Dihydrobenzenes NaOH. Effects of the Addition of NaOH on the Decomposition of Dihydrobenzenes under Supercritical Water Oxidation Conditions

dokumen-dokumen yang mirip
menetapkan olahraga perlu makin ani bagi setiap anggota masyarakat, nasional yaitu memasyarakatkan masyarakat. Tak hanya itu saja

Uji Hedonik. Nama Panelis : Tanggal Pengujian : Jenis Contoh : Sosis Sapi : Nyatakan skor penilaian anda pada kolom di bawah ini.

TINJAUAN SINGKAT KALKULUS

ÞßÞ Ì ÒÖßËßÒ ÐËÍÌßÕß. Ó»²» Ò»¹ Õ±» ¼ ² Ë Õ»½ Ó»²»²¹ øó»²»¹µ± ¼ ² ËÕÓ. «² ² ²¹ ¾ ² µ Î ïòðððòðððòðððôððò. îò Ë Ó»²»²¹ ¼»² «³ µ ¹ ²»¹ ²¼±²» ²¹

MODUL I PENDAHULUAN. 1.1 Pengertian html

commit to user ÞßÞ ÓÛÌÑÜÛ ÐÛÒÛÔ Ì ßÒ

Bab. Segitig. Mari menggunakan konsep keliling dan luas bangun datar sederhana dalam pemecahan masalah. Segitiga dan Jajargenjang 103

8 RANGKAIAN PENYEARAH

TRANSISTOR EFEK-MEDAN (FIELD-EFFECT TRANSISTOR)

BAB VI KESIMPULAN DAN SARAN. parkir Pasar Klaten selama 3 hari dapat diambil kesimpulan sebagai berikut.

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

KARAKTERISTIK BIOBRIKET KULIT DURIAN SEBAGAI BAHAN BAKAR ALTERNATIF TERBARUKAN

SAMBUNGAN P-N. Diode Sambungan p-n 63

BAB VI KESIMPULAN DAN SARAN


BAB IV DESKRIPSI DATA DAN PEMBAHASAN HASIL PENELITIAN. Bab ini akan membahas dan menginterpretasikan tentang hasil penelitian

m 2 BUDIDAYA PEMBESARAN IKAN LELE

PENGGUNAAN AIR SUPER KRITIS PADA DEPOLIMERISASI NYLON-12 (BATCH PROCESS)

PETUNJUK PENGGUNAAN. Chest freezer EFE EFI EFL

1 0 0 m 2 BUDIDAYA PEMBESARAN IKAN NILA

5 S u k u B u n g a 1 5 %

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat

Sisi-Sisi pada Bidang Trapesium

ABSTRAK. Kata Kunci : rangka beton bertulang, perkuatan, bresing baja eksternal tipe X, MF, BF. iii

TRANSISTOR 9.1 Dasar-dasar Transistor

BAB 2 TINJAUAN PUSTAKA

1, 1 PENANGKAPAN IKAN DENGAN PURSE SEINE


MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u

ÐÛÒÙßÎËØ ÙßÇß ÕÛÐÛÓ ÓÐ ÒßÒ ÌÎßÒÍÚÑÎÓßÍ ÑÒßÔô ÌÎßÒÍßÕÍ ÑÒßÔ. ÜßÒ Ôß ÍÍÛÆóÚß ÎÛ ÐßÜß ÕÑÒÚÔ ÕÕ Ü ÌÛÓÐßÌ ÕÛÎÖß. øí «¼ Ð ¼ Õ ² ÐÌò ß «Ì ²ª» ³ Õ»»² ÍÕÎ ÐÍ

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

Pabrik Asam Oksalat dari Kulit Pisang dengan Proses Oksidasi Asam Nitrat X - 1. BAB X Kesimpulan BAB X KESIMPULAN

KESEBANGUNAN DAN KEKONGRUENAN

MENINGKATKAN HASIL BELAJAR TENDANGAN DEPAN DALAM

MODIFIKASI TABEL CIPHER PADA ALGORITMA

DAFTAR PEMBELIAN BAHAN BAKU KAIN TAHUN KAIN TC CHINTZ BLACK YARD 13, , , ,

Dosen Pembimbing : Dra. Warnida, MM, Ak.

