IPK) disebut tabel kontingensi, yaitu sebuah tabel yang menampilkan frekuensi (counts) dari peubah respon dalam setiap sel. Tabel kontingensi yang menampilkan dua peubah kategorik sekaligus disebut tabel kontingensi dua-arah. sedangkan tabel kontingensi dengan I baris dan J kolom disebut tabel kontingensi I J, disingkat tabel I J. Tabel di atas adalah tabel. Struktur peluang untuk tabel kontingensi Peluang bersama, marginal dan bersyarat Misalkan sejumlah contoh diambil secara acak dari populasi tertentu dan diklasifikasikan berdasarkan peubah X dan Y. Peluang (X, Y) berada pada baris ke-i dan kolom ke-j adalah ij = P(X=i, Y=j). Maka, peluang { ij } membentuk peluang bersama (joint probability) dari X dan Y, dalam hal ini,. Peluang marginal adalah jumlah peluang i j ij bersama pada baris dan kolom tertentu. Peluang marginal untuk peubah baris dinyatakan dengan { i+ } dan untuk peubah kolom dinyatakan dengan { +j }. Pada banyak tabel kontingensi, satu peubah merupakan respon (Y) dan peubah lainnya adalah penjelas (X). Sebaran peluang Y untuk setiap taraf X disebut sebagai peluang bersyarat atau conditional probabilities.

Perhatikan kembali tabel sebaran IPK. Untuk sel (, ) proporsi bersama adalah p = /64 = 0.7. Jika kelompok IPK adalah respon dan jenis kelamin adalah peubah penjelas maka proporsi bersyarat dapat ditentukan sebagai berikut : Untuk putra, proporsi <3.00 adalah /3 = 0.344 dan proporsi 3.00 adalah /3 = 0.656, sehingga sebaran proporsi bersyarat adalah (0.344, 0.656). Sedangkan untuk putri adalah (0.50, 0.750). Sensitivitas dan Spesifisitas Sensitivitas dan spesifisitas merupakan salah satu alat dalam diagnosa. Awalnya, kedua statistik ini digunakan untuk melakukan diagnosa kesehatan, namun pada perkembangannya juga digunakan dalam diagnosa model-model statistika. Perhatikan tabel berikut : Kondisi sebenarnya (S) Hasil pengujian (T) Positif (+) Negatif (-) Sakit (+) a b Sehat (-) c d Berdasarkan tabel di atas, dapat didefinisikan : Sensitivitas Spesifisitas peluang bahwa hasil pengujian menunjukkan bahwa seseorang positif terjangkit penyakit apabila faktanya orang tersebut memang terjangkit penyakit, atau ditulis : a sen P( T S ) a b peluang bahwa hasil pengujian menunjukkan bahwa seseorang tidak terjangkit penyakit apabila faktanya orang tersebut memang tidak terjangkit penyakit, atau ditulis : d spe P( T S ) c d Idealnya, alat uji atau model statistika mempunyai sensitivitas dan spesifisitas yang tinggi. Akan tetapi, ketika mendapatkan sensitivitas dan spesifisitas yang tinggi, kadangkala kita masih mempunyai beberapa kesalahan yaitu : Salah positif Salah negatif terjadi ketika hasil pengujian menyatakan positif terjangkit penyakit untuk orang yang sebenarnya tidak terjangkit penyakit. c F P( S T ) a c terjadi ketika hasil pengujian menyatakan tidak terjangkit penyakit untuk orang yang sebenarnya terjangkit penyakit. b F P( S T ) b d Dalam statistika, diagnosis model menggunakan sensitivitas dan spesifisitas umumnya digunakan dalam analisis regresi logistik biner. Kebebasan pada tabel kontingensi Dua peubah (X, Y) dalam tabel kontingensi dikatakan saling bebas secara statistika apabila distribusi peluang bersyarat dari Y adalah identik untuk setiap level X. Jika kedua / 9

