DAFTAR NOTASI. Notasi Operasi Matematis
|
|
|
- Sugiarto Sudirman
- 8 tahun lalu
- Tontonan:
Transkripsi
1 DAFTAR NOTASI Notasi Operasi Matematis Komponen Notasi 1 Ekspansi Matriks χ chi 2 Indikasi Koordinat Matriks ι iota 3 Enumerasi Komponen Matriks ε epsilon 4 Pencacahan Komponen Matriks ξ xi 5 Penggantian Nilai Sel Matriks ς sigma 6 Ekstraksi Matriks π phi 7 Import Data Diagonal import 1 8 Import Data Non Diagonal import 2 9 Filter Matriks filter 10 Pemotongan Matriks potong 11 Irisan Matriks subset 12 Sisa Irisan Matriks sisa subset 13 Penambahan Min-Plus plus min-plus 14 Perkalian Min-Plus kali min-plus 15 Maka maka xxv
2 Notasi Umum Kelompok No Komponen Notasi 1 Umum 11 Konstanta C 12 Variabel v 13 Himpunan s.s 14 Matriks m.m 2 Konstanta 21 Jumlah Simpul N 22 Jumlah Populasi P 23 Jumlah Ruas L 24 Panjang Ruas LL 25 Jumlah Jaringan NW 26 Jumlah Garis Permintaan D 27 Volume Permintaan Total DV 3 Variabel 31 Umum v 32 Simpul n 33 Populasi p 34 Ruas l 35 Panjang Ruas ll 36 Permintaan d 37 Volume Permintaan dv 38 Volume Tempuh Permintaan dvl 4 Himpunan 41 Umum s.s 42 Himpunan Simpul s.n 43 Himpunan Ruas s.l 44 Himpunan Permintaan s.d 5 Matriks 51 Umum m.m 52 Matriks Populasi m.p 53 Matriks Ruas m.l 54 Matriks Permintaan m.d 55 Matriks Panjang Lintasan Terpendek m.sp 56 Matriks Ruas Jaringan Ideal m.l IN 57 Matriks Panjang Lintasan Terpendek Jaringan Ideal m.sp IN 6 Lain2 61 Bentuk F 62 Bentang S 63 Lebar W 64 Aspek Rasio AR 65 Derajat DG 66 Aksesibilitas A 67 Cakupan C 68 Kepadatan G xxvi
3 DAFTAR RUMUS Rumus 2.1 Representasi Graf 26 Rumus 2.2 Rumus Umum Optimasi 29 Rumus 2.3 Panjang Lintasan Terpendek Floyd 30 Rumus 2.4 Teori Matriks Kesamaan Matriks 32 Rumus 2.5 Teori Matriks Penjumlahan Matriks 33 Rumus 2.6 Teori Matriks Perkalian Matriks dengan Skalar 33 Rumus 2.7 Teori Matriks Perkalian Vektorial Dua Matriks 33 Rumus 2.8 Teori Matriks Pentransposan Matriks 33 Rumus 2.9 Teori Matriks Matriks Ko Faktor 33 Rumus 2.10 Teori Matriks Penginversan Matriks 33 Rumus 2.11 Matriks M 1 2x2 34 Rumus 2.12 Determinan Matriks M 1 2x2 34 Rumus 2.13 Matriks M 2 3x3 34 Rumus 2.14 Determinan Matriks M 2 3x3 34 Rumus 2.15 Operasi Aljabar Maks - Plus 35 Rumus 2.16 Operasi Aljabar Maks - Plus 35 Rumus 2.17 Operasi Matriks Aljabar Maks - Plus 35 Rumus 2.18 Operasi Matriks Aljabar Maks - Plus 35 Rumus 2.19 Operasi Matriks Pangkat Aljabar Matriks Plus 35 Rumus 2.20 Operasi Matriks Pangkat 1 Aljabar Matriks Plus 35 Rumus 2.21 Enumerasi Anggota Himpunan 37 Rumus 2.22 Persyaratan Anggota Himpunan 37 Rumus 2.23 Operasi Himpunan Kardinal 37 Rumus 2.24 Operasi Himpunan Himpunan Kosong 37 Rumus 2.25 Operasi Himpunan Himpunan Bagian 37 Rumus 2.26 Operasi Himpunan Himpunan Sama 37 Rumus 2.27 Operasi Himpunan Himpunan Ekivalen 37 Rumus 2.28 Operasi Himpunan Himpunan Saling Lepas 38 Rumus 2.29 Operasi Himpunan Irisan 38 xxvii