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

b = dan a b= 22. Jika sudut antara a dan b adalah a, maka

PRODUKSI BIODIESEL MELALUI PROSES TRANSESTERIFIKASI MINYAK CURAH DENGAN METODE DISTILASI REAKTIF BERDASARKAN RATIO UMPAN

Lampiran 1. Asumsi No Variabel Asumsi Satuan Nilai 1 Umur proyek Tahun 10 2 Hari kerja per bulan Hari 30 3 Bulan kerja per tahun Bulan 12 4 Jumlah

Kunci Jawaban. Bab 1 Faktorisasi Aljabar. Uji Kompetensi 1.3 halaman 17. Uji Kompetensi 1.1 halaman 8

USAHA PEMBUATAN GULA AREN

Lampiran 1: Surat Keterangan dari Sekolah

BROMINASI ASAM SINAMAT di BAWAH BEBERAPA KONDISI REAKSI

Pembahasan. 1. Pemodelan UML. 3. Mekanisme Umum pada UML

KEPUTUSAN MENTERI PENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA, NOMOR 009/M/2015 TENTANG

Akbar et al, Dukungan Tokoh Masyarakat dalam Keberlangsungan Desa Siaga Aktif...

[RUMUS CEPAT MATEMATIKA] SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel

PROGRAM STUDI Sl PGSD

BAB 3 KONDISI RANK SEHINGGA MATRIKS AB DAN BA SERUPA. Pada bab ini akan diperkenalkan konsep matriks penrose dan grup inverse

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain

TUGAS AKHIR. Oleh : Pembimbing Prof. Ir. Djuanda Suraatmadja. Co-Pembimbing Ir. Budi Lationo, MT

SOAL DAN PEMBAHASAN OSN 2018 KABUPATEN SUMBA TIMUR NUSA TENGGARA TIMUR

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

PEMBUATAN BIODIESEL DARI MINYAK BIJI ALPUKAT (Persea gratissima) DENGAN PROSES TRANSESTERIFIKASI

KEMENTERIAhI PENDIDIKAN DAN KEBT]DAYAAN UNTYERSITAS HALU OLEO Alamat : Karyus Brrmi rridharma Anduonohu Telp. (0401) , Fax (0401)

ÞßÞ Ê ÌÛÓËßÒ ÜßÒ ÐÛÓÞßØßÍßÒ

Kalian sudah belajar bangun datar. Tentu kalian sudah dapat mengelompokkan bangun datar.


0,8 9 0,9 4 1,2 4 7,1 6 %

PROSES TRANSESTERIFIKASI MINYAK CURAH DENGAN METODE DISTILASI REAKTIF UNTUK PRODUKSI BIODIESEL BERDASARKAN RASIO UMPAN

RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd.

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Permutasi 7 Huruf Pada Confusing Vigenere Cipher 7 th Sword Vigenere

ÍÌÎßÌÛÙ ÐÛÓßÍßÎßÒ ÖßÍß ÐßÜß ÝÊò ÍÑÔÑ ßÒÙÕßÍß ËÌßÓß ÒÛÌÉÑÎÕ ÍËÎßÕßÎÌß ÌËÙßÍ ßÕØ Î. Ñ» æ Í Ì ßÎÇßÒ ßÒÌ ÕßÍßÎ Üïëðçðèî


PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA. Yuman Agistia. Mahasiswa Program Studi Pendidikan Matematika.

USAHA BUDIDAYA CABAI MERAH

UJI PENYIMPANAN NATA DE COCO PADA BERBAGAI KEMASAN PLASTIK STORAGE TEST OF NATA DE COCO ON VARIOUS PLASTIC PACKAGING

BAB 2 LANDASAN TEORI

Jadwal Ujian Tengah Semester Genap 2016/2017 Universitas Pertamina

Pemodelan Berorientasi Objek

TELAAH JEJAK REAKSI KOMPLEKS ISOMERISASI EUGENOL *)

USAHA PENANGKAPAN IKAN PELAGIS DENGAN ALAT TANGKAP GILLNET

ßÒßÔ Í Í ÍÌÎËÕÌËÎßÔ ÜßÒ Ò Ôß ÐÛÒÜ Ü ÕßÒ ÒÑÊÛÔ ç ÍËÓÓÛÎÍ ïð ßËÌËÓÒÍ ÜßÎ ÕÑÌß ßÐÛÔ ÕÛ ÌØÛ Þ Ù ßÐÐÛÔ ÕßÎÇß ÉßÒ ÍÛÌÇßÉßÒ

3. Berdasarkan gambar soal nomor 2, alas balok tersebut berbentuk bangun datar... A. Persegi B. Persegi panjang C. Belah ketupat D.

