FOURIER TRANSFORMS AND THEIR PROPERTIES



dokumen-dokumen yang mirip
TRANSFORMASI KANONIKAL LINEAR QUATERNION QUATERNION LINEAR CANONICAL TRANSFORM

TRANSFORMASI FOURIER QUATERNION

TRANSFORMASI FOURIER QUATERNION DUA SISI DENGAN KERNEL SIFAT-SIFATNYA. MUH. NUR Jurusan Matematika, Universitas Hasanuddin, Makassar

Transformasi Fourier Quaternion yang Didasarkan pada Bidang Ortogonal Split dengan Satu atau Dua Quaternion Murni

TRANSFORMASI FOURIER FRAKSIONAL QUATERNION SISI KANAN. RIGHT SIDE of FRACTIONAL QUATERNION FOURIER TRANSFORM

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

TRANSFORMASI FOURIER DAN TRANSFORMASI FOURIER QUATERNION

TRANSFORMASI LAPLACE. Matematika Lanjut 2. Achmad Fahrurozi-Universitas Gunadarma

10. Transformasi Fourier

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B.

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

BAB 2 TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

Transformasi Fourier 3.4 Transformasi Fourier

SATUAN ACARA PERKULIAHAN MATA KULIAH / KODE : TEORI DAN ANALISA SISTEM LINIER / IT SEMESTER / SKS : III / 2

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

Penggunaan Bilangan Kompleks dalam Pemrosesan Signal

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

Transformasi Laplace BDA, RYN MATERI KULIAH KALKULUS TEP FTP UB

SATUAN ACARA PERKULIAHAN TEKNIK ELEKTRO ( IB ) MATA KULIAH / SEMESTER : ANALISIS SISTEM LINIER / 3 KODE / SKS / SIFAT : IT / 3 SKS / LOKAL

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

Karakteristik Operator Positif Pada Ruang Hilbert

BAB I PENDAHULUAN Latar Belakang Permasalahan

Konvergensi Barisan dan Teorema Titik Tetap

12. Teorema Inversi Fourier dan Transformasi Fourier di L 2 (R)

yang Dibangun oleh Ukuran Bernilai Proyeksi

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

13. Aplikasi Transformasi Fourier

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

Pengantar Statistika Matematik(a)

SATUAN ACARA PERKULIAHAN

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1

7. Transformasi Fourier

Kelengkapan Ruang l pada Ruang Norm-n

Transformasi Laplace

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

PENGANTAR ANALISIS FUNGSIONAL

BAB I PENDAHULUAN Latar Belakang Masalah

APLIKASI SPECTRUM ANALYZER UNTUK MENGANALISA LOUDSPEAKER

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga

ANALISA WATERMARKING MENGGUNAKAN TRASNFORMASI LAGUERRE

Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks

Digital Audio Watermarking dengan Fast Fourier Transform

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

QUATERNION AND IT S PROPERTIES ABSTRAK

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

Arie Wijaya, Yuni Yulida, Faisal

TRANSFORMASI WAVELET DISKRIT PADA SINTETIK PEMBANGKIT SINYAL ELEKTROKARDIOGRAM

KEKONVERGENAN LEMAH PADA RUANG HILBERT

JURNAL FOURIER April 2017, Vol. 6, No. 1, ISSN X; E-ISSN

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER

Konvolusi dan Transformasi Fourier

SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kata kunci: Fourier, Wavelet, Citra

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

Keterbatasan Operator Riesz di Ruang Morrey

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54

REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT

3. Analisis Spektral 3.1 Analisis Fourier

TOPOLOGI RUANG LINEAR

TUJUAN INSTRUKSIONAL KHUSUS

Teorema Dasar Aljabar Mochamad Rofik ( )

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

SATUAN ACARA PERKULIAHAN EK.353 PENGOLAHAN SINYAL DIGITAL

17. Transformasi Wavelet Kontinu dan Frame

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP

*Tambahan Grafik Fungsi Kuadrat

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

FUNGSI GREEN PADA PERSAMAAN DIFERENSIAL BIASA

Fourier Analysis & Its Applications in PDEs - Part II

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES

TRANSFORMASI LINIER PADA RUANG BANACH

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

MATEMATIKA INFORMATIKA 2 FUNGSI

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

BAB I DERIVATIF (TURUNAN)