4 Rumus 2.30 Operasi Himpunan Gabungan 38 Rumus 2.31 Operasi Himpunan Komplemen 38 Rumus 2.32 Operasi Himpunan Selisih 38 Rumus 2.33 Operasi Himpunan Beda Setangkup 38 Rumus 2.34 Operasi Himpunan Perkalian Kartesian 38 Rumus 2.35 Rumus Taffee Konekvitas Minimal 38 Rumus 2.36 Rumus Taffee Konektivitas Maksimal 39 Rumus 2.37 Rumus Taffee Indeks Gamma 39 Rumus 2.38 Rumus Taffee Operasi Matriks T 40 Rumus 2.39 Rumus Taffee Operasi Matriks D 41 Rumus 2.40 Rumus Taffee Jumlah Ruas Matriks D 41 Rumus 2.41 Rumus Taffee Operasi Matriks L 42 Rumus 2.42 Rumus Taffee Jumlah Panjang Matriks L 42 Rumus 2.43 Rumus Aksesibilitas Titik 42 Rumus 2.44 Rumus Kepadatan Jaringan Jalan (Luas wilayah) 43 Rumus 2.45 Rumus Kepadatan Jaringan Jalan (Populasi wilayah) 43 Rumus 2.46 Rumus PSI Perkerasan Lentur 45 Rumus 2.47 Rumus PSI Perkerasan Kaku 45 Rumus 4.1 Perhitungan Kualitas Panjang Jaringan Jalan 87 Rumus 4.2 Perhitungan Kualitas Jumlah Simpul Terhubung 88 Rumus 4.3 Konektivitas Perbandingan Terhadap Jarak Lurus Langsung 88 Rumus 4.4 Konektivitas Perbandingan Terhadap Jaringan Harapan 89 Rumus 4.5 Identifikasi Ruas Konektivitas Kurang Baik 89 Rumus 4.6 Perhitungan Kualitas A ksesibilitas Jarak Pencapaian 91 Rumus 4.7 Perhitungan Kualitas Lintasan Pengaliran Lalu Lintas 93 Rumus 4.8 Perhitungan Kualitas Volume Seluruh Kendaraan Jarak 94 Rumus 4.9 Perhitungan Identifikasi Lintasan Kurang Baik 94 Rumus 4.10 Perhitungan Kualitas Cakupan 95 Rumus 4.11 Perhitungan Kualitas Kepadatan 96 Rumus 4.12 Perhitungan Kualitas Struktur Jaringan 96 Rumus 4.13 Perhitungan Kualitas Umum Fisik Jaringan 96 Rumus 4.14 Operasi Penambahan Aljabar Min - Plus 109 xxviii
5 Rumus 4.15 Operasi Perkalian Aljabar Min - Plus 109 Rumus 4.16 Operasi Import Data Diagonal 110 Rumus 4.17 Operasi Import Data Non Diagonal 110 Rumus 4.18 Operasi Penyebutan Nilai Sel Matriks 111 Rumus 4.19 Operasi Pencacahan Jumlah Sel Matriks 111 Rumus 4.20 Operasi Ekstraksi Nilai Ekstrem Matriks 111 Rumus 4.21 Operasi Ekstraksi Koordinat Matriks 112 Rumus 4.22 Operasi Ekstraksi Sel Matriks 112 Rumus 4.23 Operasi Ekstraksi Variasi Nilai Sel Matriks 112 Rumus 4.24 Operasi Ekspansi Matriks 112 Rumus 4.25 Operasi Identifikasi Koordinat Matriks 113 Rumus 4.26 Operasi Penyusunan Matriks Gabungan 113 Rumus 4.27 Operasi Penambahan Matriks Aljabar Min Plus 113 Rumus 4.28 Operasi Perkalian Matriks Aljabar Min Plus 114 Rumus 4.29 Operasi Pangkat Matriks Aljabar Min Plus 114 Rumus 4.30 Operasi Pemotongan Matriks 114 Rumus 4.31 Operasi Ekstraksi Matriks 115 Rumus 4.32 Operasi Penyaringan Matriks 115 Rumus 4.33 Operasi Pergantian Nilai Sel Tertentu 115 Rumus 4.34 Operasi Pengurangan/Penambahan Jumlah Baris Kolom 115 Rumus 4.35 Operasi Perkalian Sel Pusat Baris Kolom 115 xxix
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Adapun landasan teori yang dibutuhkan dalam pembahasan tugas akhir ini di antaranya adalah definisi graf, lintasan terpendek, lintasan terpendek fuzzy, metode rangking fuzzy, algoritma
BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas
BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian
PERTEMUAN 2 STATISTIKA DASAR MAT 130
PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat
Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM Penyajian Himpunan operasi-operasi dasar himpunan Sediyanto, ST. MM Program Studi Teknik Informatika Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda.
