Bab IV. Hasil dan Pembahasan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab IV. Hasil dan Pembahasan"

Transkripsi

1 Bab IV. Hasil dan Pembahasan Bab ini memaparkan hasil sintesis, karakterisasi konduktivitas listrik dan struktur kirstal dari senyawa perovskit La 1-x Sr x FeO 3-δ (LSFO) dengan x = 0,2 ; 0,4 ; 0,5 ; 0,6 ; 0,8 dan La 1-x (Sr,Ca) x FeO 3-δ (LSCFO) dengan x = 0,1 ; 0,3 ; 0,5. Karakterisasi untuk menentukan struktur kristal dilakukan pengukuran XRD dengan alat X-ray diffractometer dan hasilnya di-refine dengan menggunakan metode Le Bail melalui program Rietica. Selain pengukuran difraksi sinar-x, karakterisasi juga dilakukan dengan menggunakan SEM untuk melihat morfologi permukaan LSFO dan LSCFO yang dilengkapi dengan EDX untuk mengetahui komposisi unsurunsur dalam senyawa. Kemudian akhir dari karakterisasi dilakukan pengukuran konduktivitas listrik dengan menggunakan metode 4 titik (four point probes method). IV.1 Hasil Sintesis dan Penentuan Struktur Senyawa Sintesis dari senyawa perovskit LSFO dan LSCFO telah dilakukan dengan menggunakan metode sol gel. Adapun komposisi awal berdasarkan perhitungan komposisi pereaksi-pereaksinya dapat dilihat pada tabel IV. 1 di bawah ini. Tabel IV.1 Komposisi Awal Sintesis LSFO dan LSCFO Komposisi Awal Zat Simbol La 0,8 Sr 0,2 FeO 3-δ LSFO (1) La 0,6 Sr 0,4 FeO 3-δ LSFO (2) La 0,5 Sr 0,5 FeO 3-δ LSFO (3) La 0,4 Sr 0,6 FeO 3-δ LSFO (4) La 0,2 Sr 0,8 FeO 3-δ LSFO (5) La 0,9 Sr 0,1 Ca 0,1 FeO 3-δ LSCFO (6) La 0,7 Sr 0,3 Ca 0,3 FeO 3-δ LSCFO (7) La 0,5 Sr 0,5 Ca 0,5 FeO 3-δ LSCFO (8)

2 Sintesis pada senyawa LSFO dan LSCFO dilakukan dengan pemanasan pada suhu 500 o C selama 1 jam pada proses kalsinasi dan pada suhu 900 o C selama 24 jam dalam bentuk pelet pada proses sintering. Lalu dilakukan karakterisasi terhadap hasil sintesis melalui pengukuran sinar-x serbuk (XRD), pengukuran SEM yang dilengkapi dengan EDX dan pengukuran konduktivitas listrik melalui metode 4 titik (four point probes method). Senyawa perovskit LSFO dan LSCFO adalah turunan dari senyawa LaFeO 3 (lantanum ferit). Berdasarkan data Powder Diffraction File (PDF), LaFeO 3 mempunyai struktur kristal yang berbentuk ortorombik dengan panjang sumbu a = 5,557 Å, b = 5,565 Å, c = 7,854 Å dengan sudut α = β = γ = 90 o (PCPDFWIN, 1998). Adapun pola difraksi dari LaFeO 3 yang diperlihatkan di Gambar IV.1. Gambar IV. 1 Pola difraksi sinar-x pada struktur perovskit LaFeO 3 15). Adapun posisi puncak-puncak pada harga 2θ yang merupakan kekhasan dari struktur perovskit LaFeO 3 sekitar 22, 32, 39, 46, 52, 57, 67, dan 72 o. Gambar IV. 2, di bawah ini, memperlihatkan pola difraksi sinar-x untuk La 1- xsr x FeO 3-δ yang telah disintesis dengan komposisi x = 0,2; 0,4; 0,5; 0,6: 0,8 dan La 1-x (Sr,Ca) x FeO 3-δ dengan komposisi x = 0,1; 0,3 dan 0,5 sebelum dilakukan refinement.

3 Gambar IV.2 Pola difraksi sinar-x sebelum refinement dari La 1-x Sr x FeO 3-δ (atas) dan La 1-x (Sr,Ca) x FeO 3-δ (bawah). Dari pola difraksi LSFO yang telah diukur dengan XRD di atas memperlihatkan posisi-posisi 2θ yang menjadi ciri khas dari senyawa perovskit La 1-x Sr x FeO 3-δ dan La 1-x (Sr,Ca) x FeO 3-δ yaitu di sekitar 22, 32, 39, 46, 52, 57, 67, dan 72 o. Intensitas difraksi sinar-x tertinggi dari senyawa LSFO dan LSCFO pada setiap komposisi terletak pada posisi 2θ di sekitar 32 o. Kemudian dilakukan pengecekan pada data Powder Diffraction File (PDF) untuk melihat kecocokan antara pola difraksi dari data PDF dengan pola difraksi dari senyawa LSFO yang telah disintesis. Salah

4 satu data pola difraksi LSFO dengan harga x = 0,2 dari data PDF terdapat pada Gambar IV.3 berikut ini. GambarIV.3 Pola difraksi sinar-x pada senyawa perovskit La 0,8 Sr 0,2 FeO 3-δ dari data PCPDFWIN (PDF, ) Adapun posisi puncak-puncak pada harga 2θ yang merupakan kekhasan dari struktur perovskit La 1-x Sr x FeO 3-δ sekitar 22, 32, 39, 46, 52, 57, 67, dan 72 o. Dari puncak-puncak khas yang muncul pada harga 2θ untuk senyawa LSFO dan LSCFO menghasilkan puncak yang mirip dengan puncak-puncak yang dihasilkan oleh senyawa perovskit LaFeO 3 (LFO). Hal ini menunjukkan bahwa LSFO dan LSCFO adalah turunan dari senyawa perovskit LaFeO 3 yang disisipi dengan ion logam stronsium (Sr 2+ ) dan ion logam kalsium (Ca 2+ ). Hal ini menimbulkan cacat kristal akibat penyisipan ion Sr 2+ dan Ca 2+ pada posisi ion La 3+ yang menyebabkan terjadinya kekosongan atau interstisi pada senyawa LSFO dan LSCFO. Terhadap data yang diperoleh dari hasil difraksi sinar-x, kemudian dilakukan refinement dengan menggunakan metode Le Bail melalui program Rietica. Program Rietica ini akan memberikan nilai R p (%) dan R wp (%) yang menunjukkan kesesuaian pola difraksi hasil kalkulasi dengan pola difraksi hasil pengukuran. Nilai yang diterima dari R p (%) dan R wp (%) pada proses refinement adalah 10% 16). Selain itu, melalui hasil refinement dapat menentukan puncakpuncak pengotor dari senyawa yang telah disintesis. Berikut ini pola difraksi

5 sinar-x dari hasil refinement senyawa La 1-x Sr x FeO 3-δ dengan harga x = 0,2 dan 0,4 yang terdapat pada Gambar IV.4. a b Gambar IV. 4 Plot Le Bail untuk La 0,8 Sr 0,2 FeO 3-δ (a) dan La 0,6 Sr 0,4 FeO 3-δ (b). Tanda berwarna hitam merupakan data pengamatan hasil difraksi sinar-x, garis merah adalah hasil kalkulasi, garis vertikal berwarna biru adalah posisi Bragg yang diharapkan, garis hijau adalah perbedaan antara hasil kalkulasi dan data hasil pengamatan difraksi sinar-x (perbedaan antara tanda berwarna hitam dengan garis merah).

6 Hasil refinement dari data difraksi sinar-x untuk La 0,8 Sr 0,2 FeO 3-δ pada rentang 2θ antara o menunjukkan bahwa kristal memiliki sistem berupa ortorombik dengan grup ruang Pbnm dengan Z = 4, parameter sel masing-masing adalah a = 5,575(2) Å, b = 5,559(1) Å, c = 7,8502(8) Å, dan V = 243,3(1) Å 3 dengan nilai R p (%) = 2,96 dan R wp (%) = 3,22. Dari harga R p dan R wp yang kurang dari 10 % menunjukkan adanya kecocokan struktur antara data hasil pengamatan sinar-x dengan hasil kalkulasi. Berdasarkan data PDF, senyawa La 0,8 Sr 0,2 FeO 3-δ masih terdapat pengotor yaitu puncak 2θ disekitar 44 o berupa senyawa La 4 Sr 3 O 15) 9. Parameter sel untuk La 0,6 Sr 0,4 FeO 3-δ dari hasil refinement terhadap pola difraksi sinar-x pada rentang 2θ antara o menunjukkan bahwa kristal memiliki sistem kristal rombohedral dengan grup ruang R3c dan nilai Z = 6, menunjukkan harga a = 5,537(2) Å, b = 5,537(2) Å, c = 5,537(2) Å dan V = 360,3(3) Å 3. Nilai dari R p (%) dan R wp (%) adalah 2,86 dan 3,46. Dari harga R p dan R wp yang kurang dari 10% menunjukkan adanya kecocokan struktur antara data hasil pengamatan sinar-x dengan hasil kalkulasi. Berdasarkan data PDF, senyawa La 0,6 Sr 0,4 FeO 3-δ masih terdapat pengotor yaitu puncak pada harga 2θ disekitar 44 o yaitu berupa La 4 Sr 3 O 15) 9. Parameter sel untuk senyawa LSFO (1), LSFO (2), LSFO (3), LSFO (4), LSFO (5) berdasarkan hasil refinement dari program Rietica dapat dilihat pada Tabel IV. 2. Pada gambar IV. 5 di bawah ini, memperlihatkan hasil refinement pola difraksi sinar-x untuk LSFO dengan komposisi x = 0,5 ; 0,6 dan 0,8.

