Synthesis and Characterization Titanium Dioxide (TiO 2 ) Doped Vanadium(V) Using Solid State Method

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA

BAB 4 HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1 Latar Belakang

KARAKTERISASI TiO 2 (CuO) YANG DIBUAT DENGAN METODA KEADAAN PADAT (SOLID STATE REACTION) SEBAGAI SENSOR CO 2

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN. perindustrian minyak, pekerjaan teknisi, dan proses pelepasan cat (Alemany et al,

Pengaruh Temperatur dan Waktu Putar Terhadap Sifat Optik Lapisan Tipis ZnO yang Dibuat dengan Metode Sol-Gel Spin Coating

BAB IV HASIL dan PEMBAHASAN

SINTESIS LAPISAN TIPIS SEMIKONDUKTOR DENGAN BAHAN DASAR TEMBAGA (Cu) MENGGUNAKAN CHEMICAL BATH DEPOSITION

BAB V HASIL DAN PEMBAHASAN. karakterisasi luas permukaan fotokatalis menggunakan SAA (Surface Area

2 PEMBUATAN DAN KARAKTERISASI NANOPARTIKEL TITANIUM OXIDE (TiO 2 ) MENGGUNAKAN METODE SOL-GEL

Bab IV. Hasil dan Pembahasan

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

Bab III Metodologi Penelitian

2 SINTESIS DAN KARAKTERISASI NANOSTRUKTUR ZnO

Sintesis Komposit TiO 2 /Karbon Aktif Berbasis Bambu Betung (Dendrocalamus asper) dengan Menggunakan Metode Solid State Reaction

Aristanto Wahyu Wibowo, A. K. Prodjosantoso & Cahyorini K.

BENTUK KRISTAL TITANIUM DIOKSIDA

I. PENDAHULUAN. kimia yang dibantu oleh cahaya dan katalis. Beberapa langkah-langkah fotokatalis

STRUKTUR KRISTAL DAN MORFOLOGI TITANIUM DIOKSIDA (TiO 2 ) POWDER SEBAGAI MATERIAL FOTOKATALIS

Efek Doping Senyawa Alkali Terhadap Celah Pita Energi Nanopartikel ZnO

BAB I PENDAHULUAN Latar Belakang

BAB V HASIL DAN PEMBAHASAN. cahaya matahari.fenol bersifat asam, keasaman fenol ini disebabkan adanya pengaruh

III. METODE PENELITIAN. Penelitian ini telah dilaksanakan pada bulan Februari sampai Juni 2013 di

F- 1. PENGARUH PENYISIPAN LOGAM Fe PADA LAPISAN TiO 2 TERHADAP PERFORMANSI SEL SURYA BERBASIS TITANIA

I. PENDAHULUAN. kinerjanya adalah pemrosesan, modifikasi struktur dan sifat-sifat material.

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Indo. J. Chem. Sci. 3 (1) (2014) Indonesian Journal of Chemical Science

BAB III METODOLOGI PENELITIAN

4 Hasil dan pembahasan

BAB I PENDAHULUAN. I.1 Latar Belakang Kebutuhan akan energi semakin berkembang seiring dengan

STUDI MIKROSTRUKTUR SERBUK LARUTAN PADAT MxMg1-xTiO3 (M=Zn & Ni) HASIL PENCAMPURAN BASAH

SINTESIS DAN PENENTUAN STRUKTUR SENYAWA OKSIDA LOGAM PIROKLOR TIPE Sr 2 Nb 2 O 7 DAN Ba 2 Nb 2 O 7

Bab II Tinjauan Pustaka

Distribusi Celah Pita Energi Titania Kotor

PENGARUH VARIASI MILLING TIME dan TEMPERATUR KALSINASI pada MEKANISME DOPING 5%wt AL NANOMATERIAL TiO 2 HASIL PROSES MECHANICAL MILLING

Karakterisasi Sensor TiO 2 Didoping ZnO untuk Mendeteksi Gas Oksigen

BAB I PENDAHULUAN 1.1 LatarBelakang

BAB I PENDAHULUAN A. Latar Belakang Masalah

UNIVERSITAS INDONESIA TESIS

Bab IV Hasil Dan Pembahasan

PENGARUH KONDISI ANNEALING TERHADAP PARAMETER KISI KRISTAL BAHAN SUPERKONDUKTOR OPTIMUM DOPED DOPING ELEKTRON Eu 2-x Ce x CuO 4+α-δ