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK

ANALISA SAHAM MENGGUNAKAN TRANSFORMASI FOURIER STOKASTIK

BAB I PENDAHULUAN ( )

Pendahuluan. Dua operasi matematis penting dalam pengolahan citra :

Transkripsi:

SIFAT-SIFAT TRANSFORMASI FOURIER DI L 1 (R) DAN L 2 (R) FOURIER TRANSFORMS AND THEIR PROPERTIES IN L 1 (R) AND L 2 (R) Rusdin, Mawardi Bahri, Loeky Haryanto Bagian Matematika Terapan, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin. Alamat Korespondensi: Rusdin, S.Si Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin Makassar, HP: 081355588940 Email: S.sirusdin@yahoo.com

ABSTRAK Uraian utama tesis ini adalah definisi transformasi Fourier dan sifat-sifat transformasi Fourier di L (R). Sifat-sifat yang dibahas seperti sifat utama yang sangat penting dalam pembahasan transformasi Fourier yaitu sifat penjumlahan, sifat linear, pergeseran, modulasi, skala, konjugat, kontinuitas, dan sifat terbatas. Selanjutnya dibahas konvolusi untuk transformasi Fourier, invers transformasi Fourier dan turunan pada transformasi Fourier. Selanjutnya transformasi Fourier diperluas di L (R). sifat-sifat transformasi Fourier di L (R) dibahas lebih lanjut seperti linearitas, modulasi dan konvolusi. Kata kunci : Transformasi Fourier, Konvolusi, invers, modulasi, turunan. ABSTRACT The main description of this thesis is the definition of the Fourier transform and their properties in L (R). The basic properties such as addition, linearity, translation, modulation, scaling,conjugation, continuously and boundary properties are presented. Next, the fundamental properties for Fourier transform such as convolution, inverse for Fourier transform and it derivative are also established. Finally, the Fourier transform in L (R) are extended to L (R). Properties of the Fourier transform are generalized in L (R) such as linearity, modulation and convolution. Keywords: Fourier transform, convolution, inverse, modulation, derivative.

PENDAHULUAN Trasformasi matematis digunakan terhadap suatu sinyal untuk mengetahui informasi lain yang terkandung dalam sinyal tersebut yang tidak dapat terbaca pada sinyal aslinya. Ada banyak metode yang digunakan untuk melakukan transformasi. Salah satu transformasi yang paling banyak digunakan adalah transformasi Fourier, yaitu pemetaan fungsi-fungsi yang bernilai riil atau kompleks ke fungsi-fungsi yang bernilai kompleks. Transformasi ini telah umum digunakan untuk merubah sinyal dari domain waktu ke domain frekuensi. Transformasi Fourier (TF) dikenal sebagai alat yang handal untuk menganalisis sinyal termasuk untuk pengolahan gambar. Performasi frekuensi suatu sinyal fungsi dapat dipelajari karena TF melakukan transformasi dari domain atau kawasan waktu ke domain frekuensi. TF memerankan suatu bagian yang sangat penting dalam teori beberapa cabang ilmu sains dan teknologi. Transformasi berarti mengubah sesuatu, transformasi Fourier merupakan alat matematik yang sangat penting untuk pengolahan sinyal, meliputi analisis sinyal, pengolahan sinyal, serta menguraikan sinyal (domain waktu) menjadi komponenkomponenen sinusoida (domain frekuensi). Penelitian sebelumnya dilakukan oleh Brandwood (2003) dan Debnath (2005) yang menguraikan beberapa sifat-sifat transformasi Fourier. Secara sederhananya transformasi Fourier dipergunakan untuk mengubah dari kawasan waktu menjadi kawasan frekuensi. Pengubahan itu dimaksudkan untuk mempermudah analisis yang dilakukan. Dalam bidang pengolahan sinyal maka pengubahan tersebut dapat dilakukan terhadap sinyal maupun terhadap sistemnya. Transformasi Fourier sinyal akan menghasilkan spektrum sinyal. Sedangkan transformasi Fourier terhadap sistem akan menghasilkan tanggapan frekuensi sistem. Dalam tulisan ini diperkenalkan Transformasi Fourier (TF) secara detail. Akan diselidiki dan dibuktikan sifat-sifat fundamentalnya di L (R). Selanjutnya akan diselidiki sifat-sifat transformasi Fourier di L (R). Penelitian ini bertujuan merumuskan definisi transformasi fourier di L (R) dan sifat-sifatnya

