PENGEMBANGAN EQUIVALENT PLATE MODEL UNTUK ANALISA DINAMIS PADA STRUKTUR PLATE-LIKE WING DENGAN MATERIAL KOMPOSIT

dokumen-dokumen yang mirip
Pengembangan Equivalent Plate Model Guna Analisis Dinamis Struktur Wing-Box dengan Material Komposit

ANALISA DINAMIS STRUKTUR SAYAP PLAT PESAWAT UDARA DENGAN EQUIVALENT PLATE MODEL

ANALISA STATIS STRUKTUR WING BOX PESAWAT UDARA DENGAN EQUIVALENT PLATE MODEL

I.1 Latar Belakang I-1

ANALISIS TEGANGAN PADA TABUNG KOMPOSIT SERAT KARBON UNTUK MOTOR ROKET BERDIAMETER 200 MM DENGAN METODE SINGLE LAYER LAMINATED ELEMENT

BAB II LANDASAN TEORI CORE WALL

KARAKTERISTIK DINAMIK STRUKTUR ROKET RKN BERTINGKAT PADA KONDISI TERBANG-BEBAS (FREE FLYING)

ANALISA PELAT DAN BALOK MULTILAYER MENGGUNAKAN TEORI LAMINASI

Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, 2

BAB I PENDAHULUAN. yang demikian kompleks, metode eksak akan sulit digunakan. Kompleksitas

BAB III OPTIMASI KETEBALAN TABUNG COPV

ANALISA KEKUATAN CRANKSHAFT DUA-SILINDER KAPASITAS 650 CC DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

PENGEMBANGAN PROGRAM ANALISIS STRUKTUR BERBASIS INTERNET UNTUK PEMBELAJARAN DAN PENELITIAN METODE ELEMEN HINGGA

ANALISIS MODUS NORMAL DAN KEKUATAN STRUKTUR SIRIP MOTOR ROKET-168 DARI BAHAN AL-PLATE

(Mia Risti Fausi, Ir. Yerri Susatio, MT, Dr. Ridho Hantoro)

BEARING STRESS PADA BASEPLATE DENGAN CARA TEORITIS DIBANDINGKAN DENGAN PROGRAM SIMULASI ANSYS

APLIKASI METODE ELEMEN HINGGA UNTUK ANALISA STRUKTUR STATIK LINIER DENGAN PROGRAM MSC/NASTRAN

ANALISA STRUKTUR PELAT DUA ARAH TANPA BALOK (FLAT SLAB)

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

PENDEKATAN TEORITIK. Elastisitas Medium

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISIS PRINSIP ENERGI PADA METODE ELEMEN HINGGA TINJAUAN PEMODELAN ELEMEN UNIAKSIAL KUADRATIK TERHADAP ELEMEN UNIAKSIAL KUBIK

BAB IV TEGANGAN, REGANGAN, DAN DEFLEKSI

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi

PENDAHULUAN TEGANGAN (STRESS) r (1)

STUDI ELEMEN DISCRETE-KIRCHHOFF MINDLIN TRIANGLE (DKMT) UNTUK ANALISIS STATIK PELAT LENTUR DAN PENGEMBANGAN UNTUK ANALISIS DINAMIK GETARAN BEBAS

BAB IV DATA DAN ANALISA

GETARAN BEBAS PADA BALOK KANTILEVER. Kusdiman Joko Priyanto. Abstrak. Kata kunci : derajad kebebasan, matrik massa, waktu getar alamai

ANALISIS ELEMEN HINGGA UNTUK FAKTOR KONSENTRASI TEGANGAN PADA PELAT ISOTROPIK BERLUBANG DENGAN PIN-LOADED

ANALISIS KARAKTERISTIK DINAMIK STRUKTUR ROKET BERTINGKAT RX-420/RX-250 PADA KONDISI FREE- FLYING DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

III. METODELOGI. satunya adalah menggunakan metode elemen hingga (Finite Elemen Methods,

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

Kata Kunci : FEM 3-D Linier, matriks stiffness, regresi non linier

Tugas Akhir Bidang Studi Desain SAMSU HIDAYAT Dosen Pembimbing Dr. Ir. AGUS SIGIT PRAMONO, DEA.

PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

SISTEM IDENTIFIKASI STRUKTUR DENGAN MENGGUNAKAN METODE FREQUENCY DOMAIN DECOMPOSITION-NATURAL EXCITATION TECHNIQUE

ANALISIS BEBAN TEKUK KRITIS STRUKTUR SANDWICH BAHAN KOMPOSIT PADA SIRIP ROKET RX LAPAN

KEMAMPUAN PENYERAPAN ENERGI CRASH BOX MULTI SEGMEN MENGGUNAKAN SIMULASI KOMPUTER

Jakarta: Gramedia Pustaka Utama. Holpp, Larry dan Pande P.S Berpikir Cepat Six Sigma. Yogyakarta: Andi. Marimin Teknik Dan Aplikasi

ANALISA LENTUR DAN TORSI PADA CORE-WALL TERBUKA DAN TERTUTUP DENGAN TEORI THIN-WALLED TUGAS AKHIR FRANS SUBRATA

PENGARUH PASANGAN DINDING BATA PADA RESPON DINAMIK STRUKTUR GEDUNG AKIBAT BEBAN GEMPA

Perilaku Struktur Terhadap Beban Impak

Analisis Numerik Bilah Kipas Mesin Turbofan TAY Menggunakan Metode Elemen Hingga

DAFTAR ISI KATA PENGANTAR PERNYATAAN ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN DAFTAR NOTASI BAB I.

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI

PENGARUH ARAH SERAT GELAS DAN BAHAN MATRIKS TERHADAP KEKUATAN KOMPOSIT AIRFOIL PROFILE FAN BLADES

Analisa Perbandingan Getaran Plat Antara Metode Asumsi Beam dengan Metode Elemen Hingga Tiga Dimensi

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER

BAB III PEMODELAN SISTEM POROS-ROTOR

FLUTTER PADA T TAIL PLATE-KOMPOSIT THESIS

DAFTAR PUSTAKA. 1. Vance, J. M., Rotordynamics of Turbomachinery, John Willey & Sons, 1988.

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method)

MATA KULIAH ANALISIS NUMERIK

PENENTUAN FREKUENSI PRIBADI PADA GETARAN BALOK KOMPOSIT DENGAN PENGUAT FIBERGLASS

HALAMAN PERNYATAAN ORISINALITAS

MODIFIKASI TEKNIK DISCRETE SHEAR GAP PADA ELEMEN BALOK TIMOSHENKO BERBASIS KRIGING

Bab ii Kajian Pustaka 5

Gambar 2.1 Bagian-bagian mesin press BTPTP [9]

BAB II TINJAUAN PUSTAKA

ANALISIS UNTUK MENENTUKAN FAKTOR KONSENTRASI TEGANGAN DENGAN EKSPERIMENTAL DAN METODE ELEMEN HINGGA

Simulasi Komposit Isopoliester/Serat Kaca untuk Compressed Natural Gas (CNG) Tipe IV dengan Variasi Arah Serat terhadap Tekanan Internal

PENENTUAN KOEFISIEN ABSORBSI BUNYI DAN IMPEDANSI AKUSTIK DARI SERAT ALAM ECENG GONDOK (EICHHORNIA CRASSIPES) DENGAN MENGGUNAKAN METODE TABUNG


PERBANDINGAN PERKUATAN STRUKTUR PELAT DENGAN METODE ELEMEN HINGGA ABSTRAK

Analisa Pengaruh Diameter Nozzle Terhadap Besar Tegangan Maksimum Pada Air Receiver Tank Horisontal Dengan Menggunakan Metode Elemen Hingga

BAB 3 MODEL ELEMEN HINGGA

OPTIMASI DESAIN RANGKA SEPEDA BERBAHAN BAKU KOMPOSIT BERBASIS METODE ANOVA

Bab V Prosedur Numerik

EVALUASI CEPAT DESAIN ELEMEN BALOK BETON BERTULANGAN TUNGGAL BERDASARKAN RASIO TULANGAN BALANCED

BAB 4 HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

Pertemuan 13 persamaan linier NON HOMOGEN

DESAIN DAN ANALISIS SIRIP ROKET KOMPOSIT HYBRID SEBAGAI SIRIP KOMPOSIT OPTIMUM

BAB I PENDAHULUAN Latar Belakang Masalah

Redesign Sistem Peredam Sekunder dan Analisis Pengaruh Variasi Nilai Koefisien Redam Terhadap Respon Dinamis Kereta Api Penumpang Ekonomi (K3)

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial

STUDI NUMERIK SAMBUNGAN DENGAN BAUT-GUSSET PLATE PADA STRUKTUR GABLE FRAME TIGA SENDI

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH

PENGARUH PENAMBAHAN PROSENTASE FRAKSI VOLUME HOLLOW GLASS MICROSPHERE KOMPOSIT HIBRIDA SANDWICH TERHADAP KARAKTERISTIK TARIK DAN BENDING