Indonesian Journal of Chemical Science

BAB I PENDAHULUAN. Indonesia merupakan negara berkembang yang berada dikawasan Asia

SINTESIS DAN KARAKTERISASI CORE-SHELL ZnO/TiO2 SEBAGAI MATERIAL FOTOANODA PADA DYE SENSITIZED SOLAR CELL (DSSC) SKRIPSI

SINTESIS DAN KARAKTERISASI UNDER-DOPED SUPERKONDUKTOR DOPING ELEKTRON Eu 2-x Ce x CuO 4+α-δ

SINTESIS DAN KARAKTERISASI NANOPARTIKEL TITANIUM DIOKSIDA (TiO 2 ) MENGGUNAKAN METODE SONOKIMIA

KARAKTERISASI SEMIKONDUKTOR TIO 2 (ZnO) SEBAGAI SENSOR LIQUEFIED PETROLEUM GAS (LPG)

SINTESIS SERBUK MgTiO 3 DENGAN ADITIF Ca DARI BATU KAPUR ALAM DENGAN METODE PENCAMPURAN LARUTAN

4 Hasil dan Pembahasan

PENGARUH KONSENTRASI PREKURSOR TERHADAP SIFAT OPTOELEKTRONIK Mn 3O 4

Preparasi Dan Penentuan Energi Gap Film Tipis TiO2:Cu Yang Ditumbuhkan Menggunakan Spin Coating

PENENTUAN TEMPERATUR CURIE SENYAWA OKSIDA LOGAM BERSTRUKTUR AURIVILLIUS TIPE CuBi 4 Ti 4 O 15 (CBT) EMPAT LAPIS

SINTESIS TITANIUM DIOKSIDA MENGGUNAKAN METODE LOGAM-TERLARUT ASAM

DETEKTOR GAS OKSIGEN DARI BAHAN SEMIKONDUKTOR TiO2 DOPING CuO

PENGOLAHAN LIMBAH Cr(VI), FENOL dan Hg(II) DENGAN FOTOKATALIS SERBUK TiO 2 dan ZnO/TiO 2

Metodologi Penelitian

BAB I PENDAHULUAN I.1 Latar Belakang Penelitian

METODE SOL-GEL RISDIYANI CHASANAH M

BAB I PENDAHULUAN. energi cahaya (foton) menjadi energi listrik tanpa proses yang menyebabkan

I. PENDAHULUAN. oleh H.K Onnes pada tahun 1911 dengan mendinginkan merkuri (Hg) menggunakan helium cair pada temperatur 4,2 K (Darminto dkk, 1999).

BAB I PENDAHULUAN. 1.1 Latar Belakang

HASIL DAN PEMBAHASAN. Keterangan Gambar 7 : 1. Komputer 2. Ocean Optic USB 2000 Spektrofotometer

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

EFEK CuI TERHADAP KONDUKTIVITAS DAN ENERGI AKTIVASI (CuI) x (AgI ) 1-x (x = 0,5-0,9)

PREPARASI KOMPOSIT TiO 2 -SiO 2 DENGAN METODE SOL-GEL DAN APLIKASINYA UNTUK FOTODEGRADASI METHYL ORANGE

BAB IV HASIL DAN PEMBAHASAN. hal ini memiliki nilai konduktifitas yang memadai sebagai komponen sensor gas

BAB III DASAR TEORI. elektron valensi memiliki tingkat energi yang disebut energi valensi.

BAB IV HASIL DAN PEMBAHASAN. Dalam penelitian ini digunakan TiO2 yang berderajat teknis sebagai katalis.

BAB I PENDAHULUAN 1.1 Latar Belakang

SINTESIS OKSIDA LOGAM AURIVILLIUS SrBi 4 Ti 4 O 15 MENGGUNAKAN METODE HIDROTERMAL DAN PENENTUAN SIFAT FEROELEKTRIKNYA

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

HASIL DAN PEMBAHASAN. Gambar 11. Rangkaian pengukuran karakterisasi I-V.

