METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

dokumen-dokumen yang mirip
PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN RAYLEIGH

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

ANALISA STEADY STATE ERROR SISTEM KONTROL LINIER INVARIANT WAKTU

STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

REALISASI POSITIF STABIL ASIMTOTIK DARI SISTEM LINIER DISKRIT

PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK

STABILISASI SISTEM DESKRIPTOR LINIER KONTINU

PEMODELAN ARUS LALU LINTAS ROUNDABOUT

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN

PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN POTENSIAL LINIER

APLIKASI DEKOMPOSISI NILAI SINGULAR PADA KOMPRESI UKURAN FILE GAMBAR

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN

PENGGUNAAN METODE LYAPUNOV UNTUK MENGUJI KESTABILAN SISTEM LINIER

KETEROBSERVASIAN SISTEM LINIER DISKRIT

OBSERVER UNTUK SISTEM KONTROL LINIER KONTINU

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

STABILISASI SISTEM KONTROL LINIER INVARIANT WAKTU DENGAN MENGGUNAKAN METODE ACKERMANN

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

REALISASI POSITIF STABIL ASIMTOTIK SISTEM LINIER DISKRIT DENGAN POLE KONJUGAT KOMPLEKS

STABILISASI SISTEM DESKRIPTOR DISKRIT LINIER POSITIF

ANALISIS LAX PAIR DAN PENERAPANNYA PADA PERSAMAAN KORTEWEG-DE VRIES

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SOLUSI POSITIF DARI SISTEM SINGULAR DISKRIT

SOLUSI POSITIF DARI PERSAMAAN LEONTIEF DISKRIT

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY

MENENTUKAN NILAI EIGEN DOMINAN TERBESAR DAN TERKECIL SUATU MATRIKS SKRIPSI SARJANA MATEMATIKA. Oleh : DESVENTRI ETMY

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE

WARP PADA SEBUAH SEGITIGA

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

Aljabar Linier Elementer. Kuliah 27

KETEROBSERVASIAN SISTEM DESKRIPTOR DISKRIT LINIER

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

Ujian Tengah Semester

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL

Aljabar Linier Elementer. Kuliah 26

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

BAB I VEKTOR DALAM BIDANG

PENURUNAN METODE NICKALLS DAN PENERAPANNYA PADA PENYELESAIAN PERSAMAAN KUBIK

KAITAN SPEKTRUM KETETANGGAAN DARI GRAF SEKAWAN

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

BAB II LANDASAN TEORI

PENJADWALAN KULIAH DENGAN ALGORITMA WELSH-POWELL (STUDI KASUS: JURUSAN MATEMATIKA FMIPA UNAND)

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan

SOLUSI NUMERIK SISTEM PERSAMAAN NONLINIERDENGAN MENGGUNAKAN METODE HOMOTOPY

PENYELESAIAN MASALAH PEMROGRAMAN LINIER BILANGAN BULAT MURNI DENGAN METODE REDUKSI VARIABEL

BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

STRUKTUR SEMILATTICE PADA PRA A -ALJABAR

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT

PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

REALISASI SISTEM LINIER INVARIANT WAKTU

Aljabar Linier. Kuliah

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

KAJIAN TENTANG LAX PAIR DAN PENERAPANNYA PADA PERSAMAAN LIOUVILLE

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

MINIMISASI STASIUN PEMADAM KEBAKARAN DI KOTA PADANG

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

Pengantar Statistika Matematik(a)

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

KALKULUS MULTIVARIABEL II

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

BILANGAN KROMATIK LOKASI DARI GRAF HUTAN LINIER H t

ANALISIS SISTEM ANTRIAN SATU SERVER (M/M/1)

KAJIAN PERILAKU MODEL MATEMATIKA PENULARAN PENYAKIT TUBERCULOSIS

PRA A -MODUL ATAS PRA A -ALJABAR DAN ALJABAR IF-THEN-ELSE ATAS PRA A -ALJABAR

ALGORITMA RUTE FUZZY TERPENDEK UNTUK KONEKSI SALURAN TELEPON

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

KALKULUS MULTIVARIABEL II

PAM 252 Metode Numerik Bab 5 Turunan Numerik

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT

ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA. Rini Christine Prastika Sitompul 1

BILANGAN KROMATIK LOKASI UNTUK GRAF C n K m, DENGAN n 3 DAN m 1

BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m

BAB I PENDAHULUAN. 1.1 Latar Belakang

KALKULUS MULTIVARIABEL II

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Transkripsi:

Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA SYAFITRI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas, Kampus UNAND Limau Manis Padang, Indonesia, email : rahimasyafitri2@gmail.com Abstrak. Pada makalah ini dibahas tentang penurunan metode pseudo arc-length dalam menyelesaikan sistem persamaan nonlinier terparameterisasi dimana kurva solusinya memiliki titik balik. Ide dari metode ini adalah menambahkan persamaan bidang yang tegak lurus terhadap vektor singgung kurva pada sistem asal, sehingga diperoleh sistem diperluas yang selanjutnya diselesaikan dengan menggunakan metode Newton-Raphson. Metode pseudo arc-length ini kemudian diimplementasikan dalam pemrograman Matlab dengan mengambil contoh kasus pada penyelesaian persamaan Bratu diskrit. Kata Kunci: Metode pseudo arc-length, persamaan nonlinier terparameterisasi, metode Newton-Raphson, turunan parsial, vektor singgung 1. Pendahuluan Pandang persamaan f(x) =, (1.1) dimana f : R R adalah fungsi kontinu dan terdiferensialkan, sedangkan x R merupakan solusi yang ingin dicari. Untuk menentukan solusi tersebut secara numerik, dapat dilakukan dengan beberapa metode, salah satunya adalah metode Newton-Raphson 3. Selanjutnya pandang persamaan f(x, λ) =, (1.2) dimana λ adalah suatu parameter yang bernilai riil. Persamaan (1.2) disebut juga persamaan terparameterisasi. Metode perhitungan numerik untuk memperoleh kurva solusi dari persamaan (1.2) dapat juga dilakukan dengan menggunakan metode Newton-Raphson. Meskipun demikian, metode ini tidak dapat menentukan nilai solusi (x, λ) pada persamaan nonlinier yang kurva solusinya memiliki titik balik dalam x. Salah satu metode alternatif untuk mengatasi hal tersebut adalah dengan menggunakan metode pseudo arc-length. Metode ini dikembangkan pertama kali oleh Edward Riks dan Gerald Wempner pada akhir tahun 196-an dan dipopulerkan oleh H.B. Keller pada akhir tahun 197-an 5. 9

1 Rahima Syafitri Pada metode ini, x dan λ diparameterisasi dalam variabel baru, misalkan s, kemudian x(s) dan λ(s) diselesaikan secara simultan untuk setiap s. Karena hanya ada satu persamaan, yaitu (1.2), maka perlu ada satu persamaan tambahan agar solusi x dan λ dapat diperoleh. Pada metode pseudo arc-length, persamaan tambahan tersebut adalah persamaan garis yang tegak lurus terhadap vektor singgung kurva. Dengan demikian titik-titik solusi dapat diperoleh meskipun setelah melewati titik balik. Gambar 1. Ilustrasi kurva metode pseudo arc-length Dalam artikel ini akan dibahas metode pseudo arc-length pada penyelesaian sistem n persamaan nonlinier terparameterisasi, dengan mengeksplorasi kembali pembahasan pada referensi 3. 2. Beberapa Konsep 2.1. Rank dan Nulitas Definisi 2.1. 1 Dimensi dari ruang baris dan ruang kolom dari suatu matriks A disebut rank dari A dan dinotasikan dengan rank(a). Dimensi ruang null dari A disebut sebagai nulitas dari A dinotasikan dengan null(a). Teorema 2.2. 1 Jika A adalah matriks dengan n kolom, maka rank(a) + null(a) = n. (2.1) Teorema 2.3. 4 Jika A matriks nonsingular n n dan b vektor kolom n 1 sedemikian sehingga rank(a b) = n, maka null(a b) = 1. Teorema 2.4. 4 Misalkan A matriks nonsingular n n dan b vektor kolom n 1 sedemikian sehingga rank(a b) = n. Jika p q T ker(a b), maka matriks adalah matriks nonsingular. A b M = p T q

