TEORI DASAR COUNTING
|
|
|
- Teguh Lesmana
- 9 tahun lalu
- Tontonan:
Transkripsi
1 TEORI DASAR COUNTING
2 ARGUMEN COUNTING Kombinatorial adalah cabang matematika yang mempelajari pengaturan obyek-obyek. Solusi yang ingin diperoleh dengan kombinatorial adalah jumlah pengaturan obyekobyek tertentu di dalam kumpulannya
3 CONTOH MASALAH YANG DIPECAHKAN DENGAN KOMBINATORIAL Misalkan nomor plat mobil di negara X terdiri atas 5 digit angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat? Password sistem komputer panjangnya enam sampai delapan karakter. Tiap karakter boleh berupa huruf atau angka: huruf besar dan huruf kecil tidak dibedakan. Berapa banyak password yang dapat dibuat?
4 ATURAN PENJUMLAHAN Jika suatu pekerjaan dapat dilaksanakan dengan n1 cara dan pekerjaan kedua dengan n2 cara; serta jika kedua tugas ini tidak dapat dilakukan dalam waktu yang bersamaan, maka terdapat n1 + n2 cara untuk melakukan salah satu pekerjaan tersebut. Contoh: Departemen Matematika akan menghadiahkan sebuah komputer kepada seorang mahasiswa atau seorang dosen. Ada berapa memberi hadiah, jika terdapat 532 mahasiswa dan 54 dosen? - Terdapat = 586 cara.
5 GENERALISASI ATURAN PENJUMLAHAN Jika terdapat pekerjaan-pekerjaan T1, T2,, Tm yang dapat dilakukan dalam n1, n2,, nm cara, dan tidak ada dua di antara pekerjaan-pekerjaan tersebut yang dapat dilakukan dalam waktu yang bersamaan, maka terdapat n1 + n2 + + nm cara untuk melakukan salah satu dari tugastugas tersebut. Contoh: Seorang mahasiswa dapat memilih satu tugas proyek Matematika Diskrit dari tiga buah daftar, yang masing-masing berisikan 9, 21, dan 17 proyek. Ada berapa tugas proyek yang dapat dipilih?
6 Contoh : Ketua Angkatan IT 2016 hanya ada 1 orang (pria atau wanita). Jumlah pria di IT orang dan jumlah wanita 15 orang. Berapa banyak cara memilih ketua angkatan? jawab : = 80 cara
7 ATURAN PERKALIAN Misalkan suatu prosedur dapat dibagi menjadi dua pekerjaan yang berurutan. Jika terdapat n1 cara untuk melakukan tugas pertama dan n2 cara untuk melakukan tugas kedua setelah tugas pertama selesai dilakukan, maka terdapat n1 n2 cara untuk melakukan prosedur tersebut.
8 GENERALISASI ATURAN PERKALIAN Jika suatu prosedur terdiri dari barisan tugas-tugas T1, T2,, Tm yang dapat dilakukan dalam n1, n2,, nm cara, secara berurutan, maka terdapat n1 n2 nm cara untuk melaksanakan prosedur tersebut.
9 GENERALISASI ATURAN PERKALIAN Contoh 1: Berapa banyak plat nomor kendaraan yang berbeda yang memuat tepat satu huruf, tiga digit bilangan desimal, dan dua huruf? Penyelesaian: Terdapat 26 kemungkinan untuk memilih huruf pertama, kemudian 10 kemungkinan untuk menentukan digit pertama, 10 untuk digit kedua, dan juga 10 untuk digit ketiga, kemudian 26 kemungkinan untuk memilih huruf kedua dan 26 untuk huruf ketiga. Jadi, terdapat = plat nomor kendaraan yang berbeda.