ANALISIS PERILAKU STATIK PADA STRUKTUR CANGKANG SILINDER (Cylindrical shell) DENGAN METODE ELEMEN HINGGA TESIS

BAB II TINJAUAN PUSTAKA. struktur atas dan struktur bawah dan berfungsi untuk menyalurkan beban dari kolom

Bab V : Analisis 32 BAB V ANALISIS

Analisis Kekuatan dan Deformasi Piston Mesin Bensin-Bio Etanol dan Gas dengan Injeksi Langsung untuk Kendaraan Nasional dengan Simulasi Numerik

IMPLEMENTASI ELEMEN TETRAHEDRON LINEAR DAN KUADRATIK UNTUK ANALISIS TEGANGAN TIGA DIMENSI DENGAN MENGGUNAKAN PROGRAM MATLAB DAN GID

BAB III METODOLOGI PENELITIAN. baseplate berdasarkan metode AISC- LRFD dan simulasi program ANSYS. Adapun

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN:

Studi Eksperimental Pengaruh Jumlah Lapisan Stainless Steel Mesh dan Posisinya Terhadap Karakteristik Tarik dan Bending Komposit Serat Kaca Hibrida

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

ANALISIS NUMERIK PROFIL SEDIMENTASI PASIR PADA PERTEMUAN DUA SUNGAI BERBANTUAN SOFTWARE FLUENT. Arif Fatahillah 9

PENGARUH PASIR TERHADAP PENINGKATAN RASIO REDAMAN PADA PERANGKAT KONTROL PASIF (238S)

ANALISIS KEKUATAN TARIK BOLTED JOINT STRUKTUR KOMPOSIT C-GLASS/EPOXY BAKALITE EPR 174

STUDI NUMERIK PELAT PERKERASAN ISOTROPIK JALAN RAYA DIATAS PONDASI ELASTIK WINKLER AKIBAT KECEPATAN BEBAN BERJALAN

Laporan Praktikum. Laboratorium Teknik Material III. Modul B Teori Laminat Klasik. oleh :

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga

Jurnal Teknika Atw 1

BAB I PENDAHULUAN UMUM

BAB II PERAMBATAN GELOMBANG SEISMIK

BAB I TEGANGAN DAN REGANGAN

Transkripsi:

PENGEMBANGAN EQUIALENT PLATE MODEL UNTUK ANALISA DINAMIS PADA STRUKTUR PLATE-LIKE WING DENGAN MATERIAL KOMPOSIT *Reni, Ismoyo Haryanto Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro Dosen Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro Jl. Prof. Sudharto, SH., Tembalang-Semarang 5075, Telp. +6760059 *E-mail: phangreni@gmail.com Abstrak Analisa getaran bebas dilakukan pada struktur sayap pesawat udara yang dibuat menggunakan material komposit. Equivalent plate model dengan first-order shear deformation theory berdasarkan metode Reissner-Mindlin digunakan untuk mendapatkan nilai frekuensi pribadi dan modus getar dari struktur sayap pesawat udara tersebut. Struktur sayap pesawat udara ini dimodelkan dalam bentuk plate-like wing dengan material komposit. Laminat yang simetris diberikan struktur plate-like wing ini. Persamaan gerak diturunkan dari Persamaan Lagrange untuk getaran bebas. alidasi dilakukan pada hasil analisa terhadap data yang ada pada literatur. Hasil validasi menunjukkan kecocokan antara hasil analisa yang dilakukan terhadap data pada literatur. Kata kunci: Equivalent plate model, Plate-like wing dengan material komposit, Getaran bebas Abstract Free vibration analysis of composite aircraft wing is studied. Equivalent plate model with first-order shear deformation theory based on Reissner-Mindlin method is used to get the natural frequencies and mode shapes of the composite aircraft wing. Plate-like composite wing is considered in this study to modeling the composite aircraft wing. Symmetric laminates are applied for the plate-like composite wing model. Equations of motion are derived from the Lagrange s equations for free vibration. alidations are done to compare the present results with the available in the literature. The present results show good agreement with the literature s. Keywords: Equivalent plate model, Plate-like composite wing, Free vibration. Pendahuluan Penggunaan material komposit banyak dijumpai dalam industri penerbangan karena material komposit memiliki beberapa kelebihan jika dibandingkan dengan material isotropik (seperti aluminium). Kelebihan utama material komposit ialah rasio kekuatan-massa (kekuatan jenis) dan kekakuan-massa (kekakuan jenis) yang tinggi. Hal tersebut pula yang mendasari penggunaan material komposit dalam industri penerbangan [], contohnya ialah penggunaan material komposit pada struktur sayap pesawat udara dimana berat dari struktur pesawat udara merupakan faktor yang penting. Material komposit memiliki kemampuan yang sama seperti material isotropik tetapi dapat membuat struktur menjadi jauh lebih ringan, serta sifatnya yang lebih tahan terhadap lingkungan dibandingkan dengan logam []. Selain itu, untuk jenis material komposit dengan bahan penguat berupa serat seperti komposit laminat, sifat material bergantung dari susunan arah serat tiap lamina, sehingga dapat disesuaikan untuk memperoleh kekuatan dan kekakuan dari struktur yang diperlukan. Sehingga, agar efisien dalam penggunaannya, maka perlu dilakukan analisa struktur ketika diberi pembebanan, salah satunya ialah analisa dinamis dari struktur. Analisa elemen hingga (Finite Element Analysis atau FEA) merupakan salah satu analisa yang paling banyak digunakan dalam menganalisa struktur. Metode ini dapat menganalisa perpindahan, tegangan, regangan, getaran dan analisa lainnya pada struktur, selain itu cukup detail jika digunakan untuk menganalisa struktur pada langkah akhir dari proses mendesain [3]. Analisa ini membagi struktur menjadi elemen-elemen kecil (diskritisasis) yang terhubung oleh titik-titik (nodes). Nilai analisa yang didapat hanya merupakan nilai pada titik-titik tersebut, sehingga analisa ini tidak bersifat kontinu. Dalam menganalisa gaya-gaya aerodinamis, juga dilakukan diskritisasi. Dengan memisalkan titik-titik hasil diskritisasi pada analisa struktur sebagai Titik-titik A dan titik-titik hasil diskritisasi pada analisa aerodinamis dinamai Titik-titik B, maka ketika hasil analisa struktur digunakan dalam analisa gaya-gaya aerodinamis pada struktur, ada kemungkinan Titik-titik A tidak berhimpit dengan Titik-titik B. Sedangkan untuk menganalisa gaya-gaya aerodinamis (pada Titik-titik B ) diperlukan nilai analisa struktur pada Titik-titik B tersebut. Sehingga nilai-nilai hasil analisa struktur (pada Titik-titik A ) perlu diinterpolasi terlebih dahulu untuk mendapatkan nilai-nilai pada Titik-titik B. Berbeda dengan FEA yang membagi struktur menjadi elemen-elemen kecil, analisa struktur dengan menggunakan JTM (S-) ol., No., April 06:-50

metode pendekatan pelat (Equivalent Plate Model atau EPM) tidak mendiskritisasikan struktur. Analisa dengan metode ini bersifat kontinu, nilai yang didapat bukan hanya nilai pada Titik-titik A tetapi pada setiap titik pada struktur. Sehingga nilai-nilai analisa struktur pada Titik-titik B yang diperlukan untuk analisa gaya-gaya aerodinamis dapat langsung diperoleh tanpa proses interpolasi. Maka, untuk kasus yang melibatkan faktor aerodinamis dari suatu struktur, metode EPM ini lebih efisien dibandingkan dengan FEA. Equivalent Plate Model atau EPM merupakan salah satu metode analitik yang digunakan untuk menganalisa struktur dengan material komposit laminat. Terdapat beberapa penelitian dalam menganalisa struktur baik dengan material isotropik maupun komposit laminat, baik menggunakan metode analitik seperti EPM maupun metode numerik seperti FEA, seperti yang dilakukan oleh Kant dan Swaminathan [], mereka menggunakan Higher-order Refined Theory untuk menganalisa pelat dan sandwich plates dengan material komposit laminat. Classical Laminate Theory (CLT) yang digunakan oleh Rojas [] untuk menganalisa struktur beams dengan material komposit laminat. Na dan Shin [3], mereka menggunakan EPM untuk menganalisa struktur sayap pesawat udara yang memiliki control surface dimana bagian skins sayap pesawat udara menggunakan material komposit laminat sedangkan spars dan ribs menggunakan material isotropik. Liu [5] menggunakan EPM dengan First-order Shear Deformation Theory (FSDT) yang berdasarkan pada metode Reissner-Mindlin untuk menganalisa struktur sayap pesawat udara dengan material isotropik. Serta o dan Lee [6] yang melakukan analisa pada thin-walled box beams dengan material komposit laminat. Penelitian tentang penggunaan EPM untuk analisa struktur maupun analisa struktur dengan material komposit laminat telah banyak dilakukan, akan tetapi penggunaan EPM untuk menganalisa struktur plate-like wing dengan material komposit laminat masih jarang dilakukan. Oleh karena itu, pada penelitian ini analisa dinamis pada struktur plate-like wing dengan material komposit laminat dilakukan dengan pemodelan EPM yang diprogramkan dengan menggunakan software MATLAB. Pemodelan EPM ini dilakukan dengan menggunakan First-order Shear Deformation Theory (FSDT) yang berdasarkan pada metode Reissner-Mindlin. Analisa dilakukan untuk mendapatkan nilai frekuensi pribadi dan modus getar struktur tersebut, dan hasilnya dibandingkan dengan nilai yang diperoleh dari literatur.. Model Matematika. Equivalent Plate Model Equivalent plate model memodelkan struktur sayap pesawat sebagai sebuah pelat seperti pada Gambar. Koordinat x,y,z ditransformasikan menjadi koordinat ξ,η,z. z, w y, v (-,-) (-,) z η 3 (,-) (,) x, u Gambar. Koordinat sistem dan transformasi []. Transformasi bidang,,3, pada koordinat x,y,z seperti pada Gambar. menjadi kotak dalam koordinat ξ,η,z. dapat diformulasikan sebagai berikut ξ x = N i (ξ, η)x i i= () y = N i (ξ, η)y i i= JTM (S-) ol., No., April 06:-50