7 a b b c Gambar IV. 5 Plot Le Bail untuk La 0,5 Sr 0,5 FeO 3-δ (a), La 0,4 Sr 0,6 FeO 3-δ (b) dan La 0,2 Sr 0,8 FeO 3-δ (c). Keterangan garis dapat dilihat pada keterangan Gambar IV.4.

8 Tabel IV. 2 Parameter sel dari La 1-x Sr, x FeO 3-δ Parameter Sel LSFO (1) (x = 0,2) LSFO (2) (x = 0,4) LSFO (3) (x = 0,5) LSFO (4) (x = 0,6) LSFO (5) (x = 0,8) Sistem Kristal Ortorombik Rombohedral Rombohedral Rombohedral Rombohedral Grup Ruang Pbnm R3c R3c R3c R3c a (Ǻ) 5,575(2) 5,537(2) 5,497(1) 5,477(1) 5,4388(8) b (Ǻ) 5,559(1) 5,537(2) 5,497(1) 5,477(1) 5,4388(8) c (Ǻ) 7,8502(8) 13,567(9) 13,517(5) 13,471(5) 13,389(3) V (Ǻ 3 ) 243,3(1) 360,3(3) 353,7(1) 350,0(1) 343,0(1) R p (%) 2,96 2,86 2,16 2,97 2,71 R wp (%) 3,22 3,46 2,60 3,16 4,70 Z Dari Tabel IV.2 di atas, senyawa perovskit LSFO (2), LSFO (3), LSFO (4) dan LSFO (5) menunjukkan bahwa kristal-kristal tersebut memiliki sistem kristal yang sama yaitu rombohedral dengan grup ruangnya adalah R3c. Senyawa perovskit untuk LSFO (5) menunjukkan nilai parameter a, b dan c lebih kecil dibandingkan dengan senyawa perovskit LSFO (4), LSFO (3) dan LSFO (2), sehingga volume ruang untuk senyawa perovskit LSFO (5) lebih kecil dibandingkan dengan LSFO (4), LSFO (3) dan LSFO (2). Hal ini disebabkan karena pengaruh komposisi dari interstisi (penyisipan) ion logam stronsium (Sr 2+ ) pada senyawa LSFO (5) lebih banyak dibandingkan dengan senyawa LSFO (4) dan LSFO (3). Menurut Striker dkk, dengan meningkatnya komposisi ion stronsium (Sr 2+ ) pada senyawa perovskit akan memperkecil volume selnya 17). Dari faktor komposisi dari Sr akan mempengaruhi nilai parameter sel a, b dan c adalah yang menyebabkan terjadinya defesiensi oksigen. Hal ini dapat dijelaskan, bahwa semakin banyak komposisi Sr yang ditambahkan pada senyawa LSFO maka semakin besar pula parameter

9 stoikiometri oksigen (δ) karena muatan kation Sr semakin besar. Dengan semakin besar nilai δ, maka semakin berkurang oksigen yang menyebabkan defesiensi oksigen semakin besar. Dengan defesiensi oksigen yang semakin besar mengakibatkan volume sel semakin kecil dengan bertambahnya komposisi Sr. Pada Gambar IV. 6 di bawah ini memperlihatkan grafik hubungan antara volume sel untuk senyawa LSFO (1), LSFO (2), LSFO (3), LSFO (4) dan LSFO (5) dengan seiring dengan bertambahnya nilai (x) Volume sel (A 3 ) ,2 0,4 0,5 0,6 0,8 komposisi x Gambar IV.6 Grafik volume sel senyawa LSFO 1 (x = 0,2), LSFO 2 (x = 0,4), LSFO 3 (x = 0,5), LSFO 4 (x = 0,6) dan LSFO 5 (x = 0,8) terhadap bertambahnya nilai (x). Dari Tabel IV.2 memperlihatkan nilai R p dan R wp dari senyawa perovskit LSFO (3), LSFO (4) dan LSFO (5) <10% dengan masing-masing nilai Z = 6. Hal ini berarti senyawa-senyawa perovskit tersebut yang telah disintesis, menunjukkan kecocokan struktur antara data hasil pengamatan sinar-x dengan hasil kalkulasi. Pada hasil refinement terhadap senyawa-senyawa perovskit tersebut masih mengandung zat pengotor dengan intensitas yang relatif kecil. Adapun zat pengotor yang terdapat pada senyawa perovskit LSFO (1), LSFO (2), LSFO (3), LSFO (4) dan LSFO (5) terdapat pada Tabel IV.3 berikut ini.

10 Tabel IV. 3 Zat Pengotor pada Senyawa Hasil Sintesis La 1-x Sr x FeO 3-δ Senyawa Hasil Sintesis Zat Pengotor Daerah 2Ө LSFO 1 (x = 0,2) La 4 Sr 3 O 9 44 o LSFO 2 (x = 0,4) La 4 Sr 3 O 9 44 o LSFO 3 (x = 0,5) La 4 Sr 3 O 9 44 o LSFO 4 (x = 0,6) La 2 Sr 2 O 5 La 4 Sr 3 O 9 Fe 2 O 3 38 o 44 o 64 o LSFO 5 (x = 0,8) La 4 Sr 3 O 9 La 2 Sr 2 O 5 Fe 2 O 3 42, 44 o 67 o 78 o Pada Tabel IV.3 menunjukkan bahwa zat pengotor yang terdapat pada senyawa LSFO adalah berupa La 4 Sr 3 O 9, La 2 Sr 2 O 5, dan Fe 2 O 3. Hal ini menunjukkan bahwa zat-zat pengotor tersebut adalah logis karena mengandung unsur-unsur yang terdapat pada senyawa LSFO. Setelah melakukan refinement pada senyawa LSFO, kemudian dilakukan refinement pada senyawa LSCFO dengan x = 0,1; 0,3 dan 0,5 (Gambar IV.7). Dari hasil refinement yang telah dilakukan, kemudian ditentukan parameter selnya untuk mengetahui nilai a, b, c, Z, R p dan R wp, sistem kristal dan grup ruang serta nilai volume sel dari senyawa LSCFO dengan berbagai konsentrasi yang terdapat pada Tabel IV.4.

11 a b c Gambar IV.7 Plot Le Bail LSCFO 6 (a), LSCFO 7 (b), dan LSCFO 8 (c). Keterangan garis dapat dilihat pada keterangan Gambar IV. 4.

12 Tabel IV. 4 Parameter Sel dari La 1-x (Sr,Ca) x FeO 3-δ Parameter Sel LSCFO (6) (x = 0,1) LSCFO (7) (x = 0,3) LSCFO (8) (x = 0,5) Sistem Kristal Ortorombik Ortorombik Ortorombik Grup Ruang Pbnm Pbnm Pbnm a (Ǻ) 5,5517(2) 5,5084(8) 5,463(2) b (Ǻ) 5,5226(1) 5,513(3) 5,492(1) c (Ǻ) 7,7893(5) 7,795(2) 7,803(1) V (Ǻ 3 ) 238,82(2) 236,7(1) 234,1(1) R p (%) 2,35 2,67 2,19 R wp (%) 3,07 4,25 3,06 Z Pada Tabel IV. 4, senyawa LSCFO (6), LSCFO (7) dan LSCFO (8) menunjukkan tidak ada perubahan sistem kristal yaitu berupa ortorombik dengan grup ruangnya adalah Pbnm. Sistem kristal yang dimiliki oleh senyawa perovskit LSCFO ini sama halnya dengan sistem kristal yang dimiliki oleh senyawa perovskit LaFeO 3 (lantanum ferit). Jika dilihat dari nilai parameter sel a, b, dan c, volume sel senyawa LSCFO (3), LSCFO (4) dan LSCFO (5) mengalami pengurangan seiring dengan bertambahnya komposisi x yang berupa ion logam stronsium (Sr 2+ ) dan kalsium (Ca 2+ ). Hal ini sama halnya dengan senyawa LSFO, volume sel semakin kecil dengan bertambahnya nilai x, kemungkinan disebabkan adanya defisiensi pada oksigen yang kekurangan elektron. Defiesiensi ini kemungkinan disebabkan adanya komposisi dari Sr dan Ca yang semakin bertambah yang menyebabkan parameter stoikiometri oksigen (δ) semakin besar sehingga mengakibatkan muatan kation semakin besar pula. Dengan semakin besar nilai δ, maka semakin banyak berkurangnya oksigen yang menyebabkan terjadinya defesiensi oksigen semakin besar. Hal ini yang membuat volume sel pada LSCFO semakin kecil seiring dengan bertambahnya nilai x. Pada Gambar IV.8 berikut ini, memperlihatkan pengaruh bertambahnya nilai x terhadap volume sel dari senyawa LSCFO.