10 Contoh 2 : Dua orang perwakilan IF 2002 mendatangi Pak Rinaldi untuk protes nilai kuis. Wakil yang dipilih 1 orang pria dan 1 orang wanita. Berapa banyak cara memilih 2 orang wakil tersebut? Penyelesaian : 65x15 = 975 cara Contoh 3 : Bit biner hanya 0 dan 1. Berapa banyak string biner yang dapat dibentuk jika : a. Panjang string 5 bit b. Panjang string 8 bit (1 byte) Penyelesaian : a. 2x2x2x2x b buah
11 PRINSIP INKLUSI-EKSKLUSI
12 PRINSIP INKLUSI-EKSKLUSI
13 PRINSIP INKLUSI-EKSKLUSI
14 PRINSIP PIGEONHOLE Beberapa teori kombinasi didapatkan dari pernyataan-pernyataan seperti Prinsip Pigeonhole (Sarang Merpati). Prinsip tersebut berbunyi : Jika (k+1) atau lebih merpati ditempatkan ke dalam k sarang, maka tedapat paling sedikit satu sarang yang memuat dua atau lebih merpati
15 CONTOH PIGEONHOLE 1. Jika dalam satu kelas terdapat 13 mahasiswa (merpati), maka sedikitnya terdapat 2 mahasiswa yang lahir pada bulan yang sama (sarang merpati). 2. Jika terdapat 11 pemain dalam sebuah tim sepakbola yang menang dengan angka 12-0, maka haruslah terdapat paling sedikit satu pemain dalam tim yang membuat gol paling sedikit dua kali.
16 CONTOH SOAL 3. Jika anda menghadiri 6 kuliah dalam selang waktu senin sampai jum at, maka haruslah terdapat paling sedikit satu hari ketika anda menghadiri paling sedikit dua kelas. 4. Jika dalam sebuah tas laundry terdapat kaos kaki dengan warna merah, putih dan bitu. Berapa pasang kaos kaki yang warnanya sama dalam satu tas yang berisi 4 kaos kaki.
17 GENERALISASI PRINSIP PIGEONHOLE Perluasan prinsip pigeonhole (sarang merpati) adalah sebagai berikut : Jika n sarang merpati ditempati oleh kn+1 atau lebih merpati, dimana k adalah bilangan positif integer, maka dalam 1 sarang sedikitnya ditempati oleh k+1 atau lebih merpati Dengan kata lain : Jika N obyek ditempatkan ke dalam k kotak, maka terdapat paling sedikit satu kotak yang memuat sedikitnya N/k obyek.
18 CONTOH Di dalam kelas dengan 60 mahasiswa, terdapat paling sedikit 12 mahasiswa akan mendapat nilai yang sama (A, B, C, D atau E). Di dalam kelas dengan 61 mahasiswa, paling sedikit 13 mahasiswa akan memperoleh nilai yang sama ( 61/5 ).
19 LATIHAN SOAL 1. Sebuah restoran menyediakan lima jenis makanan, misalnya rawon, soto, mi, nasi campur dan bakso serta tiga jenis minuman misalnya es degan, es jeruk, teh anget. Jika setiap orang boleh memesan satu makanan dan satu minuman, berapa kemungkinan makanan dan minuman yang dapat dipesan? 2. Jabatan ketua himpunan dapat dipegang oleh mahasiswa D4 angkatan 2003 atau mahasiswa D3 angkatan Jika terdapat 23 mahasiswa D4 angkatan 2003 dan 58 mahasiswa D3 angkatan 2004, berapa cara memilih ketua himpunan? 3. Sekelompok mahasiswa terdiri dari 4 orang pria dan 3 orang wanita. Berapa jumlah cara memilih satu orang wakil pria dan satu orang wakil wanita? 4. Berapa cara memilih satu orang yang mewakili kelompok tersebut (tidak peduli pria atau wanita)?
20 LATIHAN SOAL 5. Perpustakaan memiliki 6 buah buku berbahasa Inggris, 8 buah buku berbahasa Perancis dan 10 buah buku berbahasa Jerman. Masing-masing buku berbeda judulnya. Berapa jumlah cara memilih (a) 3 buah buku, masing-masing dengan 3 bahasa berbeda, dan (b) 1 buah buku (sembarang bahasa). 6. Huruf ABCDE akan digunakan untuk membuat kata dengan panjang 3 karakter. Untuk itu jawablah berapa kata yang dapat terbentuk jika : Dalam kata diperbolehkan ada pengulangan huruf. Dalam kata tidak diperbolehkan adanya pengulangan huruf. Kata dimulai dari huruf A dan diperbolehkan adanya pengulangan. Kata dimulai dari huruf A dan tidak diperbolehkan adanya pengulangan. Kata tidak mengandung huruf A dan diperbolehkan adanya pengulangan. Kata tidak mengandung huruf A dan tidak diperbolehkan adanya pengulangan.