Metode Pseudo Arc-Length pada Penyelesaian Sistem Persamaan Nonlinier Terparameterisasi 11 2.2. Persamaan Bidang Misalkan n = (u 1, u 2,, u n ) suatu vektor tak nol dan P (x 1, x 2,, x n ) suatu titik tetap. Himpunan dari titik-titik P (x 1, x 2,, x n ) yang memenuhi P P n = adalah bidang yang melewati P dan tegak lurus terhadap n. Untuk mendapatkan persamaan kartesius dari bidang, tulis vektor P P dalam bentuk P P = (x 1 x 1, x 2 x 2,, x n x n ). (2.2) Dengan demikian P P n = ekuivalen dengan u 1 (x 1 x 1 ) + u 2(x 2 x 2 ) + + u n(x n x n ) =. (2.3) Persamaan (2.3) disebut bentuk umum dari persamaan bidang. 2.3. Vektor Singgung Turunan fungsi vektor r(t) terhadap t (suatu parameter), yang dinyatakan oleh r (t), didefinisikan sebagai r r(t + h) r(t) (t) = lim, (2.4) h h asalkan limitnya ada. Dalam hal ini, vektor singgung satuan diberikan oleh T(t) = r (t) r (t). (2.5) 2.4. Metode Newton-Raphson Secara umum, metode iterasi Newton-Raphson pada sistem n dimensi dapat dilakukan dengan algoritma berikut: Misalkan pada saat iterasi ke-k nilai p k = (p (k) 1, p(k) 2,, p(k) n ) telah diperoleh. (1) Hitung fungsi f = (2) Hitung matriks Jacobian f 1 x 1 f 2 x J(P k ) = 1. (3) Selesaikan sistem persamaan linier f 1 (p (k) 1, p(k) 2,, p(k) f 2 (p (k) 1, p(k) 2,, p(k) n ) n ). f n (p (k) 1, p(k) 2,, p(k) n ) f 1 f x 2 1 x n f 2 f x 2 2 x n..... f n x n f n x 1 fn x 2 J p = f untuk p

12 Rahima Syafitri (4) Hitung titik selanjutnya p k+1 = p k + p Ulangi proses di atas sampai p memenuhi batas galat yang ditentukan. 3. Penurunan dan Langkah-langkah Metode Pseudo Arc-Length 3.1. Analisis Awal Pandang sistem F(x, λ) =, (3.1) dimana F : R n+1 R n adalah fungsi mulus bernilai vektor. Selanjutnya misalkan himpunan solusi dari sistem (3.1) dinotasikan oleh S = {(x, λ) R n+1 F(x, λ) = }. (3.2) Dalam aplikasinya, x menyatakan variabel keadaan dari sistem dan λ merupakan suatu parameter. Himpunan S membentuk suatu lintasan yang dinamakan lintasan solusi. Dalam implementasi komputasi, himpunan diskrit dari titik-titik di S dihitung dan kemudian dihubungkan sedemikian sehingga membentuk suatu kurva. Permasalahan utamanya sekarang adalah jika diberikan titik awal (x, λ ) S, bagaimana kemudian menghitung titik (x 1, λ 1 ) di S yang berada di dekat (x, λ )? Hal ini dapat dilakukan dengan memisalkan λ 1 = λ + λ, dimana λ bernilai kecil, lalu selesaikan F(x, λ 1 ) = untuk x 1 = x(λ 1 ). Namun dengan cara ini, x(λ 1 ) bisa jadi tidak terdefinisi di sekitar titik balik. Dengan demikian perlu dikembangkan suatu metode yang dapat menghitung (x 1, λ 1 ) yang memutari titik balik. Metode yang dimaksud adalah metode pseudo-arclength. 3.2. Penurunan Metode Pseudo Arc-Length Asumsikan bahwa himpunan S hanya memiliki titik regular atau titik balik, yaitu jika (x, λ ) S, maka rank F x F λ = n, (3.3) dimana F x menyatakan turunan parsial F(x, λ) terhadap x di (x, λ ) dan F λ menyatakan turunan parsial F(x, λ) terhadap λ di (x, λ ). Jika (x(t), λ(t)) menyatakan titik di sepanjang S yang mempunyai jarak sejauh (t t ) dari titik (x(t ), λ(t )) = (x, λ ), maka t disebut parameterisasi arc-length. Dengan demikian garis singgung terhadap S di (x, λ ) adalah x λ. dx dt dλ dt t=t = Karena F(x(t), λ(t)) =, maka turunan terhadap t menghasilkan d dt F(x(t), λ(t)) = F x (x(t), λ(t)) F λ (x(t), λ(t)) ẋ =. (3.4) λ