13 volume sel (A 3 ) ,1 0,3 0,5 komposisi x Gambar IV. 8 Grafik volume sel senyawa LSCFO 6 (x = 0,1), LSCFO 7 (x = 0,3) dan LSCFO 8 (x = 0,5) terhadap komposisi ion stronsium dan kalsium (x). Dengan meningkatnya komposisi x menyebabkan volume sel semakin kecil. Pada hasil refinement dari senyawa LSCFO dengan berbagai komposisi, diperoleh harga R p (%) dan R wp (%) < 10% dengan masing-masing Z = 4. Hal ini menunjukkan kecocokan struktur antara data hasil pengamatan difraksi sinar-x dengan hasil kalkulasi. Dari hasil refinement ini juga dapat diidentifikasi zat pengotor yang terdapat pada senyawa LSCFO. Pada Tabel IV. 5 berikut ini memperlihatkan beberapa zat pengotor yang terdapat pada senyawa LSCFO. Tabel IV.5 Zat pengotor pada Senyawa Hasil Sintesis La 1-x (Sr,Ca) x FeO 3-δ Senyawa Hasil Sintesis Zat Pengotor Daerah 2Ө LSCFO 6 (x = 0,1) La 4 Sr 3 O 9 31 o Fe 2 O 3 24 o LSCFO 7 (x = 0,3) La 4 Sr 3 O 9 31, 42, 44 o Fe 3 O 4 53 o CaO 37 o LSCFO 8 (x = 0,5) La 4 Sr 3 O 9 31, 42, 44 o CaO 37 o

14 IV.2 Hasil Analisis SEM/EDX Pengamatan bentuk morfologi dan analisa komposisi unsur dalam senyawa yang disintesis dilakukan dengan Scanning Electron Microscope (SEM) yang dilengkapi dengan Energy Dispersive X-Ray Spectroscopy (EDX). Adapun hasil SEM seperti pada Gambar IV. 9 di bawah ini. (a) (b) (c) (d) (e) (f) Gambar IV.9 Gambar SEM dari a) LSFO (1), b) LSFO (3), c) LSFO (5), d) LSCFO (6), e) LSCFO (7), dan f) LSCFO (8) dengan perbesaran X.

15 Dari gambar SEM terlihat semua senyawa LSFO dan LSCFO memiliki morfologi kristal yang sangat berbeda. Pada senyawa LSFO (5) dengan x = 0,8 memiliki morfologi kristal yang lebih homogen daripada senyawa LSFO (1) dengan x = 0,1 dan LSFO (3) dengan x = 0,5. Morfologi kristal dari LSFO (5) dengan x = 0,8 lebih homogen karena ukuran kristal yang hampir sama dan merata serta penambahan komposisi ion Sr 2+ yang semakin besar. Pada senyawa LSCFO, yang memiliki morfologi kristal yang lebih homogen adalah senyawa LSCFO (8) dengan x = 0,5 daripada LSCFO (7) dengan x = 0,3 dan LSCFO (6) dengan x = 0,1. Hal ini disebabkan karena penambahan komposisi ion Sr 2+ dan Ca 2+ yang semakin besar. Bila dibandingkan ukuran butiran antara senyawa LSFO dan LSCFO, maka ukuran butiran LSCFO lebih kecil daripada LSFO seiring dengan penambahan komposisi ion Sr 2+ dan Ca 2+. Untuk mengetahui penambahan komposisi unsur stronsium (Sr) dalam senyawa LSFO dan komposisi unsur stronsium (Sr), kalsium (Ca) pada senyawa LSCFO, diperoleh dari data EDX. Pada Tabel IV.6 memperlihatkan perbandingan komposisi massa unsur-unsur dalam senyawa LSFO dan LSCFO berdasarkan kalkulasi dan pengukuran EDX. Data EDX menunjukkan terjadinya kenaikan % massa unsur Sr pada senyawa LSFO dan % massa unsur Sr dan Ca pada senyawa LSCFO setelah penyisipan serta berkurangnya % massa unsur La baik pada senyawa LSFO dan LSCFO. Terjadi perbedaan % massa dari data pengamatan dan data perhitungan, hal ini diperkirakan karena adanya error pada alat yang digunakan saat melakukan pengukuran. Bila dilihat dari perbandingan komposisi Sr sebagai dopan antara % massa kalkulasi pada senyawa LSFO dengan % massa pengukuran memiliki perbedaan yang relatif kecil. Hal ini berarti, komposisi Sr dalam LSFO belum disisipi semua pada posisi La. Hal ini disebabkan kemungkinan komposisi Sr yang tidak tersisipi karena terbentuknya zat pengotor. Jadi massa unsur La, Sr dan Fe yang tidak sesuai dengan massa kalkulasi disebabkan mengalami dekomposisi membentuk zat lain yaitu zat pengotor. Untuk data EDX LSCFO, menunjukkan perbedaaan yang cukup besar antara % massa kalkulasi dengan % massa perhitungan terutama pada Sr dan Ca sebagai dopan dengan x = 0,1 dan 0,3. Hal

16 ini kemungkinan massa Sr dan Ca yang tidak tersisipi dalam senyawa LSCFO mengalami dekomposisi membentuk zat lain yaitu berupa zat pengotor. Tabel IV.6 Perbandingan komposisi massa unsur-unsur dalam senyawa La 1-x Sr x FeO 3-δ dan La 1-x (Sr,Ca) x FeO 3-δ berdasarkan kalkulasi dan pengukuran EDX. Senyawa LSFO 1(x = 0,2) LSFO 3 (x = 0,5) LSFO 5 (x = 0,8) LSCFO 6 (x = 0,1) LSCFO 7 (x = 0,3) LSCFO 8 (x= 0,5) Unsur La Sr Fe La Sr Fe La Sr Fe La Sr Ca Fe La Sr Ca Fe La Sr Ca Fe Massa Kalkulasi (%) 47,83 7,53 24,02 29,89 18,84 24,02 11,95 30,14 24,02 51,74 3,63 1,66 23,11 39,09 11,26 5,15 23,11 29,28 18,47 8,45 23,11 Massa Pengukuran (%) 52,73 5,21 24,87 35,49 18,31 28,54 15,57 33,92 32,36 56,01 2,51 0,84 23,45 42,53 9,64 3,94 25,71 31,99 15,45 8,12 25,54 Error (%) 0,60 0,48 0,45 0,82 0,59 0,59 0,98 0,61 0,68 0,74 0,60 0,26 0,56 1,07 0,80 0,37 0,79 0,78 0,53 0,27 0,56 IV. 3 Hasil Pengukuran Konduktivitas Listrik Pengukuran konduktivitas listrik dilakukan dengan menggunakan metode 4 titik (four point probes method). Pengukuran dilakukan pada sampel dengan ketebalan sekitar 0,1 cm dengan jarak masing-masing elektroda sekitar 0,3-0,4 cm. Rentang suhu pengukuran dilakukan antara suhu o C. Dari data pengukuran, akan dilakukan plot antara suhu (K) dengan nilai konduktivitas (σ). Plot pengukuran

17 konduktivitas listrik pada senyawa LSFO dan LSCFO menghasilkan grafik seperti pada Gambar IV. 10 berikut ini. a b Gambar IV.10 Grafik konduktivitas listrik senyawa LSFO (a) dan LSCFO (b). Dari gambar IV.10 menunjukkan bahwa konduktivitas tertinggi pada senyawa LSFO dengan x = 0,2 dan LSCFO dengan x = 0,1. Jika dilihat dari nilai konduktivitas yang dihasilkan pada LSFO dan LSCFO menunjukkan nilai konduktivitasnya kecil dan dapat digolongkan bahwa senyawa LSFO ini dalam berbagai komposisi termasuk senyawa yang bersifat semikonduktor. Hal ini diketahui bahwa batas nilai konduktivitas untuk material semikonduktor adalah