VEKTOR. maka a c a c b d b d. , maka panjang (besar/nilai) vector u ditentukan dengan rumus. maka panjang vector

BAB VI KESIMPULAN DAN SARAN. Permasalahan yang sering terjadi di kawasan perkotaan adalah kurangnya

RANCANGAN PERCOBAAN TIGA FAKTOR DENGAN PENGUKURAN BERULANG (THREE FACTOR EXPERIMENTS WITH REPEATED MEASUREMENT) SKRIPSI

SOAL LAJU REAKSI. Mol CaCO 3 = = 0.25 mol = 25. m Mr

Modul ini adalah modul ke-6 dalam mata kuliah Matematika. Isi modul ini

Mass Balance on Reactive System

a. Pengujian Terhadap Data Waktu Yang Dikumpulkan teriebih dahulu akan dilakukan proses pengujian terhadap data waktu

SINTESIS SENYAWA N - (2,6 - DIMETILASETANILIDE) - IMINODIASETAT (HIDA) DAN TURUNAN - TURUNANNYA

! " # $ %&'(% )%*&+,-." # $ / 01234% $5 $! 78093*:;:$5 Kamarku

BAB 2 LANDASAN TEORI Kriptografi

MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan)

Tugas Akhir Perencanaan Struktur dan Rencana Anggaran Biaya Gedung Kuliah 2 Lantai

4 E 6? E 2988*e8. e * +es $ st. ,5 ^ Sl El. E $' Cg3ss il? fa E d-.$.el. o g *l= E ie titsl. B"HF-A x 5 HC 9. H ; sef. f I F E.

TOPIK 3 : GEOMETRI KOORDINAT - Vektor

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

PERENCANAAN SALURAN DRAINASE PERUMAHAN HARMONY RESIDENCE

LAPORAN HASIL PENELITIAN HIBAH PENELITIAN STRATEGIS NASIONAL DIPA UNIVERSITAS BRAWIJAYA TAHUN 2010

- - PANGKAT TAK SEBENARNYA SMP - -

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)

DAFTAR NILAI PRETEST DAN POSTTEST KELAS EKSPERIMEN

B21 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok

Transkripsi:

HWAHAK KONGHAK Vol. 40, No. 5, October, 2002, pp. 651-657 Dihydrobenzenes NaOH * * (2002 4 19, 2002 8 20 ) Effects of the Addition of NaOH on the Decomposition of Dihydrobenzenes under Supercritical Water Oxidation Conditions Geun-Hee Lee* and Jong-Guk Kim *Environmental Policy Division, Busan Metropolitan City Hall, Pusan 611-080, Korea Department of Environmental Engineering, Chonbuk National University, Jeonju 561-756, Korea (Received 19 April 2002; accepted 20 August 2002) catechol hydroquinone NaOH. NaOH! "# 4! $% &'( ) * NaOH catechol hydroquinone +,-. /01 234. GC/MS 5* catechol hydroquinone 167 8# 9:;<=>?@AB. CD 8# E 1,4-benzoquinone> hydroquinone 167 FAB. 1,4-Benzoquinone# hydroquinone G CO 2 H!,) /( I JKL1 MN, =O>. Catechol hydroquinone NaOH 1,4-benzoquinone PQ E 9:;<= +,-R0S NaOH CO 2 CH 4 ;<T( U-R. >V * catechol hydroquinone NaOH WX YZ [\( /01] ^ &_`@ ab WXcd2 e`fg $% hb( i NaOH jn /> kl /01 mnab. Abstract The aim of this study is to compare the effects of NaOH addition in the decomposition of dihydrobenzenes(catechol and hydroquinone) using supercritical water(scw) and supercritical water oxidation(scwo) conditions. Experiments were performed using four sets of conditions, which were in the presence and absence of NaOH in both SCW and SCWO conditions. Under the experimental conditions, the addition of NaOH accelerated the decomposition of catechol and hydroquinone in both the conditions. Several intermediates were identified by performing GC/MS analysis from SCWO of catechol and hydroquinone, and in particular, a large quantity of 1,4-benzoquinone were detected from SCWO of hydroquinone, which is known as an probable inhibitor to hinder the production of CO 2 after hydroquinone oxidation. The addition of NaOH to catechol and hydroquinone oxidation reduced the generation of these intermediates including 1,4-benzoquinone, however the effects of the NaOH addition in SCW were the similar as compare to those of SCWO. Further, the addition of NaOH increased the production of CO 2 and CH 4 in both the conditions. These results revealed that the effects of NaOH on the decomposition of catechol and hydroquinone using SCWO are not negligible. Therefore, its effects on the decomposition of other organic compounds under SCWO conditions should be estimated for determining optimized operating conditions and reactor designs. Key words: SCWO, NaOH, Catechol, Hydroquinone 1..! " # $% &', To whom correspondence should be addressed. E-mail: hotlgh@hotmail.com ( )*+, -. / 0 $ 1!$ 23 4567 89 : ;. 2<= >?@ A> B CDEF 1G)H0 IJ KL+ MN O PQR STU> 1G )V W3XY Z[ \]^ 0 CDE 3)V V_+ Z[, A 9^ `a. bc ), de fl 1!g \ 4567 89 ^?@ NhA Z[ i^ e. 651