peubah merupakan respon, maka dua peubah dinyatakan saling babas apabila semua peluang bersama sama dengan perkalian dari peluang-peluang marginalnya. Ditulis : ij i j Perbandingan proporsi pada tabel Uji beda proporsi untuk i =,,..., I dan j =,,..., J Misalkan untuk pengamatan pada baris ke-i, i menyatakan peluang sukses dan i menyatakan peluang gagal untuk i=,. Sehingga beda proporsi membandingkan peluang sukses pada dua baris. Untuk data contoh, p p merupakan penduga bagi. Galat baku bagi p p adalah : SE p ( p ) p( p) n n sehingga, untuk contoh berukuran besar selang kepercayaan 00(α)% bagi (disebut selang kepercayaan Wald) adalah : ( p p ) z SE Perhatikan kembali tabel sebaran IPK. Anggaplah bahwa sukses adalah keberhasilan memperoleh IPK IPK 3.00, dan misalkan adalah peluang mahasiswa putra memperoleh IPK 3.00 dan adalah peluang mahasiswa putri memperoleh IPK 3.00, maka hipotesis nol bahwa = : p = /3 = 0.656 p = 4/3 = 0.750 p p = 0.094 0.656(0.344) 0.75(0.5) SE 0.4 3 3 selang kepercayaan 95% bagi adalah 0.094.96(0.4), atau 0.094 0.3. Sehingga hipotesis nol bahwa = diterima pada taraf nyata 5%. Risiko relatif Beda dua proporsi penting digunakan jika nilai kedua proporsi tersebut mendekati nilai 0 atau. Apabilai nilai kedua proporsi berada di tengah-tengah, risiko relatif (relative risk) lebih relevan. Risiko relatif adalah : risiko relatif = Untuk ilustrasi sebelumnya, risiko relatif contoh adalah 0.656/0.750 = 0.875. 3 / 9

Odds ratio Ukuran asosiasi lain yang dapat digunakan untuk tabel adalah odds ratio. Odds ratio biasanya muncul disebagian besar model yang melibatkan data kategorik. Untuk peluang sukses, nilai odds sukses adalah : odds = dengan odds Sebagai contoh, untuk = 0.60 mempunyai odds sukses sebesar 0.60/0.40 =.50. Ketika nilai odds =.50, sukses adalah,5 kali gagal. Ada dengan kata lain kita berharap ada 3 kali sukses untuk kali gagal. Pada tabel, odds sukses untuk baris ke- adalah odds = / ( ) dan untuk baris ke- adalah odds = / ( ). Rasio dua odds tersebut disebut odds ratio (), yang ditulis sebagai : odds / ( ) odds / ( ) Odds ratio merupakan bilangan non-negatif. Jika peubah X dan Y saling bebas, = sehingga odds = odds dan = odds /odds =. Jika kedua peubah dalam tabel merupakan peubah respon, maka odds ratio didefinisikan melalui peluang bersama : / / Untuk tabel sebaran IPK, odds sukses adalah odds = / =.9 untuk putra dan odds =.9 4/8 = 3 untuk putri. Sehingga odds ratio contoh adalah 0.637. 3 Inferensia odds ratio dan log odds ratio Sebaran penarikan contoh bagi odds ratio sangat tidak simetris (menjulur), karenanya inferensia statistika bagi odds ratio menggunakan log natural dari odds ratio, log. Kebebasan sepadan dengan = atau log = 0. Log odds ratio contoh, log mempunyai sebaran yang menghampiri normal dengan rataan log dan galat baku : SE n n n n Sehingga selang kepercayaan 00(α)% bagi log adalah : log z SE Untuk tabel sebaran IPK, log log(0.637) 0.45, sedangkan galat bakunya adalah : 4 / 9

SE 0.305 ; sehingga selang kepercayaan 95% bagi log yang dapat 8 4 dibentuk adalah 0.45.96(0.305) atau (.0488, 0.468), atau ekuivalen dengan selang bagi : [exp(.0488), exp(0.468)] (0.350,.58) Hubungan odds ratio dengan risiko relatif Hubungan antara odds ratio dengan risiko relatif dituliskan dalam formula : / ( ) odds ratio = p p risiko relatif p p / ( p) p Perhatikan tabel sebaran IPK. Telah dihitung bahwa p = /3 = 0.656, p = 4/3 = 0.750 dan risiko relatif = 0.875, sehingga : 0.50 odds ratio 0.875 0.637 0.344 Uji kebebasan khi-kuadrat Uji khi-kuadrat Pearson dan statistik likelihood-ratio Untuk menguji kebebasan dua peubah dalam tabel I J, statistik uji khi-kuadrat dan likelihood-ratio adalah ( n ) ij ij Khi-kuadrat Pearson : X n ij ij Likelihood-ratio : G nij log Dalam hal ini X dan G mengikuti sebaran khi-kuadrat dengan derajat bebas (I)(J) dan adalah frekuensi harapan, yang dapat dihitung dengan rumus : np p n n n n n n n n i j i j ij i j Tiap sel pada tabel berikut menunjukkan frekuensi teramati (atas) dan frekuensi harapan (bawah) untuk tabel sebaran IPK. Sehingga dapat diperoleh : Jenis Kelamin Kelompok IPK 3.00 <3.00 Total Putra 3.5 9.5 Putri 4 8 3.5 9.5 Total 45 9 64 (.5) ( 9.5) (4.5) (8 9.5) X 0.674.5 9.5.5 9.5 ij 5 / 9