membuktikan sifat-sifat transformasi Fourier di L (R), memperluas definisi transformasi Fourier di L (R) ke L (R) beserta sifat-sifatnya. Penelitian ini dilakukan dengan metode kajian pustaka yang akan menghasilkan pembuktian sifat-sifat transformasi Fourier secara detail. BAHAN DAN METODE Penelitian yang dilakukan adalah penelitian kepustakaan dengan mengumpulkan dan mempelajari beberapa referensi berupa jurnal, makalah ilmiah, buku elektronik dan halaman web di internet tentang Transformasi Fourier, buku yang berkaitan dan hal-hal yang terkait dengannya. Penelitian dilakukan di kampus Universitas Hasanuddin. HASIL Tabel 1 memuat sifat-sifat transformasi Fourier di L (R). Sifat-sifat ini kemudian diselidiki dan dibuktikan. Mulai dari sifat penjumlahan, linearitas, translasi, modulasi, turunan, konvolusi, skala dan invers. Kemudian akan disajikan sifat-sifat transformasi Fourier di L (R). PEMBAHASAN Penelitian ini membahas sifat-sifat transformasi Fourier L (R) dan kemudian membuktikan sifat-sifat tersebut dengan detail. Selanjutnya diperluas ke sifat-sifat transformasi Fourier di L (R). Transformasi Fourier di L 1 (R) Sebuah fungsi f: R R, f L (R) jika f dt <, yaitu jika f terintegral R lebesgue. Jadi L (R) = f f dt <. Misalkan f adalah sebuah fungsi yang R terintegral secaralebesgue pada R. Karena e kontinu dan terbatas, perkalian f(t)e terintegral secara lokal untuk setiap ωε R. Jelas bahwa e = 1 untuk setiap ω dan t pada R. Dengan memberikan integral

Ini memberikan f(t)e dt, ω L R. (1) f(t)e dt f(t) dt = f <. (2) Ini berarti bahwa (1) ada (eksis) untuk setiap ω R. Definisi berikut berdasarkan Brandwood (2003) dan Debnath (2005) Definisi 1. (Transformasi Fourier dalam L (R)) Misalkan f L (R). Transformasi Fourier f(t) dilambangkan dengan f(ω) dan didefinisikan oleh f(ω) = F{f(t)}(ω) = f(t)e dt. (3) Secara fisis, persamaan (3) menunjukkan pergerakan osilasi f pada frekuensi ω, dan f(ω) disebut spektrum frekuensi sinyal atau waveform f(t). Berdasarkan hal tersebut f(t) dianggap sebagai sinyal dalam domain waktu dan f(ω) sebagai sinyal dalam domain frekuensi. Bentuk transformasi yang umum digunakan untuk merubah sinyal dari domain waktu ke domain frekuensi adalah dengan transformasi Fourier. Transformasi Fourier suatu sinyal atau fungsi f(t) didefinisikan oleh (3). Sinyal f(t) dapat direkonstruksi dengan rumus balikan Fourier f(t) = f (ω) e dω. (4) Sifat-sifat dasar Transformasi Fourier Beberapa sifat transformasi Fourier dikumpulkan dalam teorema berikut yang selanjutnya disajikan dalam tabel. Teorema 1. (Sifat Penjumlahan). Jika f(t) dan g(t) L (R), maka berlaku F{f(t)(ω) + g(t)}(ω) = F{f(t)}(ω) + F{g(t)}(ω). (5)

Bukti. Dari persamaan (3) diperoleh F{f(t) + g(t)}(ω) = [f(t) + g(t)]e dt. = f(t)e dt + g(t)e dt = f(ω) + g(ω) = F{f(t)}(ω) + F{g(t)}(ω). Teorema 2. (Sifat linear). Jika f(t) dan g(t) L (R) dan α, β adalah dua konstanta kompleks, maka F{αf(t)(ω) + βg(t)}(ω) = αf{f(t)}(ω) + βf{g(t)}(ω). (6) Bukti : Dari definisi transformasi Fourier diperoleh F{αf(t)(ω) + βg(t)}(ω) = (αf(t) + βg(t)) e dt = αf(t) e dt + βg(t) e dt = α f(t) e dt + β = αf(ω) + βg(ω) Teorema 3. (Sifat pergeseran atau translasi) = αf{f(t)} + βf{g(t)}. Misalkan f(t) adalah fungsi yang digeser oleh t ε R, yaitu f (t) = f(t t ), maka diperoleh teorema 4. (Sifat modulasi) g(t) e dt f (ω) = e f(ω). (7)

