METODE SIMPLEKS DALAM PROGRAM LINIER
|
|
|
- Surya Sasmita
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Staf Gunadarma Gunadarma University METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik pengambilan keputusan dalam permasalahan yang berkaitan dengan pengalokasian sumber daya secara optimal. Metode Simpleks digunakan untuk mencari nilai optimal dari program linier yang melibatkan banyak constraint (pembatas) dan banyak variable (lebih dari dua variable). Penemuan metode ini digunakan sebagai prosedur penyelesaian dari program computer. Metode penyelesaian program linier dengan metode simpleks pertama kali dikemukakan oleh George Dantzig pada tahun Metode ini terkenal ketika ditemukan alat hitung elektronik dan menjadi popular ketika munculnya computer. Proses perhitungan metode ini dengan melakukan iterasi berulang ulang sampai tercapai hasil optimal dan proses perhitungan ini menjadi mudah dengan computer. Selanjutnya berbagai alat dan metode dikembangkan untuk menyelesaikan masalah program linier bahkan sampai pada masalah riset operasi hingga tahun 1950 an seperti program dinamika, teori antrian dan persediaan Karakteristik persoalan dalam program linier adalah sebagai berikut : 1. Ada tujuan yang ingin dicapai 2. Tersedia beberapa alternative untuk mencapai tujuan 3. Sumberdaya dalam keadaan terbatas 4. Dapat dirumuskan dalam bentuk matematika (persamaan/ketidaksamaan) Istilah metode simpleks : 1. Iterasi : tahapan perhitungan dimana nilai dalam perhitungan itu tergantung dari nilai table sebelumnya. 2. Variabel non basis : variable yang nilainya diatur menjadi nol pada sembarang iterasi. 3. Variabel basis : variabel yang nilainya bukan nol pada sembarang iterasi. 4. Solusi atau Nilai Kanan (NK) : nilai sumber daya pembatas yang masih tersedia. 5. Variabel Slack : variabel yang ditambahkan ke model matematika kendala untuk mengkonversi pertidaksamaan menjadi = 6. Variabel surplus : variabel yang dikurangkan dari model matematika untuk mengkonversikan pertidaksamaan menjadi persamaan =
2 7. Variabel buatan : variabel yang ditambahkan ke dalam model matematika kendala dengan bentuk atau = untuk difungsikan sebagai variabel basis awal. 8. Kolom Pivot (Kolom Kerja) : kolom yang memuat variabel masuk. 9. Baris Pivot (Baris Kerja) : salah satu baris dari antara variabel baris yang memuat variabel keluar. 10. Elemen Pivot (Elemen Kerja) : elemen yang terletak pada perpotongan kolom dan baris pivot. 11. Variabel masuk : variabel yang terpilih untuk menjadi variabel basis pada iterasi berikutnya. 12. Variabel keluar : variabel yang keluar dari variabel basis pada iterasi berikutnya dan digantikan dengan variabel masuk. Beberapa ketentuan yang perlu diperhatikan dalam penyelesaian metode simpleks : 1. Nilai kanan fungus tujuan harus nol (0) 2. Nilai kanan fungsi kendala harus positif. Apabila negative, 1 3. Fungsi kendalan dengan tanda harus diubah ke bentuk = dengan menambahkan variabel slack/surplus. Variabel slack/surplus disebut juga variabel dasar. Penambahan slack variabel menyatakan kapasitas yang tidak digunakan atau tersisa pada sumber daya tersebut. Hal ini karena ada kemungkinan kapasitas yang tersedia tidak produksi 4. Fungsi kendala dengan tanda diubah ke bentuk dengan cara mengkalikan dengan -1, lalu diubah ke bentuk persamaan = dengan ditambahkan variabel slack. Kemudian karena nilai kanan nya negative, dikalikan lagi dengan -1 dan ditambahkan artificial variabel (M). Artificial variabel ini secara fisik tidak mempunyai arti, dan hanya digunakan untuk kepentingan perhitungan saja. 5. Fungsi kendala dengan tanda = harus ditambah artificial variable (M) Contoh soal : Suatu perusahaan menghasilkan dua produk, meja dan kursi yang diproses melalui dua bagian fungsi : perakitan dan pemolesan. Pada bagian perakitan tersedia 60 jam kerja, sedangkan pada bagian pemolesannya hanya 48 jam kerja. untuk menghasilkan 1 meja diperlukan 4 jam kerja perakitan dan 2 jam kerja pemolesan, sedangkan untuk menghasilkan 1 kursi diperlukan 2 jam kerja perakitan dan 4 jam kerja pemolesan. Laba untuk setiap meja dan kursi yang dihasilkan masing-masing dan berapa jumlah meja dan kursi yang optimal dihasilkan?