652 <c ) 1G j< kl; Mm nc c opq/r (SCWO) stu. opq/r F " rv opq/(scw, w 374 o Cx, yz 22.1 MPax){+ M) r }~ M [1, 2]. <c r " ƒ= > pq;4 $5 (w 50-325 o C, yz 2-20 MPa)+ M B > r " Aˆ > MŠ $% Œ @ & ; [3, 4]. + $> W kl E+ >c $> Ž c kl 3 [5]. opq/r " e > 6? $ G e F> šk" $?, œ$%, r, $žr nc žœ6 + Ÿ{ [6]. 2<= h K opq/r Y+ $,, " d $ {+ G r> { v nm NaOHv j $ )H 3` h+ MR, 6 NaOH : 6 R \ l opq/r > $5 " Œ@ '. r> { v nm NaOH r> { + M$+ *ª «O. ~ NaOH> «?@ $ Vq Nh5 XY. + + Cc «±). / :. ²³ opq/r 6 + C K $ F[7-10]. ²³ _µ ²³ opq/r "Y+ ²³ M 0 Nh5 + ¹ A> º», ST, gl v G h F PQ¼ k[7]. ¹ ²³ ½¾ ^?@ ST" º» gl G Àl O C\ \Á 4 opq/r +, 6 MÂ, IJ $ G F" M + CM Aˆ à P Q¼ [9]. 6 + ²³> opq/r + {* G ÄÅe dihydrobenzenesk catechol" hydroquinone $ Æ 0 IJ hydroquinone ²³ CO 2 Ç3 Èh r )H M O PQ¼ [11]. cé ÊË h> 6 + ²³ > opq/r + NaOH KM Œ@ & % ²³ M gl> G Àl m"v ÌÍ[12]. 6 + <c m"v ÎÏ NaOH ²³> Mv žr)h $ + CM ÄÐv / Ñ)+ NaOH opq/ r + catechol" hydroquinone+ _ «+ CM 5ƒ Æ. bc, r l + >c opq/r + > NaOH Ò" ~ AˆM r lv 3 Ó opq/ {+ NaOH> Ò"+ Cj d 5ƒÆ. 2. Ô 6% $v ƒæ0 ÕÖK Ô_v Fig. 1+ = ØÍ. )7 3Õ> HPLC yùú(np-cx-50: YÛ Ü(s))v j Ý!Wv ÞM $ ß)à. Ý!W SUS316-áâKãá äú? 1/16K_(Ø?1.0 mm), å 4 m 0 $ Ý!W~ Ñc áâkãá äú å 35 cm. $!+ Fræç, èfr=éç Fr=éç {ga 6:5:1 c Ef5v Æ. Ef5 hv j!m $wç3 êw)ë $v ìí. LU)* 5í nj g Å W î ï 4mL+ 16 mlç3 ðñ) à, $v Þ"c )7!ˆµv Þj ñ%j òó Æ. yz5í y5íôõ(tescom26-1762)v Æ. Ô opq/ opq/r + NaOH> Ò"v P nm NaOH~ r l H 2 O 2 > ±v 5c 43 $5 + / Æ. ö, 5 1(SCW)" 5 3(SCW+NaOH) opq/ {+ NaOH «ÄÐ nc O, 5 2(SCWO)~ 5 4(SCWO+NaOH) H 2 O 2 > r lv c opq/r 5 + NaOH «ä nc O. Nh w 440 o C(±2 o C), yz 26 MPa(±0.2 MPa)+ / Æ. <c 5 + $+ > LU)* 0.13o+ 0.51o, Ý! + 2.89o+ 11.58oÆ 43 Ô5 + hl LU)* ÑÆ. Catechol" hydroquinone> o 5.32ø10 3 mol/l o H 2 O 2 catechol" hydroquinone CO 2 Ç3 Ü- Èhr )ù / rg> 6ú VYÆ. o NaOH catechol" hydroquinone> û+ 6ú VYÆ. )7 ü w e + / )* ýçá(þ 99.995%x)v ÿ \ì\ /{> rv l c j catechol(wako Chemical Co., min. 99.0%), hydroquinone(wako Chemical Co., min. 99.0%), H 2 O 2 (Mitsubishi Chemical Co., 31.0%) NaOH(Kishida Chemical Co., min. 96.0%) /f îaæ. /{> r 0.5 mg/l Æ0 Ô {+ {> r /f è \3 Ó ó ýçáv q%j ÿ\ìí. )7 yùúv j $ 4Ø $~ ò yz 5íôõv Þ"c fl ~ L j /ó Æ. $ /e fl)7 W r/f phv 2Y 5 íj %fl Ð2 (HPLC, HP-1100 series, Nova-Pack C18, 3.9ø150 mm Column) Yj catechol" hydroquinone> MŠ Æ. bc $ {*G GC/MS(HP 6890 series GC system HP 5973 Mass Selective Detector, HP-5 30 mø0.25 mm 40 5 2002 10 Fig. 1. Experimental apparatus.