18 S/cm 1). Untuk senyawa LSCFO dengan nilai x = 0,1 termasuk senyawa bersifat konduktor. Hal ini diketahui bahwa batas nilai konduktivitas untuk material bersifat konduktor adalah S/cm 1). Untuk senyawa LSCFO dengan x = 0,3 dengan nilai konduktivitasnya adalah 103,1207 S/cm termasuk senyawa yang bersifat semikonduktor sedangkan LSCFO dengan x = 0,5 memiliki nilai konduktivitas yang sangat kecil yaitu 3, S/cm menujukkan senyawa tersebut bersifat isolator. Material yang bersifat isolator apabila material memiliki batas nilai konduktivitas yaitu < S/cm 1). Pada gambar IV.10 menunjukkan bahwa nilai konduktivitas tertinggi baik senyawa LSFO maupun LSCFO terdapat pada temperatur tertinggi yaitu 638 K. Hal ini disebabkan karena konduktivitas terjadi hanya pada temperatur yang tinggi yang mengakibatkan konsentrasi cacat kristal menjadi semakin besar sehingga ion-ion oksida memiliki cukup energi termal untuk dapat berpindah/mengalami aktivasi. Nilai konduktivitas dan energi aktivasi dari LSFO dan LSCFO terdapat pada tabel IV.7 berikut ini. Tabel IV.7 Nilai konduktivitas dan energi aktivasi LSFO dan LSCFO Senyawa σ (S/cm) Ea (ev) La 0,8 Sr 0,2 FeO 3-δ 54,872 0, La 0,6 Sr 0,4 FeO 3-δ 6,0964 0, La 0,5 Sr 0,5 FeO 3-δ 0,0203 0, La 0,4 Sr 0,6 FeO 3-δ 5,2640 0, La 0,2 Sr 0,8 FeO 3-δ 0,9335 0, La 0,9 Sr 0,1 Ca 0,1 FeO 3-δ 5721,0063 1, La 0,7 Sr 0,3 Ca 0,3 FeO 3-δ 103,1207 1, La 0,5 Sr 0,5 Ca 0,5 FeO 3-δ 3, , Pada Tabel IV.7 menunjukkan nilai konduktivitas yang tertinggi dari kedua senyawa adalah LSCFO dengan x = 0,1. Dengan nilai konduktivitas yang tinggi akan memiliki nilai energi aktivasi yang kecil sehingga ion-ion tersebut dalam senyawa dapat melakukan migrasi dengan mudah. Pada umumnya, dengan melakukan penyisipan (doping) dan bertambahnya komposisi dopan dalam suatu

19 senyawa diharapkan dapat meningkatkan konduktivitas. Hal ini dapat dilihat pada tabel IV.7, bahwa senyawa LSCFO yang disisipi dengan stronsium dan kalsium memiliki konduktivitas yang lebih tinggi daripada senyawa LSFO yang disisipi dengan stronsium saja. Pada penambahan komposisi dopan memperlihatkan nilai konduktivitas yang tidak sesuai dengan yang diharapkan. Untuk senyawa LSFO, diharapkan senyawa LSFO dengan x = 0,8 memiliki nilai konduktivitas tertinggi tetapi dalam hasil penelitian memperlihatkan nilai konduktivitas tertinggi terdapat pada senyawa LSFO dengan x = 0,2. Sedangkan senyawa LSCFO, diharapkan dengan x = 0,5 memiliki nilai konduktivitas tertinggi tetapi pada hasil penelitian menujukkan nilai konduktivitas tertinggi dengan x = 0,1. Hal ini disebabkan kemungkinan faktor dari defesiensi oksigen yang mengakibatkan muatan pada kationnya semakin besar. Faktor lain yang dapat mempengaruhi konduktivas adalah morfologi permukaan senyawa LSFO dan LSCFO. LSCFO dengan x = 0,1 memiliki nilai konduktivitas tertinggi karena memiliki morfologi yang cukup baik, karena jarak antara partikel-partikel sudah mengalami penyatuan (sintering). Sedangkan LSCFO memiliki konduktivitas yang sangat kecil karena memiliki rongga-rongga kosong antarpartikel. Hal ini sangat mempengaruhi nilai konduktivitasnya karena migrasi ion-ion yang terjadi akan semakin lambat sehingga diperlukan energi termal yang cukup besar untuk dapat berpindah/mengalami aktivasi.

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian III. 1. Tahap Penelitian Penelitian ini terbagai dalam empat tahapan kerja, yaitu: a. Tahapan kerja pertama adalah persiapan bahan dasar pembuatan LSFO dan LSCFO yang terdiri

Lebih terperinci

4 Hasil dan pembahasan

4 Hasil dan pembahasan 4 Hasil dan pembahasan Bab ini memaparkan hasil dari sintesis dan karakterisasi konduktivitas listrik dan struktur kirstal dari senyawa perovskit Sr 2 Mg 1-X Fe x MoO 6-δ dengan x = 0,2; 0,5; 0,8; dan

Lebih terperinci

ASPEK STRUKTUR DAN KONDUKTIVITAS La 1-x (Sr,Ca) x FeO 3-δ SEBAGAI BAHAN KATODA PADA SEL BAHAN BAKAR PADATAN TESIS

ASPEK STRUKTUR DAN KONDUKTIVITAS La 1-x (Sr,Ca) x FeO 3-δ SEBAGAI BAHAN KATODA PADA SEL BAHAN BAKAR PADATAN TESIS ASPEK STRUKTUR DAN KONDUKTIVITAS La 1-x (Sr,Ca) x FeO 3-δ SEBAGAI BAHAN KATODA PADA SEL BAHAN BAKAR PADATAN TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi

Lebih terperinci

Petunjuk Refinement. Analisis Pola Difraksi Sinar-X Serbuk Menggunakan Metode Le Bail Pada Program Rietica

Petunjuk Refinement. Analisis Pola Difraksi Sinar-X Serbuk Menggunakan Metode Le Bail Pada Program Rietica Petunjuk Refinement Analisis Pola Difraksi Sinar-X Serbuk Menggunakan Metode Le Bail Pada Program Rietica Rolan Rusli 19 Januari 2011 Kata Pengantar Puji Syukur Kehadirat Allah SWT, karena atas limpahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Penelitian ini berfokus pada sintesis senyawa perovskit yaitu La 1-x Sr x FeO 3-δ (LSFO) dan La 1-x (Sr,Ca) x FeO 3-δ (LSCFO) yang merupakan suatu oksida padat yang diharapkan dapat

Lebih terperinci

SEMINAR NASIONAL BASIC SCIENCE II

SEMINAR NASIONAL BASIC SCIENCE II ISBN : 978-602-97522-0-5 PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof.

Lebih terperinci

SINTESIS DAN KARAKTERISASI SENYAWA PEROVSKIT GANDA Sr 2 Mg 1-X Fe X MoO 6-δ SEBAGAI MATERIAL ANODA PADA SEL BAHAN BAKAR DENGAN METODA SOL-GEL

SINTESIS DAN KARAKTERISASI SENYAWA PEROVSKIT GANDA Sr 2 Mg 1-X Fe X MoO 6-δ SEBAGAI MATERIAL ANODA PADA SEL BAHAN BAKAR DENGAN METODA SOL-GEL SINTESIS DAN KARAKTERISASI SENYAWA PEROVSKIT GANDA Sr 2 Mg 1-X Fe X MoO 6-δ SEBAGAI MATERIAL ANODA PADA SEL BAHAN BAKAR DENGAN METODA SOL-GEL (Synthesis and Characterization Double Perovskit Compound Sr

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal 30 BAB IV HASIL DAN PEMBAHASAN 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal Hasil karakterisasi struktur kristal dengan menggunakan pola difraksi sinar- X (XRD) keramik komposit CS- sebelum reduksi

Lebih terperinci

3 Metodologi Penelitian

3 Metodologi Penelitian 3 Metodologi Penelitian 3.1 Lokasi Penelitian Penelitian dilakukan di Laboratorium Anorganik Program Studi Kimia ITB. Pembuatan pelet dilakukan di Laboratorium Kimia Organik dan di Laboratorium Kimia Fisik

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

I. PENDAHULUAN. oleh H.K Onnes pada tahun 1911 dengan mendinginkan merkuri (Hg) menggunakan helium cair pada temperatur 4,2 K (Darminto dkk, 1999).