3 Penyelesaian : Definisi variabel keputusan : Keputusan yang akan diambil adalah berapakan jumlah meja dan kursi yang dihasilkan. X1 = jumlah meja yang akan dihasilkan (dalam satuan unit) X2 = jumlah kursi yang akan dihasilkan (dalam satuan unit) Perumusan persoalan dalam bentuk tabel : Proses Waktu yang dibutuhkan per unit Total jam kerja yang tersedia Perakitan Pemolesan Laba/Unit Perumusan fungsi tujuan : Fungsi Maks : Laba = Z = 8X1 + 6X2 (dalam satuan Rp ) Perumusan fungsi kendala : Dengan kendala ; 1. 4X1 + 2X X1 + 4X2 48 Kendala non negatif X1, X2 0 Metode Simpleks Maksimisasi 1. Menentukan fungsi tujuan dan fungsi-fungsi kendala Misalkan X1 = Meja dan X2 = Kursi Fungsi tujuan : Z = 8X1 + 6X2 Fungsi-fungsi kendala : 4X1 + 2X2 60 2X1 + 4X Mengubah fungsi tujuan dan fungsi-fungsi kendala ke bentuk standar Bentuk standar simpleks : Z 8X1 6X2 = 0 4X1 + 2X2 + X3 = 60 2X1 + 4X2 + X4 = 48 Dengan X3 dan X4 adalah variabel slack. 3. Membuat tabel simpleks awal Menentukan kolom kunci dan baris kunci sebagai dasar iterasi. Kolom kunci ditentukan oleh nilai Z yang paling kecil (Negatif).
4 Baris kunci ditentukan berdasarkan nilai indeks terkecil. Cara menentukan indeks = Nilai Kanan (NK) Kolom Kunci (KK) Menentukan nilai elemen cell yaitu nilai perpotongan antara kolom kunci dengan baris kunci Langkah-langkah di atas disajikan pada tabel simpleks berikut ini : Tabel Simpleks Awal Variabel Z X1 X2 Slack Variabel Nilai Indeks Dasar X3 X4 Kanan (VD) (NK) Z X X Kolom Kunci (KK) Elemen Cell Baris Kunci (BK) 4. Melakukan iterasi Dengan menentukan baris kunci baru dan baris baris lainnya termasuk Z. Membuat baris kunci baru Membuat baris Z baru Baris Z Baru = Baris Z Lama ( Nilai Kolom Kunci Baris yang sesuai * Baris Kunci Baru) Baris Z Baru = ( ) (-8)*(1 ½ ¼ 0 15) = Membuat baris variabel baru Baris X4 Baru = Baris X4 Lama (Nilai Kolom Kunci Baris yang sesuai * Baris Kunci Baru)
5 Baris kunci baru (X1), baris Z baru, baris X4 baru, nilai-nilainya disajikan pada tabel simpleks berikut. Tabel simpleks ini adalah tabel simpleks hasil iterasi pertama. Tabel Simpleks Iterasi-1 Variabel Z X1 X2 Slack Variabel Nilai Indeks Dasar X3 X4 Kanan (VD) (NK) Z X /2 1/ X / Kolom Kunci (KK) Elemen Cell Baris Kunci (BK) 5. Lakukan iterasi kembali sampai tidak ada nilai baris Z yang negatif Membuat baris kunci baru Membuat baris Z baru Membuat baris variable baru Baris kunci baru (X2), baris kunci Z baru, baris X1 baru, nilai-nilai simpleks berikut. Tabel simpleks ini adalah tabel hasil iterasi selanjutnya Tabel Simpleks Hasil Iterasi-2 Variabel Z X1 X2 Slack Variabel Nilai Dasar X3 X4 Kanan (VD) (NK) Z /3 2/3 132 X /3-1/6 12 X /6 1/3 6