KARAKTERISASI I-V SEMIKONDUKTOR HETEROKONTAK CuO/ ZnO(TiO 2 ) SEBAGAI SENSOR GAS HIDROGEN

BAB 1 PENDAHULUAN Latar Belakang

METODELOGI PENELITIAN. Penelitian ini akan dilakukan di Laboratorium Kimia Anorganik-Fisik Universitas

Bab III Metoda Penelitian

Analisis Struktural Seng Oksida (ZNO) Dari Limbah Dross Galvanisasi

DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH DAFTAR SINGKATAN DAN LAMBANG BAB I

BAB I PENDAHULUAN. Pada saat ini dunia elektronika mengalami kemajuan yang sangat pesat, hal ini

Logo SEMINAR TUGAS AKHIR. Henni Eka Wulandari Pembimbing : Drs. Gontjang Prajitno, M.Si

III. METODE PENELITIAN

PREPARASI DAN KARAKTERISASI SIFAT OPTIK NANOPARTIKEL Cu 2O DENGAN METODE KOPRESIPITASI

SINTESIS NANOPARTIKEL PbS MELALUI METODE SOL-GEL DENGAN EDTA SEBAGAI CAPPING AGENT

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin 2016

SINTESIS DAN KARAKTERISASI TITANIUM DIOKSIDA (TiO 2 ) ANATAS TERDOPING VANADIUM (V) MENGGUNAKAN METODE REAKSI PADATAN SKRIPSI

KARAKTERISASI SIFAT OPTIK BAHAN BARIUM TITANAT (BaTiO 3 ) DENGAN MENGUNAKAN SPEKTROSKOPI ULTRAVIOLET-VISIBLE (UV-Vis)

SINTESIS DAN KARAKTERISASI SENYAWA KOMPLEKS NIKEL(II) DENGAN LIGAN ETILENDIAMINTETRAASETAT (EDTA)

PENUMBUHAN NANOPARTIKEL TITANIUM DIOKSIDA PADA SUBSTRAT FTO DENGAN METODE ELEKTRODEPOSISI. Saidatun Khofifah *, Iwantono, Awitdrus

BAB I PENDAHULUAN. Listrik merupakan kebutuhan esensial yang sangat dominan kegunaannya

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

BAB IV HASIL DAN PEMBAHASAN. Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Nanoteknologi adalah ilmu dan rekayasa dalam menciptakan material, struktur fungsional, maupun piranti alam

BAB IV HASIL DAN PEMBAHASAN

I. PENDAHULUAN. Nanoteknologi merupakan teknologi nano yang semakin populer beberapa

Diterima tanggal 19 September 1998, disetujui untuk dipublikasikan 5 April 1999

SINTESIS SERBUK MgTiO 3 DENGAN METODE PENCAMPURAN DAN PENGGILINGAN SERBUK. Abstrak

ANALISIS STRUKTUR DAN SIFAT MAGNET BAHAN SUPERKONDUKTOR Eu 2-x Ce x CuO 4+α-δ ELECTRON-DOPED

Transkripsi:

Synthesis and Characterization Titanium Dioxide (TiO 2 ) Doped Vanadium(V) Using Solid State Method Khusnan Mustofa, Nur Aini, Rachmawati Ningsih Jurusan Kimia Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang Email: nuraini.kkfa@gmail.com Abstract TiO 2 Anatase activities should be increased from the UV to the visible light photocatalytic activity of TiO 2 to increase anatas. One efforts to optimize TiO 2 anatase activity is doping by using dopant vanadium(v). Synthesis method which is used in this research is a solid reaction method. The steps being taken in this methods include grinding and heating at high temperatures. Dopant concentrations of vanadium(v) which are used in the research was 0.3%, 0.5% and 0.7%. and the characterization used is X-ray diffraction and UV-Vis Diffuse Reflectance Spectroscopy. The result shows that there are a changing of particle size, band gap energy, and absorption of TiO 2 anatas wavelength because of dopan vanadium(v) addition. While TiO 2 s structure does not change. The crystal sizes of each TiO 2 without doping, V-TiO 2 0,3%, 0,5% and 0,7% are 53.21 nm, 47.67 nm, 79.65 nm dan 68.99 nm. Band gap energy of each TiO 2 without doping, V-TiO 2 0,3%, 0,5% dan 0,7% are 3.309 ev, 3.279 ev, 3.270 ev and 3.259 ev. While wavelength absorption of each TiO 2 without doping, V-TiO 2 0,3%, 0,5% and 0,7% are 374.9 nm, 378.4 nm, 379.5 nm and 380.8 nm. Keywords: Synthesis, titanium dioxide, vanadium(v), solid state method Abstrak Aktifitas TiO 2 anatas perlu ditingkatkan dari daerah sinar UV ke daerah sinar tampak untuk meningkatkan aktifitas fotokatalis TiO 2 anatas. Salah satu upaya untuk meningkatkan aktifitas fotokatalis TiO 2 anatas tersebut adalah dengan doping mengunakan dopan vanadium(v). Penelitian ini bertujuan untuk mengetahui pengaruh penambahan dopan vanadium(v) terhadap struktur, ukuran kristal, energi band gap dan serapan panjang gelombang TiO 2 Anatas. Metode sintesis yang digunakan dalam penelitian ini adalah metode reaksi padatan. Tahapan yang dilakukan dalam metode meliputi penggerusan dan pemanasan pada suhu tinggi. Konsentrasi dopan vanadium(v) yang digunakan dalam penelitian adalah 0,3%, 0,5% dan 0,7% dan karakterisasi yang digunakan adalah difraksi sinar-x dan UV-Vis diffuse reflectance spectroscopy. Hasil dari penelitian ini menunjukkan bahwa terjadi perubahan terhadap ukuran kristal, energi band gap dan serapan panjang gelombang TiO 2 anatas akibat penambaan dopan vanadium(v). Sedangkan struktur TiO 2 anatas tidak mengalami perubahan. Ukuran kristal masing-masing TiO 2 tanpa doping, V-TiO 2 0,3%, 0,5% dan 0,7% adalah sebesar 53.21 nm, 47,67 nm, 79,65 nm dan 68,99 nm. Energi band gap masing-masing TiO 2 tanpa doping, V-TiO 2 0,3%, 0,5% dan 0,7% adalah 3,309 ev, 3,279 ev, 3,270 ev dam 3,259 ev. Sedangkan serapan panjang gelombang masing TiO 2 tanpa doping, V-TiO 2 0,3%, 0,5% dan 0,7% adalah 374,9 nm, 378,4 nm, 379,5 nm dan 380,8 nm. Kata kunci: Sintesis, titanium dioksida, vanadium(v), metode reaksi padatan I. PENDAHULUAN Kerusakan lingkungan dapat diakibatkan dari buangan limbah organik. Salah satu metode pengolahan limbah organik adalah dengan menggunakan metode fotokatalis TiO 2 anatas. Namun, penggunaan TiO 2 anatas sebagai fotokatalis kurang optimal, sebab TiO 2 anatas memiliki energi band gap sebesar 3,2 ev sehingga hanya aktif pada daerah sinar UV (Wu dan Chen 2004). Oleh sebab itu, aktivitas fotokatalis TiO 2 anatas perlu ditingkatkan dari daerah sinar UV ke daerah sinar tampak. Menurut Choi dkk (2009), cara terbaik untuk meningkatkan aktivitas fotokatalis TiO 2 anatas yaitu dengan doping menggunakan ion logam. Beberapa dopan (pengotor) ion logam yang berpotensi meningkatkan aktivitas 44