ø0.25 µm Film Thickness Column)v j 5ƒÆ GC/MS nm phv 2Y 5Yc )7 5mlv }(5 ml) 2 Åc 1mlÇ3 j )7 ƒæ. bc $ h > fl)7+ Cj TOC(Shimadzu TOC-500) / Æ. 3. 3-1. > 5 + catechol" hydroquinone> $jw $ h ) 7> ð *J Y. / Í. Catechol" hydroquinone / f 5 + $ h e )7> Æ= $ + 5 + ¹ )7> ðæ. 5 1(SCW)>?@ catechol " hydroquinone> $ )7 > ð : j 23 $ \=3 Ó MŠ O YÍ. 2<= 5 2(SCWO), 5 3(SCW+NaOH) 5 4(SCWO+NaOH)>?@+ $ > ð /Í. 5 2(SCWO)>?@ $ catechol " hydroquinone /f + LU)* å\+ ¹ ;; ^ ðæ. 5 3(SCW+NaOH)>?@ catechol ðc LU)* å\¼ 23 > ð : 3c hydroquinone + LU)* å\+ ¹ ;; ^ ðæ. 5 4(SCWO+NaOH)>?@ catechol" hydroquinone /f> > ð hl 5 2~ ƒc? 4Æ= 4 ^ ðæ. <c )7> > ð W 5 2(SCWO), 5 3(SCW+NaOH) 5 4(SCWO+NaOH)>? @+ $ ¾1J \ O YÍ. 3-2. Catechol Hydroquinone 43 $5 + Ì\R catechol> MŠ Fig. 2+ =. 5 1(SCW)> MŠ LU)* 0.51o+ 10% `> MŠ = ØÍ= NaOH H 2 O 2 e?@+ catechol> MŠ ñ %J iæ. IJ H 2 O 2 ~ NaOHv d c 5 4>?@ 0.13 o+ MŠ > 100%+ #Æ. <c m" opq /r + NaOH Ò"v ±). / : Op šj 4js. bc 5 2(SCW+NaOH)+ = Î~ NaOH ` catechol> M žr O P /. cé hydroquinone xw+ + M W 1,4-benzoquinone ð k+ hydroquinone 1,4-benzoquinone ð O Fig. 2. Conversions of catechol under four conditions. Dihydrobenzenes NaOH 653 Fig. 3. Conversions of hydroquinone under four conditions. Fig. 4. Conversion ratio of 1,4-benzoquinone under four conditions. Qj hydroquinone> MŠ 1,4-benzoquinone ðc O l c $ h> hydroquinone> v î qræ. bc $ h+ 1,4-benzoquinone ð e - î $ > x CK - AˆÆ. 43 $5 + Ì\R hydroquinone> MŠ Fig. 3+, 1,4-benzoquinone> xck ð g Fig. 4+ =. 5 1(SCW)+ hydroquinone> MŠ LU)* 0.51o+ 25% YÆ= NaOH H 2 O 2 v d+ ¹ MŠ ñ%j i Æ. bc, catechol> MŠ" # hydroquinone opq/+ NaOH ` 0.13o+ MŠ > 100%+ #. c É xw+ hydroquinone W G e 1,4-benzoquinone NaOH e 5 3(SCW+NaOH)" 5 4(SCWO+NaOH)+ Œ @ &'^ M\ 0.13o+ > 100%+ #Æ. bc 5 1(SCW)+ LU)* id+ ¹ xck - $ h4 \? 4Æ= 5 2(SCWO)+ 0.13o+ o 1,4- benzoquinone> -4 2.5ú Y i LU)* id+ ¹ ;!? =. " 5 2(SCWO)> hydroquinone > r $W 1,4-benzoquinone G O P / Í 5 3(SCW+NaOH)" 5 4(SCWO+NaOH)W NaOH hydroquinone 1,4-benzoquinone Œ@ &'^ Mv žr)h O P / Í. <c m" ²³> opq/r + Œ@ {9. 2 opq/+ ²³ r. catechol hydroquinonev CO 2 Ç3 M O PQ¼ HWAHAK KONGHAK Vol. 40, No. 5, October, 2002