I. PENDAHULUAN. oleh H.K Onnes pada tahun 1911 dengan mendinginkan merkuri (Hg) menggunakan helium cair pada temperatur 4,2 K (Darminto dkk, 1999). 1 I. PENDAHULUAN A. Latar Belakang Superkonduktor merupakan material yang dapat mengalirkan arus listrik tanpa adanya hambatan atau resistansi (ρ = 0), sehingga dapat menghantarkan arus listrik tanpa kehilangan

Lebih terperinci

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer. 10 dengan menggunakan kamera yang dihubungkan dengan komputer. HASIL DAN PEMBAHASAN Hasil sintesis paduan CoCrMo Pada proses preparasi telah dihasilkan empat sampel serbuk paduan CoCrMo dengan komposisi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. hal ini memiliki nilai konduktifitas yang memadai sebagai komponen sensor gas

BAB IV HASIL DAN PEMBAHASAN. hal ini memiliki nilai konduktifitas yang memadai sebagai komponen sensor gas 31 BAB IV HASIL DAN PEMBAHASAN Sintesis material konduktor ionik MZP, dilakukan pada kondisi optimum agar dihasilkan material konduktor ionik yang memiliki kinerja maksimal, dalam hal ini memiliki nilai

Lebih terperinci

Bab IV Hasil Dan Pembahasan

Bab IV Hasil Dan Pembahasan 33 Bab IV Hasil Dan Pembahasan Pada bagian ini dilaporkan hasil sintesis dan karakterisasi dari senyawa-senyawa yang disintesis. Sampel dipreparasi dengan menggunakan proses sonikasi pada campuran material-material

Lebih terperinci

Bab III Metoda Penelitian

Bab III Metoda Penelitian 28 Bab III Metoda Penelitian III.1 Lokasi Penelitian Sintesis senyawa target dilakukan di Laboratorium Kimia Anorganik dan Laboratorium Kimia Fisik-Material Departemen Kimia, Pengukuran fotoluminesens

Lebih terperinci

dengan panjang a. Ukuran kristal dapat ditentukan dengan menggunakan Persamaan Debye Scherrer. Dilanjutkan dengan sintering pada suhu

dengan panjang a. Ukuran kristal dapat ditentukan dengan menggunakan Persamaan Debye Scherrer. Dilanjutkan dengan sintering pada suhu 6 Dilanjutkan dengan sintering pada suhu 900⁰C dengan waktu penahanannya 5 jam. Timbang massa sampel setelah proses sintering, lalu sampel dikarakterisasi dengan menggunakan XRD dan FTIR. Metode wise drop

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Serbuk Awal Membran Keramik Material utama dalam penelitian ini adalah serbuk zirkonium silikat (ZrSiO 4 ) yang sudah ditapis dengan ayakan 400 mesh sehingga diharapkan

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi 19 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang dilakukan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi serbuk. 3.2

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BAB III METODOLOGI PENELITIAN Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BATAN Bandung meliputi beberapa tahap yaitu tahap preparasi serbuk, tahap sintesis dan tahap analisis. Meakanisme

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan

BAB IV HASIL DAN PEMBAHASAN. Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Preparasi 4.1.1 Sol Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan ZrOCl 2. 8H 2 O dengan perbandingan mol 1:4:6 (Ikeda, et al. 1986) dicampurkan

Lebih terperinci

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan 6 didalamnya dilakukan karakterisasi XRD. 3.3.3 Sintesis Kalsium Fosfat Sintesis kalsium fosfat dalam penelitian ini menggunakan metode sol gel. Senyawa kalsium fosfat diperoleh dengan mencampurkan serbuk

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di Laboratorium Fisika Material FMIPA Unila, Laboratorium Kimia Instrumentasi

Lebih terperinci

I. PENDAHULUAN. komposit. Jenis material ini menjadi fokus perhatian karena pemaduan dua bahan

I. PENDAHULUAN. komposit. Jenis material ini menjadi fokus perhatian karena pemaduan dua bahan 1 I. PENDAHULUAN A. Latar Belakang Dewasa ini salah satu jenis material aplikasi yang terus dikembangkan adalah komposit. Jenis material ini menjadi fokus perhatian karena pemaduan dua bahan atau lebih

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Metode penelitian yang digunakan yaitu eksperimen. Pembuatan serbuk CSZ menggunakan cara sol gel. Pembuatan pelet dilakukan dengan cara kompaksi dan penyinteran dari serbuk calcia-stabilized

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini telah dilaksanakan pada bulan Februari sampai Juni 2013 di

III. METODE PENELITIAN. Penelitian ini telah dilaksanakan pada bulan Februari sampai Juni 2013 di III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan pada bulan Februari sampai Juni 2013 di Laboratorium Fisika Material dan Laboratorium Kimia Instrumentasi FMIPA Universitas

Lebih terperinci

PENGARUH VARIASI MILLING TIME dan TEMPERATUR KALSINASI pada MEKANISME DOPING 5%wt AL NANOMATERIAL TiO 2 HASIL PROSES MECHANICAL MILLING

PENGARUH VARIASI MILLING TIME dan TEMPERATUR KALSINASI pada MEKANISME DOPING 5%wt AL NANOMATERIAL TiO 2 HASIL PROSES MECHANICAL MILLING PENGARUH VARIASI MILLING TIME dan TEMPERATUR KALSINASI pada MEKANISME DOPING 5%wt AL NANOMATERIAL TiO 2 HASIL PROSES MECHANICAL MILLING I Dewa Gede Panca Suwirta 2710100004 Dosen Pembimbing Hariyati Purwaningsih,

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN Untuk menampilkan bentuk struktur mikro sampel, cuplikan yang terdapat pada sample holder dietsa dengan larutan HCL yang telah diencerkan dengan aquades. Pengenceran dilakukan dengan mencampurkan HCL pekat

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian Penelitian ini dilaksanakan di Laboratorium Penelitian Kimia Analitik, Program Studi Kimia FMIPA ITB sejak September 2007 sampai Juni 2008. III.1 Alat dan Bahan Peralatan

Lebih terperinci

HASIL DAN PEMBAHASAN. Pori

HASIL DAN PEMBAHASAN. Pori HASIL DAN PEMBAHASAN Analisis Morfologi Analisis struktur mikro dilakukan dengan menggunakan Scanning Electromicroscope (SEM) Philips 515 dengan perbesaran 10000 kali. Gambar 5. menunjukkan morfologi hidroksiapatit

Lebih terperinci

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2 Y(NO 3 ) 2 Pelarutan Pengendapan Evaporasi 350 0 C 1 jam 900 0 C 10 jam 940 0 C 20 jam Ba(NO 3 ) Pelarutan Pengendapan Evaporasi Pencampuran Pirolisis Kalsinasi Peletisasi Sintering Pelet YBCO Cu(NO 3

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. sol-gel, dan mempelajari aktivitas katalitik Fe 3 O 4 untuk reaksi konversi gas

IV. HASIL DAN PEMBAHASAN. sol-gel, dan mempelajari aktivitas katalitik Fe 3 O 4 untuk reaksi konversi gas IV. HASIL DAN PEMBAHASAN A. Pengantar Penelitian ini pada intinya dilakukan dengan dua tujuan utama, yakni mempelajari pembuatan katalis Fe 3 O 4 dari substrat Fe 2 O 3 dengan metode solgel, dan mempelajari

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada penelitian ini menggunakan 2 macam sampel paduan alumunium silikon dengan kadar penambahan Fe yang berbeda-beda. Yang pertama adalah sampel paduan alumunium

Lebih terperinci

DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH DAFTAR SINGKATAN DAN LAMBANG BAB I

DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH DAFTAR SINGKATAN DAN LAMBANG BAB I DAFTAR ISI ABSTRAK... Error! Bookmark not ABSTRACT... Error! Bookmark not KATA PENGANTAR... Error! Bookmark not DAFTAR ISI... i DAFTAR GAMBAR... iii DAFTAR TABEL... iv DAFTAR ISTILAH... v DAFTAR SINGKATAN

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Pada penelitian ini dilakukan analisis struktur kristal semen gigi seng oksida eugenol untuk mengetahui keterkaitan sifat mekanik dengan struktur kristalnya. Ada lima sampel

Lebih terperinci

Tabel 3.1 Efisiensi proses kalsinasi cangkang telur ayam pada suhu 1000 o C selama 5 jam Massa cangkang telur ayam. Sesudah kalsinasi (g)

Tabel 3.1 Efisiensi proses kalsinasi cangkang telur ayam pada suhu 1000 o C selama 5 jam Massa cangkang telur ayam. Sesudah kalsinasi (g) 22 HASIL PENELITIAN Kalsinasi cangkang telur ayam dan bebek perlu dilakukan sebelum cangkang telur digunakan sebagai prekursor Ca. Berdasarkan penelitian yang telah dilakukan sebelumnya, kombinasi suhu