a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2
Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
KONSEP DASAR STATISTIK
KONSEP DASAR STATISTIK DATA STATISTIK Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)
MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun
MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
Bagian 2 Matriks dan Determinan
Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika
DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
BAB 1 HIMPUNAN 1 DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
Matematika Diskrit 1
Dr. Ahmad Sabri Universitas Gunadarma Pendahuluan Apakah Matematika Diskrit itu? Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai
Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 Cakupan Himpunan Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 Himpunan Tujuan Mahasiswa memahami konsep dasar
TEORI HIMPUNAN. A. Penyajian Himpunan
TEORI HIMPUNAN A. Penyajian Himpunan Definisi 1 Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Dalam
& & # = atau )!"* ( & ( ( (&
MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi
BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau
BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Himpunan. Himpunan (set)
BAB 1 HIMPUNAN Himpunan (set) Himpunan Himpunan (set) adalah kumpulan dari objek-objek yang mempunyai sifat tertentu dan didefinisikan secara jelas. Anggota Himpunan Objek di dalam himpunan disebut elemen,
H i m p u n a n. Himpunan. Oleh : Panca Mudji Rahardjo, ST. MT.
H i m p u n a n Oleh : Panca Mudji Rahardjo, ST. MT. Himpunan Definisi himpunan Penyajian himpunan Definisi-definisi Operasi himpunan Prinsip inklusi dan eksklusi Himpunan ganda 1 Definisi Himpunan (set)
DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).
BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah
Piramida Besar Khufu
Sumber: Mesir Kuno Piramida Besar Khufu Peradaban bangsa Mesir telah menghasilkan satu peninggalan bersejarah yang diakui dunia sebagai salah satu dari tujuh keajaiban dunia, yaitu piramida. Konstruksi
R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }
Pertemuan 9 Relasi Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b
GLOSSARIUM. A Akar kuadrat
A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan
Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).
Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk
BAB I H I M P U N A N
1 BAB I H I M P U N A N Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1
2. Suku pertama dan suku kedua suatu deret geometri berturut-turut adalah a -4 dan a x. Jika suku kedelapan adalah a 52, maka berapa nilai x?
1. Jika Un suku ke-n dari sutu deret geometri dengan U 1 = x 1/3 dan U 2 = x 1/2, maka suku ke lima dari deret tersebut adalah r = U 2/U 1 = x 1/2 : x 1/3 = x (1/2-1/3) = x 1/6 U 5 = a. (r)4 U 5 = x 1/3.
Matematika Semester IV
F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri
MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama.
MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital (huruf besar)
MATEMATIKA DISKRIT RELASI
MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA A. Aljabar Max-Plus Himpunan bilangan riil (R) dengan diberikan opersai max dan plus dengan mengikuti definisi berikut : Definisi II.A.1: Didefinisikan εε dan ee 0, dan untuk himpunan
GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1
GAMBARAN UMUM Pada ujian nasional tahun pelajaran 006/007, bentuk tes Matematika tingkat berupa tes tertulis dengan bentuk soal pilihan ganda, sebanyak 0 soal dengan alokasi waktu 0 menit. Acuan yang digunakan
PENYELESAIAN MASALAH LINTASAN TERPENDEK FUZZY DENGAN MENGGUNAKAN ALGORITMA CHUANG KUNG DAN ALGORITMA FLOYD
PENYELESAIAN MASALAH LINTASAN TERPENDEK FUZZY DENGAN MENGGUNAKAN ALGORITMA CHUANG KUNG DAN ALGORITMA FLOYD 1 Anik Musfiroh, 2 Lucia Ratnasari, 3 Siti Khabibah 1.2.3 Jurusan Matematika Universitas Diponegoro
KONSEP DASAR STATISTIK
KONSEP DASAR STATISTIK Hakikat Statistika 1. Asal Kata Kata statistika berasal dari kata status atau statista yang berarti negara Tulisan Aristoteles Politeia menguraikan keadaan dari 158 negara yakni
PENDAHULUAN. 1. Himpunan
PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya
HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si
HIMPUNAN Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si 1. Himpunan kosong & semesta 2. Himpunan berhingga & tak berhingga Jenis-jenis himpunan 3. Himpunan bagian (subset) 4. Himpunan saling lepas
LAMPIRAN I. Alfabet Yunani
LAMPIRAN I Alfabet Yunani Alha Α Nu Ν Beta Β Xi Ξ Gamma Γ Omicron Ο Delta Δ Pi Π Esilon Ε Rho Ρ Zeta Ζ Sigma Σ Eta Η Tau Τ Theta Θ Usilon Υ Iota Ι hi Φ, Kaa Κ Chi Χ Lambda Λ Psi Ψ Mu Μ Omega Ω LAMPIRAN
PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika
PROGRAM PEMBELAJARAN KELAS VII SEMESTER I Mata Pelajaran : Matematika 191 PROGRAM SEMESTER TAHUN PELAJARAN 20 / 20 Nama Sekolah : Kelas/ Semester : VII/1 Mata Pelajaran : Matematika Aspek : BILANGAN Standar
STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep matriks
Page 1 of 25 Materi Matriks yang dipelajari A. Pengertian dan Jenis Matriks B. Operasi Aljabar pada Matriks C. Determinan dan Invers Matriks D. Aplikasi Matriks dalam Penyelesaian Sistem PersamaanLinear
Himpunan. Nur Hasanah, M.Cs
Himpunan Nur Hasanah, M.Cs 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Himpunan lima bilangan genap positif pertama: B ={2, 4, 6, 8, 10}. C = {kucing, a, Amir,
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
3 4y = a. 3x + 5y 1 5 x + 5y 5. c. 5x 6y 30 x + 2y 2. e. 4x + 3y 16 2x 3y 10 y = x x + 9y x + y 100
Kunci Jawaban Bab I Program Linear Kuis 40 Daerah penelesaian 20 3 4 = 8 6 0 2 8 3 + 4 = 24 1. berbentuk segiempat Tes Pemahaman 1.1 1. a. 20 40 e. 7 + 5 = 35 7 5 4 3 d. f. 2 0 6 6 + 3 = 6 5 3. a. 3 +
MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR
MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS
HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma
HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya
Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi
Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Himpunan. Mempunyai elemen atau anggota. Terdapat hubungan.
Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n
Bilangan Berpangkat Kita ingat kembali bahwa untuk bilangan-bilangan cacah a, m, dan n dengan a 0, berlaku: 1 a m = a a a a (sebanyak m faktor) a m a n = a m + n a 0 = 1, di mana a 0 Notasi-notasi di atas
UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK
UJIAN NASIONAL TAHUN 009/00 MATEMATIKA (E-.) SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran (P UTAMA). Konveksi milik Bu Nina mengerjakan
PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran
PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran TAHUN PELAJARAN 9/ MATEMATIKA PEMBAHAS: UJIAN NASIONAL
BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;
BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo 1 2 Definisi 1.1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggotaanggota dari
1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata
SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk
Metode Simpleks (Simplex Method) Materi Bahasan
Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks
BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}
BAB I HIMPUNAN 1 1. Definisi Himpunan Definisi 1 Himpunan (set) adalah kumpulan dari objek yang berbeda. Masing masing objek dalam suatu himpunan disebut elemen atau anggota dari himpunan. Tidak ada spesifikasi
Sistem Persamaan Linier dan Matriks
Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I 16 KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMP/MTs... Kelas : VII Semester : I
MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =
NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital
UJIAN NASIONAL TAHUN PELAJARAN 2006/2007
UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan
G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.
2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,
1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.
Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain
SMPIT AT TAQWA Beraqidah, Berakhlaq, Berprestasi
KISI-KISI SOAL UJIAN AKHIR SEMESTER (UAS) GENAP TAHUN PELAJARAN 2015/2016 BIDANG STUDI : Matematika KELAS : 7 ( Tujuh) STANDAR KOMPETENSI / KOMPETENSI INTI : 1. Memahami sifat-sifat operasi hitung bilangan
BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal
BAB III ANALISIS FAKTOR 3.1 Definisi Analisis faktor Analisis faktor adalah suatu teknik analisis statistika multivariat yang berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI Himpunan Jenis-jenis himpunan Operasi Pada Himpunan Cara Menuliskan Himpunan Himpunan kosong & semesta Himpunan berhingga & tak berhingga
II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang
II. TINJAUAN PUSTAKA 2.1 Proses Stokastik Stokastik proses = { ( ), } adalah kumpulan dari variabel acak yang didefinisikan pada ruang peluang (Ω, ς, P) yang nilai-nilainya pada bilangan real. T dinamakan
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
muhammadamien.wordpress.com
1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola
FUNGSI DAN GRAFIK FUNGSI.
FUNGSI DAN GRAFIK FUNGSI Materi ke-4 [email protected] [email protected] Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi
SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU
SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep
DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013
DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 Satuan Pendidikan : SMP Mata Pelajaran : MATEMATIKA Kelas : VII (TUJUH) Jumlah : 40 Bentuk
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan
MATRIKS. Notasi yang digunakan NOTASI MATRIKS
MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.
Kode, GSR, dan Operasi Pada
BAB 2 Kode, GSR, dan Operasi Pada Graf 2.1 Ruang Vektor Atas F 2 Ruang vektor V atas lapangan hingga F 2 = {0, 1} adalah suatu himpunan V yang berisi vektor-vektor, termasuk vektor nol, bersama dengan
Teori Dasar Graf (Lanjutan)
Teori Dasar Graf (Lanjutan) MATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. Matriks-matriks yang dapat menyajikan
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
SILABUS. tentu. Menentukan integral tentu dengan menggunakan sifat-sifat integral. Menyelesaikan masalah
SILABUS Nama Sekolah : SMA PGRI 1 AMLAPURA Mata Pelajaran : MATEMATIKA Kelas/Program : XII / IPA Semester : 1 STANDAR KOMPETENSI: 1. Menggunakan konsep integral dalam pemecahan masalah. KOMPETENSI DASAR
Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan
Relasi dan Fungsi Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan adalah dengan himpunan pasangan terurut.
BILANGAN MODUL PERKULIAHAN
MODUL PERKULIAHAN BILANGAN Sistem bilangan real Operasi pada bilangan bulat Operasi pada bilangan pecahan Sifat-sifat bilangan berpangkat Operasi bilangan berpangkat Fakultas Program Studi Tatap Muka Kode
BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program
BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program linear, metode simpleks, dan program linear fuzzy untuk membahas penyelesaian masalah menggunakan metode fuzzy
Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Misalkan p(n) adalah pernyataan yang menyatakan: Jumlah bilangan bulat positif dari 1 sampai n adalah
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol
Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik
BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf
BAHAN AJAR. Bisnis Manajemen dan Parwisata Mata Pelajaran. Menerapkan konsep barisan dan deret dalam pemecahan masalah Kompetensi Dasar
BAHAN AJAR Kelompok : Bisnis Manajemen dan Parwisata Mata Pelajaran : Matematika Kelas / Semester : XI / 3 Standar Kompetensi : 5 Menerapkan konsep barisan dan deret dalam pemecahan masalah Kompetensi
Teori Dasar Graf (Lanjutan)
Teori Dasar Graf (Lanjutan) ATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. atriks-matriks yang dapat menyajikan
S I L A B U S. : Memecahkan Masalah Berkaitan dengan Konsep Matrik. Alokasi Waktu. Kompetensi Dasar. Materi Pembelajaran. Sumber Belajar.
S I L A B U S Nama Sekolah Mata Pelajaran Kelas / Semester Standar Kompetensi : SMKN NEGERI II Surabaya : MATEMATIKA : X / II : Memecahkan Masalah Berkaitan dengan Konsep Matrik : 36 x 45 menit Kompetensi
SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional
SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas
Himpunan. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa.
BAB II TEORI KODING DAN TEORI INVARIAN
BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan
Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
1 HIMPUNAN DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMK adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
BAB II RELASI DAN FUNGSI
9 BAB II RELASI DAN FUNGSI Dalam kehidupan nyata, senantiasa ada hubungan (relasi) antara dua hal atau unsur-unsur dalam suatu kelompok. Misalkan, hubungan antara suatu urusan dengan nomor telepon, antara
MODUL 1. A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu.
MODUL 1 A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu. 2. Penyajian Himpunan Suatu himpunan dapat disajikan dengan