fotokatalis TiO 2 anatas antara lain vanadium, kromium, nikel dan platinum. Choi dkk (2009) melaporkan TiO 2 anatas menggunakan doping V 3+ sebesar 0,3% menunjukkan serapan yang paling tajam dibandingkan dengan Cr 3+, Ni 2+ dan Pt 2+ yaitu pada daerah 700 nm. Penelitian ini menggunakan gunakan ion dopan V 5+ dengan konsentrasi 0,3%, 0,5% dan 0,7%. Metode sintesis yang digunakan adalah metode reaksi padatan. Metode ini memiliki beberapa kelebihan diantaranya sederhana, fleksible (Dony dkk, 2013), tidak meninggalkan residu (Bulushev dkk, 2000), menghasilkan produk yang melimpah dan kristalinitas yang tinggi (Idayati dkk, 2008). Selain itu, metode ini memiliki kontrol kemurnian fasa yang baik. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan dopan V 5+ terhadap perubahan struktur, ukuran kristal TiO 2 anatas energi band gap dan perubahan serapan panjang gelombang TiO 2 anatas. TiO 2 anatas sebelum dan sesudah terdoping V 5+ dikarakterisasi dengan Difraksi Sinar-X (XRD) dan UV-Vvis diffuse reflectance spectroscopy (DRS). XRD digunakan untuk mengetahui struktur kristal dan ukuran TiO 2 anatas sebelum dan sesudah terdoping V 5+. Sedangkan UV-Vis DRS digunakan untuk mengetahui energi band gap dan serapan panjang gelombang TiO 2 anatas TiO 2 anatas sebelum dan sesudah terdoping V 5+ terhadap cahaya. II. METODE PENELITIAN Pelaksanaan Penelitian Penelitian dilaksanakan di Jurusan Kimia Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Alat dan Bahan Alat yang digunakan dalam penelitian ini antara lain seperangkat krus, mortar agate, furnace, difraksi sinar x powder dan UV-Vis diffuse reflectance spectroscopy. Bahan-bahan yang digunakan adalah TiO 2 anatas, dan V 2 O 5. Prosedur Penelitian Preparasi Sampel Disintesis TiO 2 terdoping vanadium(v) sebesar 0,3% sebanyak 2 gram. Dilakukan dengan cara ditimbang vanadium(v) sebanyak 0,0068 gram dan TiO 2 anatas (Sigma Aldrich 99% anatase) sebanyak 1,993 gram. Lalu dicampurkan pada mortar agate. Campuran kemudian digerus selama kurang lebih 5 jam untuk mendapatkan campuran yang homogen. Campuran homogen selanjutnya di press dalam bentuk pelet untuk meningkatkan kontak antar partikel yang lebih baik. Pelet disintering dalam furnace dengan suhu 500 C selama 5 jam. Kemudian, sampel digerus kembali selama 5 jam, dipelet dan dipanaskan kembali di dalam furnace pada suhu 500 ºC selama 5 jam. Hal ini dilakukan untuk mengoptimalkan reaksi antar padatan. Langkah-langkah ini dilakukan kembali untuk sintesis TiO 2 anatas dengan dopan vanadium(v) sebesar 0,5% dan 0,7%. Karakterisasi Struktur dan ukuran kristal TiO 2 Karakterisasi struktur material TiO 2 anatas dan TiO 2 anatas yang telah didoping dengan logam vanadium(v) pada berbagai variasi konsentrasi di ukur dengan difraksi sinar-x bubuk. Analisis XRD menggunakan sumber sinar Cu-Kα 1,54 Å. Difraktogram yang diperoleh kemudian di bandingkan dengan standar ICSD 202243 menggunakan progam winplotr. Setelah itu, dilakukan proses refinement menggunakan progam rietica untuk mendapatkan data kristalografi dari material baru yang dihasilkan dan dari data XRD akan didapatkan ukuran partikel TiO 2. 45

Karakterisasi Energi Band Gap dan Absorpsi Cahaya TiO 2 Penentuan energi band gap dan absorpsi cahaya digunakan untuk mengetahui serapan cahata di daerah visible dan energi band gap TiO 2 anatas terdoping vanadium(v) pada berbagai variasi konsentrasi. Penentuan energi band gap dan absorpsi cahaya TiO 2 anatas terdoping vanadium(v) menggunakan UV- Vis diffuse reflectance spectroscopy. III. HASIL DAN PEMBAHASAN Karakterisasi dengan XRD Karakterisasi struktur TiO 2 tanpa doping dilakukan dengan membandingkan difaktogram TiO 2 tanpa doping dengan ICSD (Inorganics Crystal Structure Database) 202243 TiO 2 anatas menggunakan bantuan progam Winplotr. Gambar 3.1 menunjukkan Pola difraksi TiO 2 tanpa doping identik dengan pola difraksi ICSD 202243 dan tidak terdapat fasa rutil. Hal ini menunujukkan bahwa TiO 2 tanpa doping memiliki struktur yang sama dengan ICSD 202243, yaitu anatas. fasa rutil. Penambahan dopan vanadium(v) mengakibatkan intensitas difaktogram TiO 2 menurun dan posisi 2θ peak TiO 2 berubah. Secara umum, pergeseran posisi peak TiO 2 memiliki pola yang sama, yaitu bergeser kearah kiri. Pergeseran panjang gelombang dan kesamaan pola difraksi dengan TiO 2 tanpa doping serta tidak terdapatnya fasa lain mengindikasikan bahwa vanadium(v) masuk kedalam kisi kristal TiO 2 (Choi dkk, 2009). Menurut Choi dkk (2010), penurunan intensitas difaktogram menunjukkan derajat kristalinitas yang lebih rendah dengan lebih banyak cacat. Kenaikan konsentrasi dopan akan membuat intensitas difraksi semakin menurun (Lestari, 2012). Gambar 2. Difaktogram hasil refinement dengan progam rietica Gambar 1. Perbandingan difaktogram V 2 O 3, TiO 2 tanpa doping dan V-TiO 2 (0,3%, 0,5% dan 0,7%) Pada Gambar 1. menunjukkan penambahan vanadium(v) tidak mengakibatkan perubahan pola difraksi TiO 2 dan tidak ditemukan peak V 2 O 5 serta 46 Pada Gambar 2. menunjukkan difaktogram hasil refinement dengan rietica. Hasil refinement TiO 2 tanpa doping, V-TiO 2 0,3%, 0,5% dan 0,7% berturut-turut memiliki nilai rp sebesar 12,40 %, 12,27 %, 12,94 % dan 14,42% serta nilai rwp sebesar 8,51 %, 9,12 %, 11,97 % dan 12,43%. Menurut Timuda (2010) hasil ini dapat diterima karena memiliki Rp dan RWP dibawah 20%. TiO 2 tanpa doping V-TiO 2 0,3%, 0,5% dan 0,7% memiliki struktur tetragonal dengan space group: I4 1 /a m d z.