Lebih terperinci

METODE SOL-GEL RISDIYANI CHASANAH M

METODE SOL-GEL RISDIYANI CHASANAH M SINTESIS SUPERKONDUKTOR Bi-Sr-Ca-Cu-O/Ag DENGAN METODE SOL-GEL RISDIYANI CHASANAH M0204046 (Bi-Sr-Ca-Cu-O/Ag Superconductor Synthesis with Sol-Gel Method) INTISARI Telah dibuat superkonduktor sistem BSCCO

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian ini menggunakan metode eksperimen yang dilakukan melalui tiga tahap yaitu tahap pembuatan magnet barium ferit, tahap karakterisasi magnet

Lebih terperinci

SINTESIS SERBUK MgTiO 3 DENGAN ADITIF Ca DARI BATU KAPUR ALAM DENGAN METODE PENCAMPURAN LARUTAN

SINTESIS SERBUK MgTiO 3 DENGAN ADITIF Ca DARI BATU KAPUR ALAM DENGAN METODE PENCAMPURAN LARUTAN LAPORAN TUGAS AKHIR SINTESIS SERBUK MgTiO 3 DENGAN ADITIF Ca DARI BATU KAPUR ALAM DENGAN METODE PENCAMPURAN LARUTAN Oleh: Lisma Dian K.S (1108 100 054) Pembimbing: Drs. Suminar Pratapa, M.Sc., Ph.D. 1

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan 4.1 Sintesis Padatan TiO 2 Amorf Proses sintesis padatan TiO 2 amorf ini dimulai dengan melarutkan titanium isopropoksida (TTIP) ke dalam pelarut etanol. Pelarut etanol yang digunakan

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Karakterisasi Awal Serbuk ZrSiO 4 dan ZrO 2 Serbuk ZrSiO 4 dan ZrO 2 sebagai bahan utama membran merupakan hasil pengolahan mineral pasir zirkon. Kedua serbuk tersebut

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan 33 Bab IV Hasil dan Pembahasan Pada bab ini dilaporkan hasil sintesis dan karakterisasi dari senyawa yang disintesis. Senyawa disintesis menggunakan metoda deposisi dalam larutan pada temperatur rendah

Lebih terperinci

2 Tinjauan Pustaka. 2.1 Sel Bahan Bakar

2 Tinjauan Pustaka. 2.1 Sel Bahan Bakar 2 Tinjauan Pustaka Dalam tinjauan pustaka ini akan dibahas berbagai materi yang berhubungan dengan penelitian ini meliputi sel bahan bakar, Solid oxide fuel cell, perovskit, metoda sol gel, difraksi sinar-x,

Lebih terperinci

PENENTUAN TEMPERATUR CURIE SENYAWA OKSIDA LOGAM BERSTRUKTUR AURIVILLIUS TIPE CuBi 4 Ti 4 O 15 (CBT) EMPAT LAPIS

PENENTUAN TEMPERATUR CURIE SENYAWA OKSIDA LOGAM BERSTRUKTUR AURIVILLIUS TIPE CuBi 4 Ti 4 O 15 (CBT) EMPAT LAPIS PENENTUAN TEMPERATUR CURIE SENYAWA OKSIDA LOGAM BERSTRUKTUR AURIVILLIUS TIPE CuBi 4 Ti 4 O 15 (CBT) EMPAT LAPIS TEMPERATURE CURIE DETERMINATION OF THE CRYSTAL STRUCTURE OF THE FOUR-LAYER AURIVILLIUS OXIDES

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN BaTiO 3 merupakan senyawa oksida keramik yang dapat disintesis dari senyawaan titanium (IV) dan barium (II). Proses sintesis ini dipengaruhi oleh beberapa faktor seperti suhu, tekanan,

Lebih terperinci

PASI NA R SI NO L SI IK LI A KA

PASI NA R SI NO L SI IK LI A KA NANOSILIKA PASIR Anggriz Bani Rizka (1110 100 014) Dosen Pembimbing : Dr.rer.nat Triwikantoro M.Si JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

Karakterisasi XRD. Pengukuran

Karakterisasi XRD. Pengukuran 11 Karakterisasi XRD Pengukuran XRD menggunakan alat XRD7000, kemudian dihubungkan dengan program dikomputer. Puncakpuncak yang didapatkan dari data pengukuran ini kemudian dicocokkan dengan standar difraksi

Lebih terperinci

2 SINTESIS DAN KARAKTERISASI NANOSTRUKTUR ZnO

2 SINTESIS DAN KARAKTERISASI NANOSTRUKTUR ZnO 2 SINTESIS DAN KARAKTERISASI NANOSTRUKTUR ZnO 3 Pendahuluan ZnO merupakan bahan semikonduktor tipe-n yang memiliki lebar pita energi 3,37 ev pada suhu ruang dan 3,34 ev pada temperatur rendah dengan nilai

Lebih terperinci

Gambar 4.2 Larutan magnesium klorida hasil reaksi antara bubuk hidromagnesit dengan larutan HCl

Gambar 4.2 Larutan magnesium klorida hasil reaksi antara bubuk hidromagnesit dengan larutan HCl BAB 4 HASIL PENELITIAN DAN PEMBAHASAN 4.1 Sintesa Garam Magnesium Klorida Garam magnesium klorida dipersiapkan melalui dua bahan awal berbeda yaitu bubuk magnesium oksida (MgO) puritas tinggi dan bubuk

Lebih terperinci

SINTESIS SERBUK MgTiO 3 DENGAN METODE PENCAMPURAN DAN PENGGILINGAN SERBUK. Abstrak

SINTESIS SERBUK MgTiO 3 DENGAN METODE PENCAMPURAN DAN PENGGILINGAN SERBUK. Abstrak SINTESIS SERBUK MgTiO 3 DENGAN METODE PENCAMPURAN DAN PENGGILINGAN SERBUK 1) Luluk Indra Haryani, 2) Suminar Pratapa Jurusan Fisika, Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Katalis merupakan suatu zat yang sangat diperlukan dalam kehidupan. Katalis yang digunakan merupakan katalis heterogen. Katalis heterogen merupakan katalis yang dapat digunakan

Lebih terperinci

Gambar 4.7. SEM Gelas BG-2 setelah perendaman di dalam SBF Ringer

Gambar 4.7. SEM Gelas BG-2 setelah perendaman di dalam SBF Ringer Porositas Gambar 4.7. SEM Gelas BG-2 setelah perendaman di dalam SBF Ringer Dari gambar 4.6 dan 4.7 terlihat bahwa partikel keramik bio gelas aktif berbentuk spherical menuju granular. Bentuk granular

Lebih terperinci

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP LOGO PRESENTASI TESIS STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 Djunaidi Dwi Pudji Abdullah NRP. 1109201006 DOSEN PEMBIMBING: Drs. Suminar Pratapa, M.Sc, Ph.D. JURUSAN FISIKA FAKULTAS

Lebih terperinci

I. PENDAHULUAN. kinerjanya adalah pemrosesan, modifikasi struktur dan sifat-sifat material.

I. PENDAHULUAN. kinerjanya adalah pemrosesan, modifikasi struktur dan sifat-sifat material. 1 I. PENDAHULUAN A. Latar Belakang Dalam sintesis material, beberapa hal yang sangat berpengaruh dalam menentukan kinerjanya adalah pemrosesan, modifikasi struktur dan sifat-sifat material. Perbaikan kinerja

Lebih terperinci

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB IV HASIL PENELITIAN DAN ANALISIS BAB IV HASIL PENELITIAN DAN ANALISIS 4.1 Analisis Hasil Pengujian TGA - DTA Gambar 4.1 memperlihatkan kuva DTA sampel yang telah di milling menggunakan high energy milling selama 6 jam. Hasil yang didapatkan

Lebih terperinci

HASIL DAN PEMBAHASAN Hasil analisis proses preparasi, aktivasi dan modifikasi terhadap zeolit

HASIL DAN PEMBAHASAN Hasil analisis proses preparasi, aktivasi dan modifikasi terhadap zeolit HASIL DAN PEMBAHASAN Hasil analisis proses preparasi, aktivasi dan modifikasi terhadap zeolit Penelitian ini menggunakan zeolit alam yang berasal dari Lampung dan Cikalong, Jawa Barat. Zeolit alam Lampung

Lebih terperinci

Uji Kekerasan Sintesis Sintesis BCP HASIL DAN PEMBAHASAN Preparasi Bahan Dasar

Uji Kekerasan Sintesis Sintesis BCP HASIL DAN PEMBAHASAN Preparasi Bahan Dasar dilapisi bahan konduktif terlebih dahulu agar tidak terjadi akumulasi muatan listrik pada permukaan scaffold. Bahan konduktif yang digunakan dalam penelitian ini adalah karbon. Permukaan scaffold diperbesar