Dimana, N (ξ, η) = ( ξ)( η) N (ξ, η) = ( + ξ)( η) N 3 (ξ, η) = ( + ξ)( + η) () N (ξ, η) = ( ξ)( + η) Matriks Jacobian untuk transformasi ini sebagai berikut. ξ [J] = y [ ξ η y η] Invers dari matriks Jacobian seperti pada persamaan () berikut ini. y η η [ y ] [J] ξ ξ = J = J [ J J ] = [ J J ] J J J J (3) () Dimana J merupakan determinan dari matriks Jacobian. Maka turunan suatu fungsi terhadap ξ dan η dapat dituliskan seperti pada persamaan (5). ξ ξ = { η} [ η ξ { = y η] } [J]T { y} { } = ([J] T ) ξ = ([J] ) T ξ = [ J J ξ ] J J { η} { η} { η} (5). First-order Shear Deformation Theory (FSDT) FSDT berdasarkan metode Reissner-Mindlin untuk sebuah pelat mengasumsikan bahwa perpindahan yang terjadi dalam arah z linier dan plane stress pada arah tersebut. Berdasarkan asumsi tersebut maka persamaan untuk perpindahan yang terjadi dalam arah x,y, dan z seperti berikut. u(x, y, x, t) = u 0 (x, y, t) + zθ x (x, y, t) v(x, y, x, t) = v 0 (x, y, t) + zθ y (x, y, t) w(x, y, x, t) = w 0 (x, y, t) Persamaan untuk regangan dapat diturunkan dari persamaan (6) ε x = u = ε x 0 + zκ x ε y = v y = ε y 0 + zκ y ε z = w z = 0 γ xy = u y + v = ε xy 0 + zκ xy (6) JTM (S-) ol., No., April 06:-50 3

γ yz = v z + w y = γ yz 0 γ zx = u z + w = γ zx 0 dimana, (ε 0 x, ε 0 y, ε 0 xy ) = ( u 0, v 0 y, u 0 y + v 0 ) (7) (κ x, κ y, κ xy ) = ( θ x, θ y y, ( θ x y + θ y ) ) (8) (γ 0 zx, γ 0 yz ) = (θ x + w 0, θ y + w 0 y ) Besarnya u 0, v 0, w 0, θ x, dan θ y didefinisikan sebagai berikut. I J u 0 = {B IJ } T {q U } = U ij (t)b i (ξ)b j (η) i= j= K L v 0 = {B KL } T {q } = U kl (t)b k (ξ)b l (η) k= l= M N w 0 = {B MN } T {q W } = U mn (t)b m (ξ)b n (η) m= n= P Q θ x = {B PQ } T {q X } = U pq (t)b p (ξ)b q (η) p= q= R S θ y = {B RS } T {q Y } = U rs (t)b r (ξ)b s (η) r= s= (9) Dimana I, J, K, L, M, N, P, Q, R dan S adalah bilangan bulat, {q} merupakan generalized displacement vector, dan {B} merupakan Ritz base function vector dan dibangun dengan menggunakan persamaan polinomial Chebyshev..3 Matriks Kekakuan dan Massa Matriks kekakuan diturunkan dari persamaan energi regangan seperti berikut ini. U = {σ}t {ε} d (0) Berdasarkan Hukum Hooke, maka hubungan antara tegangan-regangan dapat dituliskan {σ} = [D]{ε}, dimana [D] merupakan matriks tegangan-regangan atau biasa disebut sebagai matriks constitutive. Maka {σ} T = {ε} T [D] T, dengang mengasumsikan [D] T = [D] maka persamaan (0) menjadi seperti berikut ini. U = {ε}t [D]{ε} d Jika {ε} = [T]{ε }, maka nilai [T] dan {ε } dituliskan seperti pada persamaan () dan (3). () JTM (S-) ol., No., April 06:-50