Metode Pseudo Arc-Length pada Penyelesaian Sistem Persamaan Nonlinier Terparameterisasi 13 Pada saat t = t, persamaan (3.4) menjadi F x F x λ =. (3.5) λ Dengan demikian ruang vektor singgung adalah ker ( F x F λ ). Diketahui rank ( F x F λ ) = n, sehingga berdasarkan Teorema 2.3, dim ( kerf x F λ ) = null ( F x F λ ) = 1. Dengan demikian terdapat arah vektor singgung yang tunggal. Karena F(x, λ) = adalah n sistem persamaan dengan n + 1 variabel, maka solusi untuk titik baru, misalkan (x 1, λ 1 ) tidak dapat ditentukan secara langsung. Oleh karena itu dibutuhkan satu persamaan tambahan. Hal ini dapat dilakukan sebagai berikut. Misalkan vektor singgung satuan dinyatakan oleh s r = ker F x F λ, (3.6) σ dengan r T r = 1. Maka titik (x 1, λ 1 ) S dapat ditentukan dengan mencari titik dimana bidang yang tegak lurus terhadap vektor singgung r berpotongan di S (lihat Gambar 2). Gambar 2. Ilustrasi bidang yang tegak lurus terhadap vektor singgung r dan memotong S. Berdasarkan hubungan vektor-vektor tersebut (lihat kembali Gambar 2), maka berlaku a x x = tr. b λ λ Karena vektor r dan a b T saling tegak lurus, maka ( ) x x r tr =. λ λ Selanjutnya diperoleh (3.7) s T (x x ) + σ(λ λ ) (t t ) =, (3.8) yang memberikan persamaan bidang yang tegak lurus terhadap vektor singgung r dan memotong S.

14 Rahima Syafitri Persamaan (3.8) sekaligus merupakan persamaan tambahan pada sistem F(x, λ) =, sehingga diperoleh sistem diperluas F(x, λ) H(y, t) = s T =. (3.9) (x x ) + σ(λ λ ) (t t ) 3.3. Langkah-langkah Metode Pseudo Arc-Length Sebagai langkah pertama, tentukan terlebih dahulu solusi awal (x, λ ) yang dapat diperoleh dengan menyelesaikan sistem F(x, λ) = dengan menggunakan metode Newton-Raphson. Misalkan solusi awal ini diparameterisasi pada saat t = t, sehingga dapat ditulis (x(t ), λ(t )) = (x, λ ). Selanjutnya tetapkan ukuran langkah t. Jika t 1 = t + t, maka dari baris terakhir persamaan (3.9) diperoleh T x1 x r = t, (3.1) λ 1 λ dengan x 1 = x(t 1 ). Lanjutkan langkah serupa untuk t 2, t 3 dan seterusnya, sehingga dengan menyelesaikan sistem (3.9) secara iteratif diperoleh barisan titik-titik (x 2, λ 2 ), (x 3, λ 3 ) dan seterusnya pada S. Untuk memperoleh solusi (x j, λ j ), j = 1, 2, yaitu dengan menentukan terlebih dahulu vektor singgung satuan r dengan menyelesaikan persamaan (3.5) dan kemudian hitung vektor satuannya. Untuk memudahkan perhitungan, tetapkan λ = 1, sehingga persamaan (3.5) menjadi F xẋ = F λ. (3.11) Dengan demikian vektor singgung r diberikan oleh s 1 z r = = σ (1 + z T z. (3.12) ) 1/2 1 Selanjutnya solusi (x 1, λ 1 ) dapat diperoleh dengan menyelesaikan sistem diperluas (3.9) dengan menggunakan metode Newton-Raphson sebagai berikut: Tetapkan x x =. (3.13) λ maka Iterasi Newton-Raphson untuk penyelesaian sistem (3.9) diberikan oleh, x (k+1) x (k) d (k) = + (3.14) λ (k+1) λ (k) dimana k =, 1, 2,, N menyatakan indeks iterasi dengan jumlah maksimum ite-rasi N, dan d (k) δ (k) (k) Fx = s T σ 1 (k) F λ λ δ (k) F(x (k), λ (k) ) s T (x (k) x ) + σ (λ (k) λ. ) t