654 NaOH :?@ ²³ r W G e hydroquinone r $ "Y+ 1,4-benzoquinone ` \ CO 2 Ç3 $ R O Àl O PQ¼ k[11]. 2<= NaOH hydroquinone" 1,4-benzoquinone Mv žr)h# ²³> o pq/r + NaOH ²³ M žr m"v Ý. / Í0 bc 6 v Þj <c m"v šk. / [12]. cé$thammanayakatip [11] / c 6 m"+ opq/ 5 (420 o C, 24.5 MPa, LU)* 25o)+ hydroquinone MŠ 1.5% Æ= Ô5 1(SCW)+ Ì hydroquinone MŠ 0.51 o+ 25% Œ@ m" Ì\Â. <c Ô / c $w~! > + >c O YÍ. ö, Ô+ $v! nm Ef5v ƒj 440 o C+ Ô c, Thammanayakatip Ef54!h#Š % Ñ5v Æ, $w 420 o CÆ. 3-3. 3-3-1. Catechol> {*G {*G > šk $ \Á BU> Mc F G 3, b \Á $? R 3v Y \ Œ@ {9. Catechol+ Cc 43 M$ 5 + Ì\R C K Ð2& {*G " d Fig. 5+ = ØÍ. Fig. 5> {*G GC/MS Ä' Þj > _Š 85%xK O = ( O. Fig. 5. Total ion chromatogram of catechol decomposition products at 440 o C, 26 MPa, 5.32 10 3 mol/l catechol, 600% oxygen of the precise stoichiometric amount, 600% NaOH of the molar concentration of catechol and 0.17 s residence time under four conditions. 40 5 2002 10

Dihydrobenzenes NaOH 655 Fig. 6. Total ion chromatogram of hydroquinone decomposition products at 440 o C, 26 MPa, 5.32 10 3 mol/l hydroquinone, 600% oxygen of the precise stoichiometric amount, 600% NaOH of the molar concentration of hydroquinone and 0.17 s residence time under four conditions. 5 1(SCW)+ {*G ÄÅ3 Ó)= 5 2(SCWO) +, {*G ÄÅÍ. s9 G 2-cyclopenten- 1-one, 4-cyclopentene-1,3-dione, 2H-pyran-2-one, 3-phenyl-2-propyn-1-ol 1-indanone $ {*G { 4-cyclopentene-1,3-dione~ 1-indanone ²³> opq/ r "Y+ ÄÅÍ[7]. <c m"w ²³> M"Y+ W catecholv M R * Y. /. 5 3(SCW+NaOH)+ 2-cyclopenten-1-one " 3(&2)-methyl-2-cyclopenten-1-one ÄÅÍ, LU)* 6+ šk3 Ó 3> ÄÅÍ. 3(&2)-methyl-2-cyclopenten- 1-one LU)* ²³" ÑÆ, GC/MS Ä+ >M \Q+= j hw 3(&2)-methyl-2-cyclopenten-1-one ) Æ. 5 4(SCWO+NaOH)+ 2-cyclopenten-1-one, 3(&2)-methyl- 2-cyclopenten-1-one 1-indanone {*G ÄÅÍ catechol ÄÅ3 Ó). bc, 2-cyclopenten-1-one 5 2(SCWO)~ 5 3(SCW+NaOH)+ Ñ)+ ÄÅÍ ÄÅg,è catechol> M"Y+ xïj, - 2-cyclopenten-1-one M R * P / Í. 1-indanone 5 2(SCWO)~ 5 4(SCWO+ NaOH)+ Ñ)+ ÄÅe OW catechol> r $W G e Fp Y. / Í + 3(&2)-methyl-2-cyclopenten-1- one 5 3(SCW+NaOH)" 5 4(SCWO+NaOH)+ ÄÅe O W NaOH + >M G e Fp Y. / Í. Fig. 2> MŠ" GC/MS škc {*G "v AˆM 4 HWAHAK KONGHAK Vol. 40, No. 5, October, 2002