6 Hasil Karena nilai-nilai pada baris Z sudah tidak ada yang negatif, berarti iterasi selesai, dan solusi yang diperoleh adalah : X1 = Meja = 12, X2 = Kursi = 6 dan Nilai fungsi tujuan Z (laba) = 132 (dalam puluhan ribu rupiah). Artinya, untuk memperoleh keuntungan yang maksimal sebesar Rp , maka perusahaan sebaiknya memproduksi meja sebanyak 12 unit dan kursi sebanyak 6 unit. Dari tabel tersebut juga diketahui nilai X3 dan X4 tidak ada (X3 dan X4 = 0), artinya seluruh waktu kerja (Perakitan dan Pemolesan) sudah habis digunakan, tidak ada waktu yang tersisa. MASALAH MINIMASI Masalah maksimasi, biasanya memiliki kendala pertidaksamaan jenis. Masalah minimasi biasanya memiliki kendala pertidaksamaan jenis. Masalah minimasi menggunakan langkah-langkah yang sama seperti pada masalah maksimasi, tetapi ada beberapa penyesuaian yang harus dibuat. Bagi kendala pertidaksamaan jenis, maka variabel slack ditambahkan untuk menghabiskan sumber daya yang digunakan dalam kendala. Cara ini tidak dapat diterapkan pada kendala pertidaksamaan jenis dan kendala persamaan (=). Contoh : Minimumkan Z = -3X1 + X2 + X3 dengan syarat : X1-2X2 + X3 11-4X1 + X2 + 2X3 3 2X1 - X3 = -1 X1, X2, X3 0 Persamaan pada kendala ke tiga harus dirubah agar memiliki nilai kanan positif dengan cara dikalikan (-1), sehingga menjadi : -2X1 + X3 = 1 Persamaannya berubah menjadi : Minimumkan Z = -3X1 + X2 + X3 dengan syarat : X1-2X2 + X3 11-4X1 + X2 + 2X3 3-2X1 + X3 = 1 X1, X2, X3 0 Bentuk baku diperoleh dengan menambahkan variabel slack pada kendala pertama, mengurangkan variabel surplus pada kendala kedua. Sehingga diperoleh : Z + 3X1 - X2 - X3-0S1-0S2 = 0 Persamaan tujuan X1-2X2 + X3 + S1 = 11-4X1 + X2 + 2X3 - S2 = 3 Persamaan kendala -2X1 + X3 = 1
METODE SIMPLEKS DALAM PROGRAM LINIER
METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahn yang berhubungan
METODE SIMPLEKS DALAM PROGRAM LINIER
METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahn yang berhubungan
METODE SIMPLEKS DALAM PROGRAM LINIER
METODE SIMPLEKS DALAM PROGRAM LINIER Dian Wirdasari Abstrak Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan
MATA KULIAH RISET OPERASIONAL
MATA KULIAH RISET OPERASIONAL [KODE/SKS : KK023311/ 2 SKS] METODE SIMPLEKS Pengubahan ke dalam bentuk baku Untuk menyempurnakan metode grafik. Diperkenalkan oleh : George B Dantzig Ciri ciri : 1. Semua
Metode Simpleks M U H L I S T A H I R
Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan
BAB IV. METODE SIMPLEKS
BAB IV. METODE SIMPLEKS Penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim (ingat kembali solusi
BAB II METODE SIMPLEKS
BAB II METODE SIMPLEKS 2.1 Pengantar Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks. Penentuan solusi optimal menggunakan metode simpleks didasarkan
BAB III. METODE SIMPLEKS
BAB III. METODE SIMPLEKS 3.1. PENGANTAR Metode grafik tidak dapat menyelesaikan persoalan linear program yang memilki variabel keputusan yang cukup besar atau lebih dari dua, maka untuk menyelesaikannya
Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan
Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan mempunyai variabel surplus, tidak ada variabel slack.