Diberikan fungsi f L (R) dan ω R, misal h(x) = e f(x) maka F{h}(ω) = F{f}(ω ω ). (8) Bukti: Diketahui h(x) = e f(x),maka berdasarkan definisi Transformasi Fourier diperoleh F{h}(ω) = h(x) e dx = e f(x) e dx = f(x) e e dx = f(x) e ( ) dx. Berdasarkan definisi Transformasi Fourier, diperoleh = F{f}(ω ω ). Teorema 5. (Sifat scaling) Diberikan fungsi f, a R, a 0, dan misal (x) = f(ax) maka F{ }(ω) = F{f}. (9) Teorema 6 (konjugasi) Misalkan f L (R) dan untuk setiap ω ε R maka Ff (ω) = F{f} ( ω) (11) Ff (ω) = F{f} ( ω. ) Invers Transformasi Fourier Jika transformasi Fourier dimaksudkan untuk mengubah fungsi berdomain waktu menjadi fungsi berdomain frekuensi, maka sebaliknya invers dari Transformasi Fourier akan mengubah fungsi berdomain frekuensi menjadi fungsi berdomain waktu. Berikut ini akan didefinisikan bentuk dari invers Transformasi Fourier disertai dengan bunyi sebuah teorema yang berkaitan dengannya. Namun

khusus teorema ini tidak akan dibuktikan melainkan hanya dituliskan saja bunyi teorema tersebut. Definisi 2 Invers Untuk suatu fungsi g dimana Fourier dari g untuk setiap x R didefinisikan oleh Teorema 6 Jika f L 1 (R) dan F 1 {g}(x) = 1 g(ω) dx <, maka invers Transformasi 2 f(x) dx < maka g(ω)e dω. (12) F 1 F{f}(x) = f(x). (13) Definisi 3 (Invers Transformasi Fourier ) Misalkan fungsi g L (R), maka invers dari TF g didefinisikan untuk setiap bilangan real x, sebagai F ı [F{g}](x) = 1 2 g(ω)e dω. Konvolusi Salah satu operasi matematis penting yang perlu dipahami dalam mempelajari pengolahan citra digital adalah operasi konvolusi. Ini dikarenakan konvolusi merupakan operasi yang mendasar dalam pengolahan citra. Tanda menyatakan operator konvolusi, dan peubah (variabel) y adalah peubah bantu (dummy variabel) (lebih jelasnya lihat pada definisi konvolusi). Definisi 4 Diberikan dua fungsi f dan g (terdefinisi dan terintegralkan pada R), maka konvolusi dari f dan g dinyatakan oleh f g dan didefinisikan sebagai (f g)(x) = f(y)g(x y) dy, untuk x R (14) Sifat-Sifat Konvolusi Setelah didefinisikan, operasi konvolusi ternyata memiliki beberapa sifatsifat. Diantaranya adalah bersifat komutatif, linearity, shifting dan konvolusi dengan dirac δ. Pembahasan selanjutnya akan dijelaskan mengenai pembuktian dari sifat-sifat tersebut.

Teorema 7 Komutatif Untuk fungsi f dan g berlaku Bukti : (f g)(x) = (g f)(x). (15) Untuk setiap x R dan dari definisi konvolusi pada Persamaan (10) diketahui (f g)(x) = f(y)g(x y) dy. Misal s = x y maka y = x s dan dy = ds. Karena nilai x fixed, sehingga saat y = maka s = dan saat y = maka s = sehingga diperoleh (f g)(x) = f(x s)g(s)( ds) dan menurut definisi konvolusi diperoleh Teorema 8 Linearitas = g(s) f(x s) ds = (g f)(x). (a) Untuk fungsi f, g 1 dan g 2, serta untuk skalar α, β R berlaku f (αg + βg ) = α(f g ) + β(f g ); (16) (b) Untuk fungsi f, g 1 dan g 2, serta untuk skalar α, β R berlaku Teorema 9 Shifting (αg + βg ) f = α(g f) + β(g f). (17) Untuk suatu fungsi f, dan a R, serta misal f adalah fungsi yang ditranslasikan yang didefinisikan oleh maka untuk fungsi g yang sesuai berlaku f (x) = f(x a) (a) (g f )(x) = (g f) (x) (18) (b) (g f)(x) = (g f) (x). (19)