Lebih terperinci

I. PENDAHULUAN. Superkonduktor merupakan suatu bahan dengan konduktivitas tak hingga, karena

I. PENDAHULUAN. Superkonduktor merupakan suatu bahan dengan konduktivitas tak hingga, karena I. PENDAHULUAN A. Latar Belakang Superkonduktor merupakan suatu bahan dengan konduktivitas tak hingga, karena sifat resistivitas nol yang dimilikinya dan dapat melayang dalam medan magnet. Kedua sifat

Lebih terperinci

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi NURUL ROSYIDAH Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Pendahuluan Kesimpulan Tinjauan Pustaka

Lebih terperinci

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong,

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong, III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Biomassa, Lembaga Penelitian Universitas Lampung. permukaan (SEM), dan Analisis difraksi sinar-x (XRD),

Lebih terperinci

BAB I PENDAHULUAN. Indonesia merupakan negara berkembang yang berada dikawasan Asia

BAB I PENDAHULUAN. Indonesia merupakan negara berkembang yang berada dikawasan Asia BAB I PENDAHULUAN A. Latar Belakang Masalah Indonesia merupakan negara berkembang yang berada dikawasan Asia Tenggara. Sebagai negara berkembang, Indonesia melakukan swasembada diberbagai bidang, termasuk

Lebih terperinci

STUDI PENGUJIAN SEM DAN EDX HIDROKSIAPATIT DARI GIPSUM ALAM CIKALONG DENGAN 0

STUDI PENGUJIAN SEM DAN EDX HIDROKSIAPATIT DARI GIPSUM ALAM CIKALONG DENGAN 0 TUGAS AKHIR STUDI PENGUJIAN SEM DAN EDX HIDROKSIAPATIT DARI GIPSUM ALAM CIKALONG DENGAN 0.5 M DIAMONIUM HIDROGEN FOSFAT SEBELUM DAN SESUDAH KALSINASI DAN SINTERING Disusun : AMIN MUSTOFA NIM : D 200 05

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Metode Penelitian Metode penelitian yang dilakukan adalah metode eksperimen secara kualitatif dan kuantitatif. Metode penelitian ini menjelaskan proses degradasi fotokatalis

Lebih terperinci

3.5 Karakterisasi Sampel Hasil Sintesis

3.5 Karakterisasi Sampel Hasil Sintesis 7 konsentrasi larutan Ca, dan H 3 PO 4 yang digunakan ada 2 yaitu: 1) Larutan Ca 1 M (massa 7,6889 gram) dan H 3 PO 4 0,6 M (volume 3,4386 ml) 2) Larutan Ca 0,5 M (massa 3,8449) dan H 3 PO 4 0,3 M (volume

Lebih terperinci

SINTESIS DAN KARAKTERISASI PARTIKEL NANO La 1-x Sr x CoO 3 DENGAN METODE KOPRESIPITASI

SINTESIS DAN KARAKTERISASI PARTIKEL NANO La 1-x Sr x CoO 3 DENGAN METODE KOPRESIPITASI SINTESIS DAN KARAKTERISASI PARTIKEL NANO La 1-x Sr x CoO 3 DENGAN METODE KOPRESIPITASI Muhammad Arifin, Markus Diantoro, Abdulloh Fuad Jurusan Fisika, Universitas Negeri Malang E-mail: kdr.arifin@gmail.com

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik CSZ-NiO untuk elektrolit padat

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik CSZ-NiO untuk elektrolit padat 28 BAB III METODE PENELITIAN 1.1 Metode yang Digunakan Metode yang digunakan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik CSZ-NiO untuk elektrolit padat SOFC.

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 47 IV. HASIL DAN PEMBAHASAN A. Pengantar Penelitian ini bertujuan untuk menunjukan pengaruh suhu sintering terhadap struktur Na 2 O dari Na 2 CO 3 yang dihasilkan dari pembakaran tempurung kelapa. Pada

Lebih terperinci

DAFTAR ISI KATA PENGANTAR... UCAPAN TERIMA KASIH... ABSTRAK... ABSTRACT... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

DAFTAR ISI KATA PENGANTAR... UCAPAN TERIMA KASIH... ABSTRAK... ABSTRACT... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... DAFTAR ISI KATA PENGANTAR... UCAPAN TERIMA KASIH... ABSTRAK... ABSTRACT... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... i ii iv v vi viii ix x BAB I PENDAHULUAN... 1 A. Latar Belakang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Penggunaan TiO 2 sebagai fotokatalis diperkenalkan pertama kali oleh Fujishima dan Honda tahun 1972 mengenai pemecahan air menjadi oksigen dan hidrogen secara fotoelektrokimia

Lebih terperinci

SINTESIS DAN KARAKTERISASI PARTIKEL NANO La 1-x Sr x CoO 3 DENGAN METODE KOPRESIPITASI

SINTESIS DAN KARAKTERISASI PARTIKEL NANO La 1-x Sr x CoO 3 DENGAN METODE KOPRESIPITASI SINTESIS DAN KARAKTERISASI PARTIKEL NANO La 1-x Sr x CoO 3 DENGAN METODE KOPRESIPITASI Muhammad Arifin, Markus Diantoro, Abdulloh Fuad Jurusan Fisika, Universitas Negeri Malang E-mail: kdr.arifin@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Fotokatalis telah mendapat banyak perhatian selama tiga dekade terakhir sebagai solusi yang menjanjikan baik untuk mengatasi masalah energi maupun lingkungan. Sejak

Lebih terperinci

Superkonduktor Eu 2-x Ce x CuO 4+α-δ

Superkonduktor Eu 2-x Ce x CuO 4+α-δ Superkonduktor Eu 2-x Ce x CuO 4+α-δ Pengaruh Konsentrasi Doping Ce (X) Terhadap Sifat Listik Material Superkonduktor Eu 2-x Ce x CuO 4+α-δ under-doped M. Saputri, M. F. Sobari, A. I. Hanifah, W.A. Somantri,

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Magnet permanen adalah salah satu jenis material maju dengan aplikasi yang sangat luas dan strategis yang perlu dikembangkan di Indonesia. Efisiensi energi yang tinggi

Lebih terperinci

BAB I PENDAHULUAN. Telah disadari bahwa kemajuan ilmu pengetahuan dan teknologi harus

BAB I PENDAHULUAN. Telah disadari bahwa kemajuan ilmu pengetahuan dan teknologi harus 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Telah disadari bahwa kemajuan ilmu pengetahuan dan teknologi harus dibayar oleh umat manusia berupa pencemaran udara. Dewasa ini masalah lingkungan kerap

Lebih terperinci

HASIL DAN PEMBAHASAN. Hasil XRD

HASIL DAN PEMBAHASAN. Hasil XRD 9 Hasil XRD HASIL DAN PEMBAHASAN Karakterisasi dengan difraktometer sinar-x bertujuan untuk mengetahui fasa kristal yang terdapat dalam sampel, mengetahui parameter kisi dan menentukan ukuran kristal.

Lebih terperinci

Efek Atmosfer Udara dan Oksigen Terhadap Struktur Kristal dan Kristalografi Material Superkonduktor (Bi0,40Pb0,45)Sr2(Ca0,40Y0,70)Cu2Oz

Efek Atmosfer Udara dan Oksigen Terhadap Struktur Kristal dan Kristalografi Material Superkonduktor (Bi0,40Pb0,45)Sr2(Ca0,40Y0,70)Cu2Oz Efek Atmosfer Udara dan Oksigen Terhadap Struktur Kristal dan Kristalografi Material Superkonduktor (Bi0,40Pb0,45)Sr2(Ca0,40Y0,70)Cu2Oz Zahratul Jannah AR Jurusan Teknik Mesin, Politeknik Negeri Malang,

Lebih terperinci

BAB IV HASIL dan PEMBAHASAN

BAB IV HASIL dan PEMBAHASAN BAB IV HASIL dan PEMBAHASAN 4.1 Sintesis Padatan ZnO dan CuO/ZnO Pada penelitian ini telah disintesis padatan ZnO dan padatan ZnO yang di-doped dengan logam Cu. Doping dengan logam Cu diharapkan mampu

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan 20 BAB III METODE PENELITIAN 3.1 Metode Desain Metode yang digunakan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan menggunakan metode tape

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen secara langsung. Pada penelitian ini dilakukan pembuatan keramik komposit pelet CSZ-Ni

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk BAB IV HASIL DAN PEMBAHASAN Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk merubah karakter permukaan bentonit dari hidrofilik menjadi hidrofobik, sehingga dapat meningkatkan kinerja kitosan-bentonit

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan Sebelum dilakukan sintesis katalis Cu/ZrSiO 4, serbuk zirkon (ZrSiO 4, 98%) yang didapat dari Program Studi Metalurgi ITB dicuci terlebih dahulu menggunakan larutan asam nitrat 1,0

Lebih terperinci

BAB V ANALISIS HASIL PERCOBAAN DAN DISKUSI

BAB V ANALISIS HASIL PERCOBAAN DAN DISKUSI BAB V ANALISIS HASIL PERCOBAAN DAN DISKUSI Dari hasil percobaan dan uji sampel pada bab IV, yang pertama dilakukan adalah karakterisasi reaktor. Untuk mewakili salah satu parameter reaktor yaitu laju sintesis

Lebih terperinci

BAB I PENDAHULUAN. energi listrik. Pemanfaatan energi listrik terus berkembang tidak hanya berfokus

BAB I PENDAHULUAN. energi listrik. Pemanfaatan energi listrik terus berkembang tidak hanya berfokus BAB I PENDAHULUAN A. Latar Belakang Masalah Seiring pertumbuhan penduduk di dunia yang semakin meningkat, kebutuhan akan sumber energi meningkat pula. Termasuk kebutuhan akan sumber energi listrik. Pemanfaatan

Lebih terperinci

KERAMIK Mimin Sukarmin, S.Si., M.Pd.