Model umum metode simpleks
Model umum metode simpleks Fungsi Tujuan: Z C X C 2 X 2 C n X n S S 2 S n = NK FungsiPembatas: a X + a 2 X 2 + + a n X n + S + S 2 + + S n = b a 2 X + a 22 X 2 + + a 2n X n + S + S 2 + + S n = b 2 a m
Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi
Oleh : A. AfrinaRamadhani H. 1 PERTEMUAN 7 2 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi
PROGRAM LINEAR: METODE SIMPLEX
PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah
Taufiqurrahman 1
PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah
PEMROGRAMAN LINIER. Metode Simpleks
PEMROGRAMAN LINIER Metode Simpleks Metode Simpleks Metode simpleks digunakan untuk memecahkan permasalahan PL dengan dua atau lebih variabel keputusan. Prosedur Metode Simpleks: Kasus Maksimisasi a. Formulasi
METODE dan TABEL SIMPLEX
METODE dan TABEL SIMPLEX Mengubah bentuk baku model LP ke dalam bentuk tabel akan memudahkan proses perhitungan simplex. Langkah-langkah perhitungan dalam algoritma simplex adalah :. Berdasarkan bentuk
METODE SIMPLEKS KASUS MEMAKSIMUMKAN
TUGAS KELOMPOK RISET OPERASI METODE SIMPLEKS KASUS MEMAKSIMUMKAN KELOMPOK RINI ANGGRAINI S (H ) NURUL MUTHIAH (H 5) RAINA DIAH GRAHANI (H 68) FATIMAH ASHARA (H 78) PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS
Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat
Muhlis Tahir Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat kelayakan tidak pernah dapat terpenuhi. Adakalanya
METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1
METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi kendala dengan pertidaksamaan mempunyai surplus
PROGRAM STUDI AGRIBISNIS FAKULTAS PERTANIAN, UNIVERSITAS ANDALAS BAHAN AJAR. Simpleks
PROGRAM STUDI AGRIBISNIS FAKULTAS PERTANIAN, UNIVERSITAS ANDALAS Mata Kuliah : RISET OPERASI AGRIBISNIS Semester : V Pertemuan Ke : 4 BAHAN AJAR Pokok Bahasan : Penyelesaian PL dengan Metode Dosen : Prof.
BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS
BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS A. Metode Simpleks Metode simpleks yang sudah kita pelajari, menunjukkan bahwa setiap perpindahan tabel baru selalu membawa semua elemen yang terdapat dalam
contoh soal metode simplex dengan minimum
contoh soal metode simplex dengan minimum Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap
PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN)
PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN) Beby Sundary (1011297) Mahasiswa Program Studi Teknik Informatika STMIK Budi Darma
PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA MATEMATIK (METODE SIMPLEKS)
Maximize or Minimize Subject to: Z = f (x,y) g (x,y) = c S1 60 4 2 1 0 S2 48 2 4 0 1 Zj 0-8 -6 0 0 PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA MATEMATIK (METODE SIMPLEKS) Prof. Dr. Ir. ZULKIFLI ALAMSYAH,
Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling)
Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XIV PEMODELAN (Modeling) e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pemodelan dalam RO Outline:
METODE SIMPLEKS. Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan
METODE SIMPLEKS 2 Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan Untuk menggunakan Metode Simpleks dalam masalah Program Linier
Algoritma Simplex. Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan
Algoritma Simplex Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan kendala. (George Dantizg, USA, 1950) Contoh Kasus Suatu perusahaan
Danang Triagus Setiyawan ST.,MT
Danang Triagus Setiyawan ST.,MT Metode ini didasari atas gagasan pergerakan dari satu titik ekstrim ke titik ekstrim yang lain pada satu susunan konvek yang dibentuk oleh set fungsi kendala dan kondisi
PROGRAM LINIER METODE SIMPLEKS
PROGRAM LINIER METODE SIMPLEKS Merupakan metode yang biasanya digunakan untuk memecahkan setiap permasalahan pada pemrogramman linear yang kombinasi variabelnya terdiri dari tiga variabel atau lebih. Metode
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier digunakan untuk menunjukkan
Minimumkan: Z = 4X 1 + X 2 Batasan: 3X 1 + X 2 = 3 4X 1 + 3X 2 6 X 1 + 2X 2 4
TEKNIK DUA TAHAP Tahap I. Tambahkan variable buatan sebagaimana diperlukan untuk memperoleh pemecahan awal. Bentuklah fungsi tujuan baru yang mengusahakan minimalisasi jumlah variable buatan dengan batasan
MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS]
MATA KULIAH MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT011215 / 2 SKS] LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik
Pengubahan Model Ketidaksamaan Persamaan
METODA SIMPLEKS Metoda Simpleks Suatu metoda yang menggunakan prosedur aljabar untuk menyelesaikan programa linier. Proses penyelesaiannya dengan melakukan iterasi dari fungsi pembatasnya untuk mencapai
LINIER PROGRAMMING Formulasi Masalah dan Pemodelan. Staf Pengajar Kuliah : Fitri Yulianti, MSi.
LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Staf Pengajar Kuliah : Fitri Yulianti, MSi. Tahap-tahap Pemodelan dalam RO (Riset Operasional): 1. Merumuskan masalah 2. Pembentukan model 3. Mencari
kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi
Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis
Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T
Pengambilan Keputusan dalam keadaan ada kepastian IRA PRASETYANINGRUM, S.Si,M.T Model Pengambilan Keputusan dikaitkan Informasi yang dimiliki : Ada 3 (tiga) Model Pengambilan keputusan. 1. Model Pengambilan
Pemrograman Linier (3)
Pemrograman Linier () Metode Big-M Ahmad Sabri Universitas Gunadarma, Indonesia Pada model PL di mana semua kendala memiliki relasi, variabel basis pada solusi awal (tabel simpleks awal) adalah Z dan semua
Model Linear Programming:
Model Linear Programming: Pengertian, Contoh masalah dan Perumusan model Metode penyelesaian (grafik dan simpleks) Interpretasi hasil Analisis sensistivitas Model Dualitas Penyelesaian kasus (Aplikasi
Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia
Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Metode simpleks merupakan sebuah prosedur matematis berulang untuk menemukan penyelesaian optimal soal programa
Pemrograman Linier (2)
Solusi model PL dengan metode simpleks Ahmad Sabri Universitas Gunadarma, Indonesia 2 Bentuk umum model PL Ingat kembali bentuk umum model PL maksimum Maks Z = c x + c 2 x 2 +... + c n x n Dengan kendala:
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara
PEMROGRAMAN LINEAR YULIATI,SE,MM
PEMROGRAMAN LINEAR YULIATI,SE,MM Prinsip: Setiap organisasi berusaha mencapai tujuan yang telah ditetapkan sesuai dengan keterbatasan sumber daya. Linier Programming: Teknik pengambilan keputusan dalam
Ir. Tito Adi Dewanto
Ir. Tito Adi Dewanto Cara dan formulasi masalah ke dalam persamaan linier sama dengan metode grafik. Perbedaan pada langkah-langkah untuk pemecahan optimal. Kelebihan metode Simpleks dibanding dengan metode
OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong)
OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) Ai Nurhayati 1, Sri Setyaningsih 2,dan Embay Rohaeti 2. Program Studi Matematika Fakultas Matematika
BAHAN KULIAH TEKNIK RISET OPERASI
BAHAN KULIAH TEKNIK RISET OPERASI JURUSAN FAKULTAS KOMPUTER UNDA - SAMPIT 28 Materi : SILABUS Matakuliah :Riset Operasional (Operation Research) 1 PENDAHULUAN Perkembangan Riset Operasi Arti Riset Operasi
Maximize or Minimize Z = f (x,y) Subject to: g (x,y) = c
Maximize or Minimize Z = f (x,y) Subject to: g (x,y) = c PROGRAM MAGISTER AGRIBISNIS UNIVERSITAS JAMBI Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Metode Simpleks adlh suatu metode yg secara matematis dimulai
MATEMATIKA SISTEM INFORMASI 2 IT
MATEMATIKA SISTEM INFORMASI 2 IT 011215 UMMU KALSUM UNIVERSITAS GUNADARMA 2016 Penerapan Riset Operasi Bidang akuntansi dan keuangan Penentuan jumlah kelayakan kredit Alokasi modal investasi, dll Bidang
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Program Linier Para ahli mendefinisikan program linier sebagai sebuah teknik analisa yang digunakan untuk memecahkan segala persoalan atau masalah-masalah keputusan yang ada
PROGRAM LINEAR DENGAN METODE SIMPLEX
PROGRAM LINEAR DENGAN METODE SIMPLEX PENDAHULUAN Metode simpleks ini adalah suatu prosedur aljabar yang bukan secara grafik untuk mencari nilai optimal dari fungsi tujuan dalam masalah-masalah optimisasi
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis berulang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN Pada bab ini, akan dijelaskan metode-metode yang penulis gunakan dalam penelitian ini. Adapun metode yang akan digunakan dalam penelitian ini adalah Metode Simpleks dan Metode Branch