4 8 G () log () log (4) log (8) log 0.676.5 9.5.5 9.5 Untuk derajat bebas dan taraf nyata 5% diperoleh nilai tabel khi-kuadrat sebesar 3.84. Sehingga berdasarkan uji X maupun G jenis kelamin dan IPK saling bebas. Sisaan dalam tabel kontingensi Untuk menguji kebebasan, dapat juga menggunakan sisaan sel pada tabel kontingensi dengan rumus : nij ij eij ( p )( p ) ij j Penyebut pada rumus di atas merupakan galat baku bagi nij ij. Sehingga eij merupakan sisaan terbakukan. Untuk tabel sebaran IPK, pada sel pertama diketahui n,.5, p 3 / 64 0.5 dan p j 45 / 65 0.69, sehingga sisaan terbakukan untuk sel ini.5 adalah : e 0.806.5( 0.5)( 0.69) Uji kebebasan untuk data ordinal Pola linier Ketika peubah (baris dan/atau kolom) yang diuji diukur dalam skala ordinal, uji kebebasan menggunakan uji X dan G, informasi urutan data diabaikan. Sebagai alternatif, dapat digunakan uji asosiasi pola (trend association). Untuk memeriksa adanya asosiasi pola, analisis sederhana memberikan peringkat atau skor kepada kategori dan mengukur derajat pola linier. Statistik uji yang digunakan sensitif terhadap arah pola linier (positif atau negatif) dengan mamanfaatkan korelasi data. Misalkan u u ui adalah adalah skor dan u iui pi adalah rata-rata skor untuk baris, sedangkan v v vj dan v ivi p j untuk kolom. Jumlah i, j ( ui u )( vi v ) pij merupakan kovarian X dan Y. Korelasi antara X dan Y merupakan kovarian dibagi dengan perkalian antara simpangan baku X dan Y, ditulis : r ( u u )( v v ) p i, j i j ij i ( ui u ) p i j ( v j v ) p j Untuk menguji H 0 : kedua peubah saling bebas lawan H : kedua peubah berkorelasi ( 0) digunakan statistik uji : Untuk n besar, M ( n ) r M menyebar khi-kuadrat dengan derajat bebas. 6 / 9

IPM Daerah tertinggal Ya Tidak Total 0 IPM < 60 3 0 3 60 IPM < 70 7 77 94 70 IPM < 00 9 58 87 Total 59 35 394 Pemilihan skor dapat dilakukan dengan beberapa cara, salah satunya adalah dengan peringkat-tengah (mid-rank). Menggunakan cara ini, pengamatan diberi skors sampai n. Perhatikan tabulasi data profil daerah yang menampilkan frekuensi (n) dan frekuensi harapan ( ) daerah berdasarkan IPM (indeks pembangunan manusia) dan status daerah tertinggal menurut KPDT di atas. Baris pertama, 0 IPM < 60, diberi skor (+3)/ = 7. Baris kedua, 60 IPM < 70, akan mempunyai skor (+3+(3+94))/ = 0.5, sedangkan baris ketiga akan mempunyai skor 30. Coba lanjutkan perhitungan, berapa nilai korelasi antara IPM dan status daerah tertinggal? PROC FREQ memberikan nilai r = 0.499 dan M = 393 (0.499) = 97.943. Fisher s exact test untuk contoh kecil pada tabel Selang kepercayaan dan pengujian yang dilakukan sejauh ini digunakan untuk contoh berukuran besar. Semakin besar ukuran contoh, maka X, G dan M akan menghampiri sebaran khi-kuadrat. Akan tetapi, jika ukuran contoh kecil, inferensia menggunakan sebaran exact lebih tepat dibandingkan dengan hampiran contoh-besar. Pada tabel, kebebasan dua peubah ditandai dengan =. Pada tabel ini, untuk jumlah baris dan kolom marginal tertentu, frekuensi pada sel pertama (n ) menentukan frekuensi pada ketiga sel lainnya. Ketika =, peluang untuk nilai n dinyatakan oleh n n n n n P( n) n n yang merupakan peluang hipergeometrik. Pada pengujian H 0 : peubah saling bebas = lawan H : >, p-value merupakan peluang hipergeometri sebelah kanan bahwa n lebih besar atau sama dengan frekuensi teramati. Sebagai contoh, seorang peramal mengaku dapat melihat benda yang diletakkan di dalam kotak tertutup. Untuk membuktikan klaim tersebut, dilakukan percobaan sederhana sebagai berikut : sepuluh bola, lima berwarna hitam dan lima berwarna putih, dimasukkan ke dalam sepuluh kotak sedemikian sehingga satu kotak hanya berisi satu bola. Kotak semuanya ditutup rapat. Selanjutnya, sepuluh kotak tersebut diacak posisinya sehingga tidak diketahui dengan pasti di kotak mana bola warna hitam dan putih tersebut berada. Lalu, peramal diminta untuk menebak warna bola dalam kesepuluhu kotak tersebut, kemudian satu-per-satu kotak dibuka sehingga warna bola dapat diketahui. Hasilnya adalah sebagai berikut : 7 / 9