J J 0 0 0 0 0 0 0 0 0 0 0 0 J J 0 0 0 0 0 0 0 0 J J J J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J J 0 0 0 0 [T] = 0 0 0 0 0 0 0 0 J J 0 0 0 0 0 0 0 0 J J J J 0 0 0 0 0 0 J J 0 0 0 0 0 [ 0 0 0 0 J J 0 0 0 0 0] {ε } = u 0 ξ u 0 η v 0 ξ v 0 η w 0 ξ w 0 η θ x ξ θ x η θ y ξ θ y η θ x { θ y } = { I J U ij (t)b i (ξ)b j (η) i= j= I J U ij (t)b i (ξ)b j (η) i= j= K L U kl (t)b k (ξ)b l (η) k= l= K L U kl (t)b k (ξ)b l (η) k= l= M N U mn (t)b m (ξ)b n (η) m= n= M N U mn (t)b m (ξ)b n (η) m= n= P Q U pq (t)b p (ξ)b q (η) p= q= P Q U pq (t)b p (ξ)b q (η) p= q= R S U rs (t)b r (ξ)b s (η) r= s= R S U rs (t)b r (ξ)b s (η) r= s= P Q U pq (t)b p (ξ)b q (η) p= q= R S U rs (t)b r (ξ)b s (η) r= s= } Maka persamaan () dapat dituliskan seperti berikut. = [C]{q} () (3) U = {q}t [C] T [T] T [D][T][C]{q} d = {q}t [K]{q} dimana [K] merupakan matriks kekakuan seperti pada persamaan (5). () [K] = [C] T [T] T [D][T][C] dx dy dz Pada Gambar diperlihatkan contoh dari koordinat lamina dari suatu lapisan material komposit laminat dengan arah serat tertentu. Arah merupakan arah yang sejajar terhadap arah serat, arah merupakan arah yang tegang lurus terhadap (5) JTM (S-) ol., No., April 06:-50 5

arah serat, dan dalam bidang yang sama dengan arah. Sedangkan arah 3 merupakan arah tegak lurus terhadap arah serat. Hubungan tegangan-regangan berdasarkan arah serat seperti berikut. { σ σ τ τ 3 τ 3} Q Q 0 0 0 Q Q 0 0 0 = 0 0 Q 33 0 0 0 0 0 0 Q 0 0 0 0 [ Q 55 ] { z, 3 ε ε γ γ 3 γ 3} y (6) x Gambar. Koordinat lamina. Hubungan tegangan-regangan tersebut ditransformasikan untuk mendapatkan hubungang tegangan-regangan dalam koordinat laminat (x,y dan z). Sehingga persamaan (6) menjadi seperti berikut. { σ x σ y τ xy τ yz τ zx} = [ Q Q Q 3 0 0 ε x Q Q Q 3 0 0 ε y Q 3 Q 3 Q 33 0 0 γ xy 0 0 0 Q Q 5 γ yz 0 0 0 Q 5 Q 55 { ] γ zx} Sehingga constitutive matrix untuk material komposit laminat dituliskan sebagai berikut. h k A B 0 ( [D] dz) = [ B D 0] = [d] h k 0 0 E Dimana A, B, D, dan E didefinisikan seperti berikut. n A ij = [Q ij ] k (h k h k ) k= n B ij = [Q ij ] k (h k h k ) k= n D ij = 3 [Q ij ] k (h 3 3 k h k ) n k= E ij = [(Q s) ij ] k (h k h k ) k= Maka, [K] pada persamaan (5) menjadi seperti berikut. [K] = [C] T [T] T [d][t][c] dx dy A (7) (8) (9) (0) JTM (S-) ol., No., April 06:-50 6