656 MŠ 5 2(SCWO)> opqr + 4 3`, {*G G, O P /. " -.v R {*G > 1 G CO 2 Ç3 ÈhM)H xïj M. O. 5 3(SCW+NaOH)> opq/ {+ NaOHv c?@+ MŠ = -.v R {*G > :/ P / bc G > BU þc O = 0. <c {*G > r $>?@ s ¹æ $+ >M R # $ 12 j -c {*G ` \ Ø AM NaOHv c?@+ Me Na + w" OH w $+ ^ «_# + > M \= w $ Yc R # G > B U þd Y. /. r l~ NaOHv d c 5 4(SCWO+NaOH)>?@ catechol M žr cé G e {*G > BU þæ. x> m" opq/ r + \ NaOH Œ@ 0 bc <c Ò" m3 ±) / : Op 4js O. 3-3-2. Hydroquinone> {*G ²³> opq/ r "Y+ hydroquinone {*G G b O r 1,4-benzoquinone G )H k+ ²³ CO 2 Ç3 Èhr ÊMu O PQ¼ \ NaOH + \Á «_3v ä O Œ@ {9. Fig. 6+ 43 $5 + Ì\R hydroquinone> C K Ð2 & {*G " d = ØÍ. GC/MS m" Fig. 3> hydroquinone MŠW 5 1(SCW)" 5 2(SCWO)+ M 3 Ó hydroquinone xïj 4 O YÍ= hydroquinone ške > abundance5 Œ@ ^ = = hydroquinone }+ >c ÅÒŠ Œ@ O YÍ. 5 1(SCW)+ {*G 2-cyclopenten-1-one, 1,4-benzoquinone, 3(&2)-methyl-2-cyclopenten-1-one 1,4-cyclohexanedione ÄÅÍ. <c m"w opq/ {+ hydroquinone xïj M \ {*G hµ O P / Í. 5 2(SCWO)+ 5 1(SCW)" > ƒc {*G ÄÅÍ= I^ 1,4- benzoquinone $5 4 Œ@ abundance5 = ØÍ. <c m"w hydroquinone Me, - 1,4- benzoquinone hµe O P / Í. 2<= NaOHv c 5 3(SCW+NaOH)" 5 4(SCWO+NaOH)+ 1,4-benzoquinone ÄÅ3 Óè NaOH hydorquinone> Mv žr)ù 6` è7¹ 1,4-benzoquinone> M žr)8 šj 4jî. ~ NaOH Ò" opq/r + _µ ²³Uv. Œ@ ^. O. ö, > r "Y+ ²³ G ²³> M"Y+ hydroquinone G b W 1,4- benzoquinone G \ CO 2 Ç3> Èhr v ÊM#, NaOH hydroquinone" 1,4-benzoquinone> M žr# ²³ _µ ²³U> M Z[ žr O. ÊË ²³ 2-²³> opq/r + NaOH > > M žr* škæ[12]. 2<= opq/ { + 2-²³+ Cj NaOH M žrí= ² ³ 23 «: O škí[13]. bc opq/ {+ 2-²³+ _ r(hcl), Pæ(NaOH KOH), E(NaCl) > Ò"v 5ƒm" Pæv c NaOH KOHv c 5 + 2-²³> MŠ Œ@ žrí= r E c? @+ 23 MŠ i3 Ó OW NaOHv c? @ Na + w4 OH w $+ ^ «_ O 9 Í[14]. <c OH w 2-²³+ Cj :;L j $ žr)h= ²³ :hl Ò"# :;LK OH 40 5 2002 10 w 23 Ò" : O YÍ[13]. <c OH w> Ò " catechol, hydroquinone 1,4-benzoquinone+ Cj Ñ^. O YÍ, bc r $+ NaOH Þ Mv žr)h= r l~ x< + Cj è PQR O :. 3-4. opq/r + CO 2 Ç3 &'^ ÈhJ M O Œ@ {9# opq/r Y> =~ žœ NaOH Ò" = nm CO 2 Ç3> 𵚠{9c 3 /. 6 + MR LU)* 0.51o Ø+ LU)* Œ@ (è á> G g Yg \Q+. G e áv Y c m" r $K 5 2(SCWO)+ s CO 2 ~ CO ÄÅÍ NaOH` c 5 3(SCW+NaOH)+ CH 4 ~ H 2 s9 L G Í0 CO 2 g ÄÅÍ. bc 5 4 (SCWO+NaOH)+ CO 2, CO, CH 4 H 2 %> ÄÅÍ. < c? ²³" 2-²³+ CM Ñc m" Ì\Â[15]. Ô5 + LU)* (è ª CO 2 Yj Yg?»j C@ CO 2, CH 4 > G g *ª = nm TOC / Æ. TOC ÞM Ì\R }g" HPLC + >M Ì\R catechol" hydroquinone> MŠ W } g o $ h }/3v qræ. Fig. 7+ LU)*+ $ > catechol hydroquinone {*G 3> ± }(UICs)> }G Š(carbon yield) = ØÍ. j } Fig. 7. Temporal variations of the carbon yield of the reaction products