Warna sebenarnya Hasil ramalan Hitam Putih Total Hitam 3 5 Putih 3 5 Total 5 5 0 Berdasarkan tabel di atas, ada tiga hasil ramalan yang cocok, sehingga : 5 5 3 5!/ (3!)(!) 5!/ (!)(3!) P(3) 0.3968 0 0!/ (5!)(5!) 5 Dengan perhitungan yang sama diperoleh P(4) 0.099 dan P(5) 0.0040. Karenanya, klaim peramal tersebut sangat diragukan (p-value=0.5). Sementara untuk membuktikan klaimnya dengan tingkat kepercayaan 85%, peramal tersebut setidaknya harus mampu menemukan 4 bola hitam dan putih secara benar (p-value=0.03). Tabel berikut meringkas sebaran geometrik untuk percobaan meramal di atas. n Peluang p-value 0 0.0000.0000 0.099 0.9960 0.3968 0.8968 3 0.3968 0.5000 4 0.099 0.03 5 0.0040 0.0040 P-value dengan perhitungan seperti ini biasanya bersifat konservatif, dikarenakan tingkat galat yang sebenarnya lebih kecil daripada galat yang ditetapkan. Untuk itu, disarankan menggunakan mid p-value. Untuk kasus peramal di atas, saat n = 3, besarnya mid p-value = P(3)/ + P(4) + P(5) = (0.5/) + 0.03 + 0.004 = 0.357. Seandainya n = 4, maka mid p-value = (0.03/) + 0.004 = 0.0556. Asosiasi pada tabel tiga arah Sebuah tabel tiga arah menampilkan frekuensi dari tiga peubah, misalnya X, Y dan Z. Sebagai contoh, tabel berikut merupakan tabel kontingensi, terdiri dari dua kolom, dua baris dan dua lapisan, yang merekam frekuensi mahasiswa berdasarkan jenis kelamin (Z), aktivitas organisasi (X) dan tingkat IPK (Y). Kelompok IPK Jenis Kelamin Organisasi 3.00 <3.00 Total Putra Aktif 5 6 Tidak aktif 6 0 6 Putri Aktif 7 3 0 Tidak aktif 7 5 Total 45 9 64 Misalkan kita ingin mempelajari pengaruh aktivitas organisasi terhadap IPK, maka dengan mengendalikan fakor jenis kelamin. Dengan demikian, tabel di atas akan terdiri dari sebuah tabel parsial antara aktivitas organisasi dan IPK untuk setiap taraf jenis kelamin (putra dan putri). Gabungan dua tabel parsial ini akan membentuk tabel kontingensi dua arah yang disebut sebagai tabel marginal. 8 / 9

Odds ratio bersyarat dan marginal Sepertihalnya asosiasi marginal, asosiasi bersyarat dapat dijelaskan dengan odds ratio. Odds ratio pada tabel parsial disebut odds ratio bersyarat. Perhatikan asosiasi bersyarat antara aktivitas organisasi dan IPK. Penduga bagi odds ratio bersyarat untuk tabel parsial pertama mahasiswa putra adalah : XY () (50) / (6) 3.5. Sedangkan untuk mahasiswa putri, penduga bagi odds ratio antara aktivitas organisasi dan IPK adalah XY () (7 5) / (73) 0.686. Untuk tabel marginal antara aktivitas organisasi dan IPK (jenis kelamin diabaikan), (5 7)(0 5) / (6 7)( 3).364 diperoleh odds ratio marginal : Kebebasan bersyarat vs. Kebebasan marginal XY Jika X dan Y saling bebas untuk setiap tabel parsial, maka dapat dikatakan bahwa X dan Y bebas bersyarat untuk Z tertentu. Selanjutnya, semua odds ratio bersyarat antara X dan Y akan bernilai untuk setiap taraf Z. meskipun demikian, odds ratio marginal mungkin tidak sama dengan. Kehomogenan asosiasi Misalkan Z terdiri dari k taraf serta X dan Y merupakan peubah biner. Peubah X dan Y dikatakan memiliki asosiasi yang homogen apabila : XY () XY () XY ( k ) Note : Materi dikutip dari Agresti (007). Apabila ada materi yang belum dibahas dapat dilihat langsung pada halaman 54 CUIWW (Correct Us If We re Wrong) Prepared by : Nur Andi Setiabudi, S. Stat Edited by : Didin Saepudin 9 / 9