Tabel 1. Ukuran kristal TiO 2 dan V-TiO 2 Nama Ukuran Kristal TiO 2 (Satuan 53.21 V-TiO 2 (0,3%) 47.67 V-TiO 2 (0,5%) 79.65 V-TiO 2 (0,7%) 68.99 Tabel 1. menunjukkan ukuran kristal masing-masing sampel hasil perhitungan menggunakan persamaan Debye-Scherer. Penambahan dopan vanadium(v) sebesar 0,3% menjadikan ukuran TiO 2 lebih kecil, yaitu dari 53,21 nm menjadi 47,67. Namun, penambahan dopan vanadium sebesar 0,5% dan 0,7% membuat ukuran kristal TiO 2 menjadi semakin besar. Ukuran kristal dengan dopan vanadium(v) 0,5% lebih besar dibandingkan dengan dopan vanadium(v) 0,7% yaitu sebesar 79,65 nm berbanding 68,99 nm. Hal ini bersesuaian dengan data XRD dimana pada konsentrasi 0,5% dan 0,7% terjadi pelebaran pita atau broadening peak. Hal ini disebabkan oleh ketidakteraturan susunan atom (Sugondo dan Futichah, 2005) akibat banyaknya cacat. Hasil Karakterisasi dengan UV-Vis DRS Karakterisasi dengan UV-Vis DRS digunakan untuk mengukur besarnya energi band gap TiO 2 yang telah didoping. Energi band gap merupakan energi celah pita antara pita valensi dengan pita konduksi. Harga band gap sangat penting karena berpengaruh terhadap kinerja semikondutor dalam mengalirkan elektron dan hole (Lestari dkk, 2012). Selain itu, perbedaaan energi band gap juga akan berpengaruh terhadap energi foton atau cahaya yang dibutuhkan (Gunlazuardi 2001 dalam Marlupi 2001). Energi band gap kecil akan membutuhkan energi cahaya yang kecil. Gambar 3. Hubungan konsentrasi vanadium(v) dengan energi band gap Gambar 3. menunjukan hubungan konsentrasi vanadium(v) dengan energi Band Gap. Penambahan dopan vanadium(v) sebesar 0,3% mengakibatkan penurunan energi band gap TiO 2 dari 3,309 ev menjadi 3,29 ev. Kemudian penambahan vanadium(v) sebesar 0,5% dan 0,7% mengakibatkan penurunan energi band gap menjadi 3,270 ev dan 3,259 ev. Dari hasil ini dapat disimpulkan bahwa penambahan dopan vanadium(v) sebesar 0,3%, 0,5% dan 0,7% dapat menurunkan energi band gap TiO 2, sehingga energi band gap semakin kecil. Gambar 4. menunjukkan pergeseran serapan TiO 2 seiring dengan penambahan dopan vanadium(v). Penambahan vanadium(v) sebesar 0,3% meningkatkan serapam TiO 2 dari 374,9 nm menjadi 378,4 nm. Sedangkan penambahan dopan vanadium(v) sebesar 0,5% dan 0,7% mampu meningkatkan serapan TiO 2 menjadi 379,5 nm dan 380,8 nm. Dari hasil ini dapat disimpulkan bahwa penambahan dopan vanadium(v) sebesar 0,3%, 0,5% dan 0,7% dapat meningkatkan serapan panjang gelombang TiO 2. 47