Transformasi Fourier di L 2 (R) 2 L Pada bagian ini akan diperkenalkan perluasan Transformasi Fourier di Suatu fungsi beserta sifat-sifatnya. Sebagaimana telah dijelaskan di awal bahwa f R R dikatakan dapat diintegralkan pada R jika f(t) dt <. Fungsi yang seperti itu dinamakan sebagai L (R) atau dapat ditulis L (R) = f f dt <, maka dengan cara yang sama, suatu R fungsi f R R dikatakan dapat diintegralkan kuadrat pada R jika f(t) dt <. Fungsi yang seperti itu dinamakan sebagai L (R), dengan f adalah fungsi yang terintegral Lebesgue pada R, maka L (R) = f f(t) dt <, yang selanjutnya akan disebut fungsi yang terintegral R kuadrat (square integrable functions). Terdapat banyak fungsi dalam fisika dan engineering, termasuk amplitudo gelombang dalam mekanika klasik dan quantum adalah terintegral kuadrat. Ruang L (R), yang dilengkapi hasil kali dalam f, g = f(t)g(t) dt merupakan ruang Hilbert. Karena L (R) bukan himpunan bagian dari L (R), maka definisi transformasi Fourier tidak otomatis berlaku di L (R). Namun demikian, dengan menggunakan fakta bahwa L (R) L (R) padat di L (R), transformasi Fourier dari fungsi fεl (R) dapat didefinisikan sebagai limit dari suatu barisan f (dalam norm di L (R)), dengan f εl (R) L (R) dan f f(n ) dalam norm di L (R). KESIMPULAN Berdasarkan hasil dan pembahasan, diperoleh rumusan dan definisi serta sifat-sifat transformasi Fourier di L (R) dan L (R)seperti ditunjukkan di tabel 1. DAFTAR PUSTAKA Asmar, Nakhle. 2000. Partial differential equations with Fourier series. second ed.. Pearson Prentice Hall: New Jersey. Brandwood, David. 2003. Fourier Transform in Radar and Signal Processing..Arthec House. Boston.

B. Mawardi, E.Hitzer. 2010. Windowed Fourier Transform of two Dimensional.Quaternionic Signals. Journal of Applied Mathematics and Computation,..Vol.216, pp.2366-2379. Debnath, Lokenath. 2002. Wavelet Transforms and their Applications...Birkhauser. Boston. Debnath, Lokenath dan Mikusisnski, Piotr. 2005. Hilbert Spaces with.applications. Elsevier. USA. Folland, Gerald B. 1999. Real Analysis: Modern Techniques and Their.Applications. John Willey & Sons. New York. Folland, Gerald B. dan Sitaram, Alladi. 1997. The Uncertainty Principle : A.Mathematical Survey. The Journal of Fourier Analysis and Applications,.Volume 3, pp. 207-238. Folland, Gerald B. 1992. Fourier Analysis and Its Applications. The Wadsworth.& Brooks. USA. Sonka, M., Hlavac. 2008. Image Processing, Analysis, and Machine Vision. Thomson Learning. United State of America. Lampiran Tabel 1. Sifat-sifat transformasi Fourier Sifat f(t) f(ω) Penjumlahan f(t) + g(t) f(ω) + g(ω) Sifat linier αf(t) + βg(t) αf(ω) + βg(ω) Dualitas f(t) f( ω) Konvolusi (f g)(t) f(ω)g(ω) Perkalian f(t)g(t) (f g) (ω) translasi f(t t ) e f(ω) modulasi Turunan Skala konjugasi e f(t) f(ω ω ) df(t) dt f(αt) f( t) iωf(ω) 1 α f ω α f(ω)