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 21 Teori Himpunan Fuzzy Pada himpunan tegas (crisp), nilai keanggotaan suatu item x dalam himpunan A, yang sering ditulis dengan memiliki dua kemungkinan, yaitu: 1 Nol (0), yang berarti
OPTIMALISASI KEUNTUNGAN PADA PERUSAHAAN KERIPIK BALADO MAHKOTA DENGAN METODE SIMPLEKS
OPTIMALISASI KEUNTUNGAN PADA PERUSAHAAN KERIPIK BALADO MAHKOTA DENGAN METODE SIMPLEKS Muhammad Muzakki Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang,
ALGORITMA METODE SIMPLEKS (PRIMAL)
ALGORITMA METODE SIMPLEKS (PRIMAL) Artificial Variable Algoritma Simpleks Metode M (Method of penalty) Metode dua fase Tabel Simpleks dalam bentuk matriks Artificial Variable (AV) Apabila terdapat satu
Perhatikan model matematika berikut ini. dapat dibuat tabel
4. Metode Simpleks Maks/min : h.m Perhatikan model matematika berikut ini. simpleksnya yaitu. dapat dibuat tabel Cb VDB Q M M Penilai an Z Keterangan: = variabel ke-j (termasuk variabel slack dan surplus)..
Model Linear Programming:
Model Linear Programming: Pengertian, Contoh masalah dan Perumusan model Metode penyelesaian (grafik dan simpleks) Interpretasi hasil Analisis sensistivitas Penyimpangan-penyimpangan dari bentuk baku Model
MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA
MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA Indrayanti, S.T, M.Kom 1 Program Studi Manajemen Informatika,STMIK Widya Pratama Jl.
Konsep Primal - Dual
Konsep Primal - Dual Teori Dualitas Persoalan Primal dan Dual Persoalan Primal (asli) Persoalan Dual (kebalikan dari primal) PRIMAL DUAL A. Fungsi Tujuan A. Fungsi Tujuan 1. Maksimisasi Laba 1. Minimisasi
BAB V PROGRAMA LINIER : METODE SIMPLEKS
BAB V PROGRAMA LINIER : METODE SIMPLEKS 5.1 Metode Simpleks Metode simpleks ialah suatu cara penyelesaian masalah programa linier yang diperkenalkan pertama kali oleh Dantzig pada tahun 1947, yakni suatu
Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik
Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses
Riset Operasional LINEAR PROGRAMMING
Bahan Kuliah Riset Operasional LINEAR PROGRAMMING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 25 1 ANALISA SISTEM Agar lebih mendekati langkah-langkah operasional, Hall & Dracup
Z = 5X1 + 6X2 + 0S1 + 0S2 + MA1 + MA2. Persoalan Primal (asli) Persoalan Dual (kebalikan dari primal)
Perbedaan metode simpleks dengan metode simpleks Big-M adalah munculnya variabel artificial (variabel buatan), sedangkan metode atau langkah-langkahnya sama. Saat membuat bentuk standar : Jika kendala
Metode Simpleks Dengan Tabel. Tabel simpleks bentuk umum
Metode Simpleks Dengan Tabel Tabel simpleks bentuk umum Pendahuluan Bentuk program linier yang ada bukan hanya bentuk standar. Bentuk program linier yang mungkin dapat berupa: Fungsi tujuan diminimalkan
ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS. Rully Nourmalisa N
ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS Rully Nourmalisa N. 28213130 Latar Belakang Setiap perusahaan dibangun dan didirikan mempunyai tujuan untuk
RISET OPERASIONAL MINGGU KE-2. Disusun oleh: Nur Azifah., SE., M.Si. Linier Programming: Formulasi Masalah dan Model
RISET OPERASIONAL MINGGU KE- Linier Programming: Formulasi Masalah dan Model Disusun oleh: Nur Azifah., SE., M.Si Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik riset operasi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 21 Perencanaan Produksi 211 Arti dan Pentingnya Perencanaan Produksi Perencanaan produksi merupakan aktifitas untuk menetapkan produk yang akan diprodksi untuk periode selanjutnyatujuan
Penyelesaian Program Linier Menggunakan Algoritma Interior Point dan Metode Simpleks
Penyelesaian Program Linier Menggunakan Algoritma Interior Point dan Metode Simpleks Sri Basriati, Elfira Safitri 2,2) Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau ) [email protected]
PENELITIAN OPERASIONAL PERTEMUAN #9 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI
PENELITIAN OPERASIONAL PERTEMUAN #9 TKT101 PENGANTAR TEKNIK INDUSTRI 6623 TAUFIQUR RACHMAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS ESA UNGGUL KEMAMPUAN AKHIR YANG DIHARAPKAN Mampu membandingkan
contoh soal metode simplex dengan minimum
contoh soal metode simplex dengan minimum Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap
Manajemen Sains. Pemrograman Linier (Metode Simpleks) Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011
Manajemen Sains Pemrograman Linier (Metode Simpleks) Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011 Komponen dasar Variabel keputusan yang kita cari untuk ditentukan Objective (tujuan)
METODE SIMPLEKS 06/10/2014. Angga Akbar Fanani, ST., MT. SPL Nonhomogen dengan penyelesaian tunggal (unique) ~ ~
6//4 METODE SIMPLEKS Angga Akbar Fanani, ST., MT. SPL Nonhomogen dengan penyelesaian tunggal (unique) Cari penyelesaian dari sistem : x x + x 3 = - 3x + x x 3 = -x + x + x 3 = - Metode Gauss-Jordan : lakukan
Maximize or Minimize Z = f (x,y) Subject to: g (x,y) = c
Maximize or Minimize Z = f (x,y) Subject to: g (x,y) = c PROGRAM STUDI AGRIBISNIS FAKULTAS PERTANIAN UNIVERSITAS JAMBI Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Pengertian, Contoh masalah dan Perumusan model
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Dalam bab ini akan diuraikan mengenai metode-metode ilmiah dari teori-teori yang digunakan dalam penyelesaian persoalan untuk menentukan model program linier dalam produksi.. 2.1 Teori
Metode Simplex. Toha Ardi Nugraha
Metode Simplex Toha Ardi Nugraha Pendahuluan Metode simpleks merupakan salah satu teknik penyelesaian dengan program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan yang berhubungan
BAB I PENGANTAR PROGRAM LINIER
BAB I PENGANTAR PROGRAM LINIER Pengertian Program linier merupakan kata benda dari pemogramman linier (linear programming), muncul dalam penelitian operasional (operational research) Menurut George B Dantzing
Bab 2 LANDASAN TEORI
Bab 2 LANDASAN TEORI 2.1 Program Linear Menurut Sitorus, Parlin (1997), Program Linier merupakan suatu teknik penyelesaian optimal atas suatu problema keputusan dengan cara menentukan terlebih dahulu suatu
PRAKTIKUM II PEMROGRAMAN LINIER (METODE SIMPLEKS)
PRAKTIKUM II PEMROGRAMAN LINIER (METODE SIMPLEKS) A. Tujuan Praktikum 1. Memahami bagaimana merumuskan/ memformulasikan permasalahan yang terdapat dalam dunia nyata. 2. Memahami dan dapat memformulasikan
Pemrograman Linier (2)
Solusi model PL dengan metode simpleks Ahmad Sabri Universitas Gunadarma, Indonesia 2 Bentuk umum model PL Ingat kembali bentuk umum model PL maksimum Maks Z = c 1 x 1 + c 2 x 2 +... + c n x n Dengan kendala:
TIN102 - Pengantar Teknik Industri Materi #8 Ganjil 2016/2017 TIN102 PENGANTAR TEKNIK INDUSTRI
Materi #8 TIN102 PENGANTAR TEKNIK INDUSTRI Pendahuluan 2 Operational Persoalan di Lapangan Research Perumusan Masalah (Model Matematis) Pemecahan Masalah ART SCIENCE 6623 - Taufiqur Rachman 1 Penugasan
BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR FITRIANI AGUSTINA, MATH, UPI
BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR Bentuk Standar Masalah PL Maksimasi : dengan pembatas linear () dan pembatas tanda c n n c c z m n mn m m n n n n b a a a b a a a b a a a n j j,,,,
Metode Simpleks Kasus Minimisasi
Metode Simpleks Kasus Minimisasi Penyimpangan-penyimpangan dari Bentuk Standar 1. Minimisasi Fungsi tujuan dari permasalahan linear programming yang bersifat minimisasi, harus diubah menjadi maksimisasi,
Metode Simpleks (Simplex Method) Materi Bahasan
Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Program Linear Program Linear adalah suatu cara yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan berbagai kendala yang dihadapinya. Masalah program
LINIEAR PROGRAMMING MATEMATIKA BISNIS ANDRI HELMI M, S.E., M.M.