Sementara untuk matriks massa diturunkan dari persamaan energi kinetik. T = ρ v d = ρ {v } T {v } d Dimana vector kecepatan didefinisikan sebagai berikut. u 0 {v } = { d t + z θ x t t } = v 0 t + z θ 0 0 z 0 y = [ 0 0 0 z] t 0 0 0 0 w 0 { t } { Sehingga persamaan energi kinetik menjadi u 0 t v 0 t w 0 t θ x t θ y t} T = ρ {q } T [H] T [ZZ][H]{q } d = {q }T [M]{q }d Dengan nilai [ZZ] = [Z] T [Z] dan [M] seperti berikut. [M] = dimana [H] T [ZZ][H] d = ρ[h] T ( A h [ZZ] h h h [ZZ] dz = I 0, I, I = (, z, z ) dz = [zz] h h = [Z][H]{q } dz) [H] dx dy () () (3) () sehingga matriks massa untuk material komposit laminat dituliskan seperti berikut. [M] = ρ[h] T [zz][h] dx dy A (5). Integrasi Numerik Pengintegrasian dilakukan secara numerik dengan menggunakan metode kuadratur Gauss. Dalam pengintegrasian koordinat x dan y ditransformasikan menjadi koordinat ξ dan η. N z I = F(x, y, z) dx dy dz = ( F[x(ξ, η), y(ξ, η), z]. J dz) dξ dη i= z i z i N z merupakan jumlah zona integrasi dalam arah z, dan z i dan z i merupakan batas pengintegrasian. Maka pengintegrasian untuk pelat komposit laminat sebagai berikut. (6) z L + t L z U + t U F(x, y, z)d = ( F. J dz + F. J dz) dξdη z z U L t L t U (7).5 Persamaan Lagrange untuk Getaran Bebas Persamaan gerak untuk getran bebas diturunkan dari persamaan Lagrange. d dt ( L ) L = 0 q j q j Dimana, L = T = T U. Dengan memasukkan persamaan () dan (3) ke persamaan (8), maka didapatkan persamaan gerak seperti berikut. [K total λm total ]{x} = 0 Dimana λ = ω, maka diperoleh frekuensi pribadi dan modus getar dari struktur sayap pesawat. 3. Hasil dan Pembahasan (8) (9) JTM (S-) ol., No., April 06:-50 7

Equivalent plate model dengan first-order shear deformation theory (FSDT) berdasarkan metode Reissner-Mindlin digunakan untuk menganalisa struktur sayap pesawat dengan material komposit. Kasus pertama ialah analisa pada struktur plate-like wing dengan material komposit dengan sweep angle 0 o dan kedua ialah analisa pada struktur plate-like wing dengan material komposit dengan sweep angle 30 o. Kondisi batas diberikan dengan mengasumsikan bahwa struktur merupakan struktur kantilever. Dimensi dan sifat material yang digunakan untuk kedua struktur tersebut sama, yaitu panjang sayap 305 mm, panjang chord 76. mm dan tebal total laminat sebesar 0.80 mm. Material komposit laminat grafit/epoksi digunakan dengan sifat material tiap lamina: E L = 98.0 GPa, E T = 7.90 GPa, G LT = 5.60 GPa, Poisson s ratio ν = 0.8 dan ρ = 560 kg/m 3. Laminat merupakan susunan yang simetris, terdiri dari delapan lapis dengan susunan arah serat [-.5/67.5/.5/-67.5]s dan ketebalan tiap lapisan [0.09/0./0.6/0.63]s, dimana besarnya merupakan rasio dari setengah tebal laminat. Lima frekuensi pribadi pertama untuk pelat dengan sweep angle 0 o diperlihatkan dalam Tabel dan modus getarnya seperti terlihat pada Gambar 3. Enam frekuensi pribadi pertama untuk pelat dengan sweep angle 30 o diperlihatkan dalam Tabel dan Gambar memperlihatkan modus getarnya. Tabel. Nilai frekuensi pribadi pelat dengan sweep angle 0 o. Mode Frekuensi Pribadi (Hz) Perbedaan EPM (Reni) CUF [7] (%) 7.30 7.0.0 5.7 5.00.59 3 58.93 59.0 0.9 8.8 6.0.9 5 8.78 8.30 0.9 Rata-rata.0 a. Modus getar, f = 7.30 Hz b. Modus getar, f = 5.7 Hz c. Modus getar 3, f = 58.93 Hz d. Modus getar, f = 8.8 Hz JTM (S-) ol., No., April 06:-50 8