Metode Pseudo Arc-Length pada Penyelesaian Sistem Persamaan Nonlinier Terparameterisasi 15 Perhatikan bahwa pada iterasi pertama (untuk k = ), x = x dan λ = λ sehingga F(x, λ ) = F(x, λ ) =. Akibatnya d = δ Persamaan (3.15) ekivalen dengan Fx Fx F λ s T σ F λ s T σ δ Dengan demikian pada iterasi pertama berlaku x (1) x = + t λ (1) 1 t 1. (3.15) d = t. (3.16) 1 λ s σ. (3.17) Persamaan (3.17) menjelaskan bahwa (x (1), λ (1) ) berada di vektor singgung sejauh t dari (x, λ ). Selanjutnya persamaan (3.17) dapat digunakan sebagai tebakan awal pada iterasi Newton-Raphson (3.14) dalam memperoleh solusi (x 1, λ 1 ), artinya iterasi Newton-Raphson (3.14) dapat dihitung langsung untuk iterasi k = 1, 2,, N. 4. Implementasi pada Matlab Implementasi metode pseudo arc-length pada pemrograman Matlab mengambil contoh ilustrasi dari sistem persamaan nonlinier terparameterisasi, yaitu F(x, λ) = Ax + λe x =, (4.1) dimana 2 1 1............. A = 1............. h 2.......................... 1 1 2 adalah matriks n n dengan h = 1 n, x = x 1 x 2 x n T merupakan vektor variabel dan λ suatu parameter. Sistem (4.1) merupakan hasil diskritisasi dari persamaan Bratu yang memodelkan masalah reaksi exothermic 4, dengan menggunakan n selang partisi dan lebar selang h. Program Matlab menghitung nilai-nilai solusi (x, λ) yang dimulai dari (, ) dan kemudian x = x 2 1 + x2 2 + + x2 n diplot terhadap λ. Di sini digunakan n = 5, panjang langkah t = 1 2, dan banyak langkah maksimum M = 6. Hasil program tersebut ditampilkan pada Gambar 3 yang menunjukkan kurva solusi dari sistem (4.1). Pada Gambar dapat dilihat bahwa kurva solusi mempunyai titik balik ( x, λ)= (6, 3.5).

16 Rahima Syafitri Gambar 3. Kurva solusi hasil persamaan (4.1) yang diperoleh dari metode pseudo arc-length 5. Kesimpulan Pada artikel ini telah dijelaskan tentang penurunan metode pseudo arc-length dalam menyelesaikan sistem persamaan nonlinier F(x, λ) =, (5.1) dengan x menyatakan variabel dan λ menyatakan parameter. Metode pseudo arclength ini mampu menghasilkan kurva solusi yang memiliki titik balik. Langkah-langkah dari metode pseudo arc-length adalah sebagai berikut: (1) Hitung solusi awal untuk titik (x, λ ) dengan menyelesaikan sistem (5.1) menggunakan metode Newton-Raphson. (2) Hitung vektor singgung satuan s τ di titik (x, λ ). (3) Hitung solusi (x 1, λ 1 ) dengan menyelesaikan sistem yang diperluas F(x, λ) s T = (x x ) + σ(λ λ ) (t t ) dengan menggunakan metode Newton-Raphson. (4) Lanjutkan langkah 2 dan 3 untuk memperoleh titik-titik solusi selanjutnya. Pada artikel ini juga telah dijelaskan implementasi metode pseudo arc-length pada pemrograman Matlab dengan mengambil contoh kasus persamaan Bratu yang didiskritisasi. Dari perhitungan numerik ini diperoleh kurva solusi persamaan Bratu yang memiliki titik balik. 6. Ucapan Terima kasih Penulis mengucapkan terima kasih kepada Bapak Dr. Mahdhivan Syafwan, Ibu Dr. Yanita, Ibu Dr. Susila Bahri, Bapak Zulakmal, M.Si dan Bapak Narwen, M.Si yang telah memberikan masukan dan saran sehingga artikel ini dapat diselesaikan dengan baik.

Metode Pseudo Arc-Length pada Penyelesaian Sistem Persamaan Nonlinier Terparameterisasi 17 Daftar Pustaka 1 Anton, Howard. 1998. Aljabar Linier Elementer. Edisi kedelapan. Erlangga, Jakarta. 2 Boyce, William E., Richard C. DiPrima. 29. Elementary Differential Equations and Boundary Value Problems. John Wiley and Sons, New Jersey. 3 Freitag, Melina. 211. Nonlinear Systems and Bifurcations. 4 49. 4 Mathews, John H., K.D. Fink. 1999. Numerical Methods Using MATLAB. Prentice Hall, Upper Saddle River. 5 www.wikipedia.org/numerical Continuation, diunduh pada tanggal: 19 Maret 215, Pukul: 19..