LINIEAR PROGRAMMING MATEMATIKA BISNIS ANDRI HELMI M, S.E., M.M. INTRODUCTION Masalah keputusan yang biasa dihadapi para analis adalah alokasi optimum sumber daya yang langka. Sumber daya dapat berupa modal,
Metode Simpleks dengan Big M dan 2 Phase
Metode Simpleks dengan Big M dan 2 Phase Metode Simpleks Vs. Simpleks Big-M Perbedaan metode simpleks dengan metode simpleks Big-M adalah munculnya variabel artificial (variabel buatan), sedangkan metode
Ardaneswari D.P.C., STP, MP.
Ardaneswari D.P.C., STP, MP. Materi Bahasan Pengantar pemrograman linier Pemecahan pemrograman linier dengan metode grafis PENGANTAR Pemrograman (programming) secara umum berkaitan dengan penggunaan atau
PERANCANGAN APLIKASI OPTIMASI PRODUKSI PADA CV.INDAHSERASI MENGGUNAKAN METODE SIMPLEKS
ISSN 22-98 (Media Cetak) PERANCANGAN APLIKASI OPTIMASI PRODUKSI PADA CV.INDAHSERASI MENGGUNAKAN METODE SIMPLEKS Ari Irawan (12111) Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja
TEORI PGB. KEPUTUSAN MAKSIMASI & MINIMASI
TEORI PGB. KEPUTUSAN MAKSIMASI & MINIMASI MAKSIMASI Contoh PT Florencia memproduksi dua jenis produk yaitu: cangkul dan panci. Untuk memproduksi kedua jenis produk tersebut, perusahaan memerlukan tiga
Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS
Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS Dalam menggunakan metode simpleks, hal yang perlu diperhatikan adalah mengonversi constraint yang masih dalam bentuk pertidaksamaan menjadi persamaan menggunakan
BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS
BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS 6.1 Teori Dualitas Teori dualitas merupakan salah satu konsep programa linier yang penting dan menarik ditinjau dari segi teori dan praktisnya.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan model umum yang dapat digunakan untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang
TINJAUAN PRIMAL-DUAL DALAM PENGAMBILAN KEPUTUSAN
TINJAUAN PRIALDUAL DALA PENGABILAN KEPUTUSAN Oleh : Lusi elian Staf Pengajar Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia ABSTRAK Suatu program linear
BAB 2 LANDASAN TEORI
4 BAB 2 LANDASAN TEORI 2.1 Riset Operasi 2.1.1 Pengertian Riset Operasi Definisi dari Riset Operasi ( Operations Research Society of America ) Operations research concerned with scientifically deciding
BAB 2 LANDASAN TEORI
51 BAB 2 LANDASAN TEORI 2.1 Perencanaan Produksi 2.1.1 Arti dan Pentingnya Perencanaan Produksi Perencanaan produksi merupakan penentuan arah awal dari tindakan yang harus dilakukan di masa yang akan datang,
BAB 2 LANDASAN TEORI. Semua perusahaan menjalankan bisnisnya dengan memproduksi suatu barang
BAB 2 LANDASAN TEORI 2.1 Produksi Semua perusahaan menjalankan bisnisnya dengan memproduksi suatu barang atau menyediakan jasa. Khusus bagi perusahaan yang bergerak di sektor industri dan berbentuk pabrik,
BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau
BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah
Bab 2 LANDASAN TEORI
Bab 2 LANDASAN TEORI 2.1 Perencanaan Produksi Perencanaan produksi merupakan perencanaan tentang produk apa dan berapa yang akan diproduksi oleh perusahaan yang bersangkutan dalam satu periode yang akan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka (elemen-elemen) yang disusun menurut baris dan kolom sehingga berbentuk empat persegi panjang, di mana
BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program
BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program linear, metode simpleks, dan program linear fuzzy untuk membahas penyelesaian masalah menggunakan metode fuzzy