e. Modus getar 5, f = 8.87 Hz Gambar 3. Modus getar plate-like wing dengan sweep angle 0 o. Hasil analisa dibandingkan dengan nilai frekuensi pribadi yang didapat dari hasil penelitian yang dilakukan oleh Carrera, dkk yang melakukan analisa dinamis dengan menggunakan Carrera Unified Formulation (CUF) [7]. Hasil validasi menunjukkan kecocokan antara hasil analisa dengan data pada literatur tersebut, dengan rata-rata perbedaan nilai frekuensi pribadi yang diperoleh dengan data pada literatur hanya sebesar.0 % untuk struktur plate-like wing dengan sweep angle 0 o, dengan modus getar pertama struktur merupakan modus bending pertama, modus getar kedua merupakan modus bending kedua, modus getar ketiga merupakan modus puntir pertama, modus getar keempat merupakan modus bending ketiga dan modus getar kelima merupakan modus puntir kedua. Untuk struktur plate-like wing dengan sweep angle 30 o terlihat bahwa rata-rata perbedaan nilai frekuensi pribadi yang diperoleh dengan data pada literatur hanya sebesar.37 % dengan modus getar pertama merupakan modus bending pertama, modus getar kedua merupakan modus bending kedua, modus getar ketiga merupakan modus puntir pertama, modus getar keempat merupakan modus bending ketiga, modus getar kelima merupakan modus puntir kedua dan modus getar keenam merupakan modus bending keempat. Tabel 3. Nilai frekuensi pribadi pelat dengan sweep angle 30 o. Mode Frekuensi Pribadi (Hz) Perbedaan EPM (Reni) CUF [7] (%) 5.70 5.60.83 3.86 3.0.9 3 59.5 59.0 0. 97.06 95.30.8 5 80.90 80.0 0.5 6 88.9 85.70.75 Rata-rata.37 a. Modus getar, f = 5.70 Hz b. Modus getar, f = 3.86 Hz JTM (S-) ol., No., April 06:-50 9

c. Modus getar 3, f = 59.5 Hz d. Modus getar, f = 97.06 Hz e. Modus getar 5, f = 80.90 Hz f. Modus getar 6, f = 88.9 Hz Gambar 5. Modus getar plate-like wing dengan sweep angle 30 o.. Kesimpulan Equivalent Plate Model dilakukan pada penelitian ini untuk mendapatkan nilai frekuensi pribadi dan modus getar dari struktur plate-like wing dengan material komposit laminat. Nilai frekuensi yang didapat dari analisa menggunakan metode ini dibandingkan dengan nilai frekuensi pribadi yang diambil dari literatur. Hasil validasi menunjukkan kecocokan antara hasil analisa dengan data pada literatur tersebut, dengan rata-rata perbedaan sebesar.0% untuk pelat dengan sweep angle 0 o, dan rata-rata perbedaan sebesar.37% untuk pelat dengan sweep angle 30 o 5. Daftar Pustaka [] Gibson, R. F. 99. Principles of Composite Material Mechanics. USA: McGraw-Hill, Inc. [] Rojas, C. A. 006. Structural Analysis of Fiber Reinforced Composite Material. Master. diss., The Faculty of The Graduate School of The University of Texas at Arlington. [3] Na, Y.H., Shin, S. 03. Equivalent-Plate Analysis for a Composite Wing with a Control Surface. Journal of Aircraft 50 (3): 853-86. [] Kant, T., Swaminathan, K. 00. Analytical Solutions for Free ibration of Laminated Composite and Sandwich Plates Based on a Higher-order Refined Theory. Composite Structures 53: 73-85. [5] Liu, Y. 000. Efficient Methods for Structural Analysis of Built-up Wings. Ph.D. diss., The Faculty of irginia Polytechnic Institute and State University. [6] o, T., Lee, J. 008. Free ibration of Thin-walled Composite Box Beams, Composite Structures 8 (): -0. ISSN 063-83. [7] Carrera, E., Pagani, A., Cabral, P.H., Silva, G., Prado, A. 05. Enhanced Free ibration Analysis of Composite Wing-box Structures by One-dimentional Component-wise and Dynamic Stiffness Formulations. International Forum on Aeroelasticity and Structural Dynamics. JTM (S-) ol., No., April 06:-50 50