21 LATIHAN SOAL 7. Berapa nilai k sesudah pseudocode berikut dijalankan k 0 for p1 1 to n1 do k k + 1 for p2 1 to n2 do k k for pm 1 to nm do k k Berapa nilai k sesudah pseudocode berikut dijalankan k 0 for p1 1 to n1 do for p2 1 to n2 do... for pm 1 to nm do k k + 1
22 LATIHAN SOAL 9. Sebuah plat nomer di suatu negara terdiri dari dua huruf dan tiga angka dengan ketentuan angka pertama tidak boleh 0. Hitung berapa cara bisa dilakukan untuk menuliskan plat nomer! 10. Pada tahun 1990, terdapat sebuah virus yang namanya Melissa. Virus ini bekerja melalui sebuah pesan yang berisi file attach word processor document. Setelah dari satu ini virus akan menyebar ke komputer yang digunakan untuk mengakses 50 alamat lain yang berada pada address book sebelumnya. Setalah 4 iterasi berapa jumlah komputer yang terkena virus ini? 11. Berapa string yang dapat dibuat dengan panjang 4 karakter yang terdiri dari huruf ABCDE jika pengulangan tidak diperbolehkan. 12. Berapa string yang dapat dibuat dari soal di atas jika string dimulai dengan huruf B.
23 LATIHAN SOAL 13. Berapa string yang dapat dibuat dari soal no 10 jika string tidak dimulai dengan huruf B. 14. Untuk soal no 13-15, terdapat 10 jalan untuk perjalanan dari Surabaya ke Yogyakarta dan terdapat 5 jalan untuk perjalanan dari Yogyakarta ke Jakarta. Terdapat berapa jalan untuk melakukan perjalanan dari Surabaya ke Jakarta melalui Yogyakarta. 15. Terdapat berapa jalan yang dapat dipilih untuk melakukan perjalanan dari Surabaya Yogyakarta Jakarta Yogyakarta Surabaya. 16. Terdapat berapa jalan yang dapat dipilih untuk melakukan perjalanan dari Surabaya Yogyakarta Jakarta Yogyakarta Surabaya, tidak boleh melalui jalan yang sama untuk perjalanan berangkat dan pulang.
24 LATIHAN SOAL orang mempunyai first name Ahmad, Arfan, dan Farah; middle name Adibah dan Abdul; dan last name Hakim, Rohman dan Rahmawati. Berapa minimal jumlah orang yang mempunyai first, middle dan last name yang sama. Buktikan jawaban anda! 18. Dalam berapa cara kita dapat memilih pimpinan, wakil pimpinan, sekretaris, bendahara dari sebuah organisasi yang mempunyai calon untuk ke-4 jabatan tsb. sebanyak 10 orang. 19. Berapa banyak string yang dapat dibentuk yang terdiri dari 4 huruf berbeda dan diikuti dengan 3 angka yang berbeda pula? 20. Berapa jumlah kemungkinan membentuk 3 angka dari 5 angka :1,2,3,4,5 jika: Tidak boleh ada pengulangan angka. Boleh ada pengulangan angka
Combinatorics dan Counting
CHAPTER 6 COUNTING Combinatorics dan Counting Kombinatorik Ilmu yang mempelajari pengaturan obyek Bagian penting dari Matematika Diskrit Mulai dipelajari di abad 17 Enumerasi Penghitungan obyek dengan
DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.
KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)
DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.
KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)
Kombinatorial. Matematika Diskrit Pertemuan ke - 4
Kombinatorial Matematika Diskrit Pertemuan ke - 4 Pengertian Cabang matematika yang mempelajari pengaturan objek-objek Solusi yang diperoleh : jumlah cara pengaturan objek-objek tertentu dalam himpunan
Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB
Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa
Pertemuan 14. Kombinatorial
Pertemuan 14 Kombinatorial 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan kata-sandi yang dapat dibuat? abcdef
Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB
Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa
Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Ruang Sampel Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Ruang Sampel (Sample Space) Ruang sampel: himpunan semua hasil (outcome) yang
4. Pencacahan. Pengantar. Aturan penjumlahan (sum rule) Aturan penjumlahan Yang Diperumum. Aturan Perkalian (Product Rule)
4. Pencacahan Pengantar Pencacahan (counting) adalah bagian dari matematika kombinatorial. Matematika kombinatorial berkaitan dengan pengaturan sekumpulan objek. Pencacahan berusaha menjawab pertanyaan-pertanyaan
KOMBINATORIAL STRUKTUR DISKRIT K-1. Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia.