Dihydrobenzenes NaOH 657 G Š $ > catechol hydroquinone {*G 3> ± }(UICs)> }g+ CM $ h> catechol hydroquinone }g =A O Bc. UICs $ h )7> TOC+ $ )7> TOCv C qræ {*G $ )7> TOC + M3 Ó catechol hydroquinone> }g C qr Æ. ¹ UICs+ á {+ CO 2, CO CH 4 " %+ è ± }v Ddc. Catechol" hydroquinone> $ UICs G Š H 2 O 2 ~ NaOH jw+ ¹ xïj '^ = 0. 5 1(SCW)+ UICs G Š 3` H 2 O 2 NaOH c 5 2(SCWO)~ 5 3 (SCW+NaOH)+ xïj iæ -Ëv d c 5 4(SCWO+NaOH)+ 50% x Z[ ^ iæ. <c m"w opq/r + NaOH CO 2, CH 4 > B G Ç3 Mv Z[ žr)ë O 9Í. cé, 5 2(SCWO) + catechol" hydroquinone {*G > }G Š AˆM 4, catechol+ AM hydroquinone E J O r "Y+ G e 1,4-benzoquinone CO 2 Ç3 Èh M O ÊM k [11]. bc 5 3(SCW+NaOH)+ hydroquinone>?@ Fig. 3 + 4js Î~ MŠ Ì\Â= UICs G Š {*G > }G Š OW CO 2 CH 4 Ç3 M3 Ó {*G 4d P /. 4. opq/ opq/r + NaOH Ò"+ CM ÄÐ nj dihydrobenzenes{ catechol" hydroquinone XYj Ô / Æ. 43 $5 ö opq/+ NaOH 3 Ó? @(5 1: SCW)~ c?@(5 3: SCW+NaOH), opq/r + NaOH 3 Ó?@(5 2: SCWO)~ c?@(5 4: SCWO+NaOH) =F\ w 440 o C(±2 o C) yz 26 MPa(±0.2 MPa) + Ô / Æ. Ôm" 5 + ¹ catechol" hydroquinone> )7> c + $ G ðj > ð $Yv *J Y. / Í. Catechol" hydroquinone> MŠ opq/ opq/r + NaOH + ¹ %> i Í. NaOH : / c hydroquinone> opq/r + {*G 1,4-benzoquinone, G Í. NaOHv c opq/ opq/r + 1,4-benzoquinone ÄÅ3 Óè NaOH 1,4-benzoquinone> Mv Œ@ &'^ žr)h O P / Í. <c m" GC/MS m" š KÍ. Catechol )7+ Cc GC/MS m" opq/r `, {*G G O = 0= opq/r {+ NaOHv )H catechol> MžR {*G > M žr)h O = 0. bc TOC CO 2, CO CH 4 > 𵚠5ƒc m" catechol" hydroquinone> opq/r + NaOH > G Š ^ i)h O = 0. >, 6 opq/r + NaOH : R \ H= l > opq/r + $ G r { nm NaOH b <c Ò" ±) / : / 6 4js. ¹ 4 K opq/r Y> $ Vq= Nh5 > XY nm NaOH Ò" v Q O 89. 1 Modell, M.: In Standard Handbook of Hazardous Waste Treatment and Disposal, Freeman, H. M., ed., McGraw-Hill, New York, 8.153 (1989). 2. Tester, J. W., Holgate, H. R., Armellini, F. J., Webley, P. A., Killilea, W. R., Hong, G. T. and Barner, H. E.: ACS Symposium Series, 514, 34(1993). 3. Li, R., Thornton, T. D. and Savage, P. E.: Environ. Sci. Technol., 26, 2388(1992). 4. Webley, P. A. and Tester, J. W.: ACS Symposium Series, 406, 259 (1989). 5. Carruana, C. M.: Chem. Eng. Progess, 91, 10(1995). 6. Savage, P. E., Gopalan, S., Mizan, T. I., Martino, C. J. and Brock, E. F.: AIChE J., 41, 1723(1995). 7. Thornton, T. D., LaDue, III, D. E. and Savage, P. E.: Environ. Sci. Technol., 25, 1507(1991). 8. Thornton, T. D. and Savage, P. E.: Ind. Eng. Chem. Res., 31, 2451 (1992). 9. Gopalan, S. and Savage, P. E.: AIChE J., 41, 1864(1995). 10. Lee, D. S.: Korean Soci. of Envi. Engineers, 14, 31(1992). 11. Thammanayakatip, C., Oshima, Y. and Koda, S.: Ind. Eng. Chem. Res., 37, 2061(1998). 12. Lee, G. H., Nunoura, T., Matsumura, Y. and Yamamoto, K.: J. Supercrit. Fluids, 24, 239(2002). 13. Lee, G. H., Nunoura, T., Matsumura, Y. and Yamamoto, K.: Ind. Eng. Chem. Res., 41, 22(2002). 14. Lee, G. H., Nunoura, T., Matsumura, Y. and Yamamoto, K.: Chem. Letters, 11, 1128(2001). 15. Lee, G. H., Nunoura, T., Matsumura, Y. and Yamamoto, K.: JSWWE, 13, 89(2002). HWAHAK KONGHAK Vol. 40, No. 5, October, 2002