KERAMIK Mimin Sukarmin, S.Si., M.Pd. KERAMIK Mimin Sukarmin, S.Si., M.Pd. m.sukar1982xx@gmail.com A. Keramik Bahan keramik merupakan senyawa antara logam dan bukan logam. Senyawa ini mempunyai ikatan ionik dan atau ikatan kovalen. Jadi sifat-sifatnya

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI MEMBRAN KERAMIK ZrSiO 4 -V 2 O 5 TESIS. ERFAN PRIYAMBODO NIM : Program Studi Kimia

PEMBUATAN DAN KARAKTERISASI MEMBRAN KERAMIK ZrSiO 4 -V 2 O 5 TESIS. ERFAN PRIYAMBODO NIM : Program Studi Kimia PEMBUATAN DAN KARAKTERISASI MEMBRAN KERAMIK ZrSiO 4 -V 2 O 5 TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung Oleh ERFAN PRIYAMBODO NIM : 20506006

Lebih terperinci

SINTESIS DAN KARAKTERISASI UNDER-DOPED SUPERKONDUKTOR DOPING ELEKTRON Eu 2-x Ce x CuO 4+α-δ

SINTESIS DAN KARAKTERISASI UNDER-DOPED SUPERKONDUKTOR DOPING ELEKTRON Eu 2-x Ce x CuO 4+α-δ Proseding Seminar Nasional Fisika dan Aplikasinya Sabtu, 21 November 2015 Bale Sawala Kampus Universitas Padjadjaran, Jatinangor SINTESIS DAN KARAKTERISASI UNDER-DOPED SUPERKONDUKTOR DOPING ELEKTRON Eu

Lebih terperinci

SINTESIS DAN KARAKTERISASI KRISTAL NANO ZnO

SINTESIS DAN KARAKTERISASI KRISTAL NANO ZnO SINTESIS DAN KARAKTERISASI KRISTAL NANO ZnO Cicik Herlina Yulianti 1 1) Dosen Fakultas Teknik Prodi Elektro Universitas Islam Lamongan Abstrak Pengembangan material kristalin berukuran nano merupakan suatu

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN Hasil Pengujian Densitas Abu Vulkanik Milling 2 jam. Sampel Milling 2 Jam. Suhu C

BAB IV HASIL DAN PEMBAHASAN Hasil Pengujian Densitas Abu Vulkanik Milling 2 jam. Sampel Milling 2 Jam. Suhu C 38 BAB IV HASIL DAN PEMBAHASAN 4.1 KARAKTERISASI HASIL 4.1.1 Hasil Pengujian Densitas Abu Vulkanik Milling 2 jam Pengujian untuk mengetahui densitas sampel pellet Abu vulkanik 9,5gr dan Al 2 O 3 5 gr dilakukan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen.

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen. BAB III METODOLOGI PENELITIAN A. Metode Penelitian Metode yang digunakan dalam penelitian ini adalah metoda eksperimen. Penelitian dilakukan dengan beberapa tahapan yang digambarkan dalam diagram alir

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sangat mempengaruhi peradaban

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sangat mempengaruhi peradaban BAB I PENDAHULUAN A. Latar Belakang Perkembangan ilmu pengetahuan dan teknologi sangat mempengaruhi peradaban manusia di abad ini. Sehingga diperlukan suatu kemampuan menguasai teknologi tinggi agar bisa

Lebih terperinci

θ HASIL DAN PEMBAHASAN. oksida besi yang terkomposit pada struktur karbon aktif.

θ HASIL DAN PEMBAHASAN. oksida besi yang terkomposit pada struktur karbon aktif. Intensitas 5 selama 24 jam. Setelah itu, filtrat dipisahkan dari sampel C, D, dan E dengan cara mendekatkan batang magnet permanen pada permukaan Erlenmeyer. Konsentrasi filtrat ditentukan menggunakan

Lebih terperinci

EFEK CuI TERHADAP KONDUKTIVITAS DAN ENERGI AKTIVASI (CuI) x (AgI ) 1-x (x = 0,5-0,9)

EFEK CuI TERHADAP KONDUKTIVITAS DAN ENERGI AKTIVASI (CuI) x (AgI ) 1-x (x = 0,5-0,9) EFEK CuI TERHADAP KONDUKTIVITAS DAN ENERGI AKTIVASI (CuI) x (AgI ) 1-x (x = 0,5-0,9) (EFFECT OF CuI ON CONDUCTIVITY AND ACTIVATION ENERGY OF (CuI) x (AgI) 1-x (x = 0.5 to 0.9)) ABSTRAK Patricius Purwanto

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dihasilkan sebanyak 5 gram. Perbandingan ini dipilih karena peneliti ingin

BAB IV HASIL DAN PEMBAHASAN. dihasilkan sebanyak 5 gram. Perbandingan ini dipilih karena peneliti ingin BAB IV HASIL DAN PEMBAHASAN 4.1 Sintesis Katalis CuO/ZnO/Al 2 O 3 Katalis CuO/ZnO/Al 2 O 3 disintesis dengan metode kopresipitasi dengan rasio fasa aktif Cu, promotor ZnO, penyangga dan Al 2 O 3 yaitu

Lebih terperinci

BAB I PENDAHULUAN. Salah satu pemanfaatan tenaga nuklir dalam bidang energi adalah

BAB I PENDAHULUAN. Salah satu pemanfaatan tenaga nuklir dalam bidang energi adalah BAB I PENDAHULUAN 1.1 Latar belakang Salah satu pemanfaatan tenaga nuklir dalam bidang energi adalah Pembangkit Listrik Tenaga Nuklir (PLTN). Seiring dengan pemanfaatan PLTN terdapat kecenderungan penumpukan

Lebih terperinci

BAB IV ANALISA DATA & PEMBAHASAN

BAB IV ANALISA DATA & PEMBAHASAN BAB IV ANALISA DATA & PEMBAHASAN Variasi kecepatan stiring 800 rpm, variasi temperatur sintering 700, 800, 900 C Variasi temperatur 700 C = struktur kristal tetragonal, fase nya anatase, no PDF 01-086-1156,

Lebih terperinci

BAB III EKSPERIMEN & KARAKTERISASI

BAB III EKSPERIMEN & KARAKTERISASI BAB III EKSPERIMEN & KARAKTERISASI Pada bab ini dibahas penumbuhan AlGaN tanpa doping menggunakan reaktor PA- MOCVD. Lapisan AlGaN ditumbuhkan dengan variasi laju alir gas reaktan, hasil penumbuhan dikarakterisasi

Lebih terperinci

SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF

SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF YUNI SUPRIYATI M 0204066 Jurusan Fisika Fakultas MIPA

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh waktu annealing terhadap diameter dan jarak antar butir

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh waktu annealing terhadap diameter dan jarak antar butir BAB IV HASIL DAN PEMBAHASAN 4.1 Pengaruh waktu annealing terhadap diameter dan jarak antar butir katalis Au Perubahan morfologi katalis telah dilihat melalui pengujian SEM, gambar 4.1 memperlihatkan hasil

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi rekayasa zat dalam skala nano selalu menjadi daya tarik di kalangan peneliti. Hal ini dikarenakan nanoteknologi akan sangat berpengaruh terhadap

Lebih terperinci

Hubungan kristalinitas sampel CaO sintesis, CaO pada CaOZnO 0,08 dan CaO pada CaOZnO 0,25

Hubungan kristalinitas sampel CaO sintesis, CaO pada CaOZnO 0,08 dan CaO pada CaOZnO 0,25 Hubungan kristalinitas sampel CaO, CaO pada 0,08 dan CaO pada 0,25 Sampel 2 ( o ) Tinggi Puncak, I (counts) I/Io % Kristalinitas Kristalinitas CaO > CaO pada 0,25 > CaO pada 0,08 CaO 37,34 1248,68* 1 100

Lebih terperinci