Gambar 4. Hubungan konsentrasi vanadium(v) dengan energi serapan panjang gelombang TiO 2. IV. KESIMPULAN Penambahan dopan vanadium(v) terhadap TiO 2 anatas sebesar 0,3%, 0,5% dan 0,7% tidak merubah struktur TiO 2 anatas. Sedangkan penambahan dopan vanadium(v) mengakibatkan perubahan ukuran partikel TiO 2. Secara berturut-turut besar ukuran TiO 2 adalah V-TiO 2 0,5% > V-TiO 2 0,7% > TiO 2 tanpa doping > V- TiO 2. Penambahan dopan vanadium mengakibatkan perubahan energi band gap TiO 2 anatas dan serapan panjang gelombang TiO 2 anatas. Semakin besar penambahan dopan vanadium(v) mengakibatkan energi band gap semakin kecil, sedangkan serapan panjang gelombang TiO 2 anatas semakin besar. V. DAFTAR PUSTAKA Bulushev, D. A., Lioubov, K.M., Vladimir I.Z., dan Albert, R. 2000. Formation of Sugondo dan Futichah. 2005. Karakterisasi Ukuran Kristalit, Regangan Mikro dan Kekuatan Luluh Zr1%Sn1%Nb1%Fe dengan Difraksi Sinar-X. Jurnal Sains Materi Indonesia. Vol. 6. No. 2. Hal. 18-23. Timuda, G.E. 2010. Pengaruh Ketebalan terhadap Sifat Optik Lapisan 48 Active Sites for Selective Toluene Oxidation during catalyst Synthesis via Solid-State Reaction of V 2 O 5 with TiO 2. Journal of Catalysis 193, 145 153 (2000). Choi, J., Hyunwoong, P., dan Michael, R.H. 2009. Combinatorial Doping of TiO 2 with Platinum (Pt), Chromium (Cr), Vanadium(V) and Nickel (Ni) to Achieve Enhanced Photocatalytic Activity with Visible Ligh Irradation. J. Mater. Vol. 25., No. 1. Choi, J., Hyunwoong, P., dan Michael, R.H. 2010. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO 2. J. Phys. Chem. 114, 783 792. Dony, N., Hermansyah, A., dan Syukri. 2013. Studi Fotodegradasi Biru Metilen Dibawah Sinar Matahari Oleh ZnO-SnO2 yang Dibuat Dengan Metode Solid Reaction. Media Sains, Vol. 5, No. 1. ISSN 2085-3548. Idayati, E. dan Hamzah. F 2008. Perbandingan Hasil Sintesis Oksida Perovskit La 1-x Sr x CoO 3-ƍ Dari Tiga Variasi Metode (Sol-Gel, Solid-State, Kopresipitasi). Surabaya: Jurusan Kimia FMIPA ITS. Lestari, D., Wisnu, S., Eko, B.S. 2012. Preparasi Nanokomposit ZnO/TiO 2 Dengan Sonokimia serta Uji Aktivitasnya untuk Fotodegradasi Fenol. Indo. J. Chem. Sci. 1 (1). Marlupi, I. 2003. Desinfeksi Eschericia coli Melaluai Fotokatalis Titanium Dioksida (TiO 2 ) Bubuk Fase Rutil. Skripsi. Jurusan Fisika FMIPA ITB. Semikonduktor CuO 2 yang Dideposisikan dengan Metode Chemical Bath Deposition (CBD). Jurnal Ilmu Pengetahuan dan Teknologi TELAAH. Vol. 28. Hal. 1-5. Wu. J.C.S dan Chih-Hsien, C. 2004. A Visible Light Response Vanadium- Doped Titania nanocatalyst by Sol-Gel

Method. Journal of Photochemistry and Photobiology A: Chemistry 163 (509 515). 49