STRUKTUR DISKRIT K-1 KOMBINATORIAL Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia Suryadi MT Struktur Diskrit 1 Pendahuluan Sebuah password panjangnya 6 sampai
Bab 2. Prinsip Dasar Perhitungan
Bab 2. Prinsip Dasar Perhitungan 2.1. Prinsip-prinsip Dasar Dalam kehidupan sehari-hari, kita sering dihadapkan dengan masalah perhitungan. Sebagai contoh, sebuah Warung Tegal menyediakan menu yang terdiri
KOMBINATORIAL. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
Kombinatorial. Pendahuluan. Definisi. Kaidah Dasar Menghitung. Sesi 04-05
Pendahuluan Kombinatorial Sesi 04-05 Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat? abcdef
Kombinatorial. Oleh: Panca Mudjirahardjo. Definisi dan tujuan. Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek
Kombinatorial Oleh: Panca Mudjirahardjo Definisi dan tujuan Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek Menentukan jumlah cara pengaturan objek tersebut 1 Ilustrasi 1
Kombinatorial. Matematika Deskrit. Sirait, MT 1
Kombinatorial Matematika Deskrit By @Ir.Hasanuddin Sirait, MT 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan
U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain
KOMBINATORIAL Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek objek Solusi yang ingin kita peroleh dari kombinatorial ini adalah jumlah cara pengaturan objek objek didalam kumpulanya
Pendahuluan. abcdef aaaade a123fr. erhtgahn yutresik ????
Kombinatorial 1 Percobaan! Melampar dadu! Berapa saja angka yang muncul? Memilih 4 wakil dari kelas ini! Berapa kemungkinan perwakilan yang dapat dibentuk? Menyusun 5 huruf dari a,b,c,d,e, tidak boleh
METODE FUNDAMENTAL PENCACAHAN
Http://Imeldalalus.wordpress.com METODE FUNDAMENTAL PENCACAHAN PRINSIP UTAMA DALAM PENCACAHAN Mella Imelda Selasa,5 November 2013 Terdapat dua prinsip atau aturan utama dalam pencacahan yaitu aturan perkalian
Permutasi & Kombinasi
Permutasi & Kombinasi 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat????? abcdef
Matematika Diskret. Mahmud Imrona Rian Febrian Umbara. Kombinatorial. Pemodelan dan Simulasi
Matematika Diskret Mahmud Imrona Rian Febrian Umbara Pemodelan dan Simulasi Kombinatorial 1 9/26/2017 Definisi Kombinatorial Kombinatorial adalah salah satu cabang matematika yang mempelajari teknik menghitung
Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed
Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Kombinatorial: cabang matematika yang mempelajari
KOMBINATORIK. Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA
KOMBINATORIK Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA Oleh: Murdanu Dosen Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta SEKOLAH MENENGAH PERTAMA STELA
PEMBEKALAN PESERTA OLIMPIADE SMA 1 KALASAN Februari-Maret 2009 SOAL-SOAL LATIHAN
PEMBEKALAN PESERTA OLIMPIADE SMA 1 KALASAN Februari-Maret 2009 SOAL-SOAL LATIHAN 1. Wati menuliskan suatu bilangan yang terdiri dari 6 angka di papan tulis, tetapi kemudian Iwan menghapus 2 buah angka
KOMBINATORIKA. (Latihan Soal) Kus Prihantoso Krisnawan. August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN
KOMBINATORIKA (Latihan Soal) Kus Prihantoso August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN Teori Faktorial Teori Faktorial n! = n (n 1) (n 2) (n 3) 2 1 0! = 1 Teori Faktorial n! = n (n 1)
Statistika & Probabilitas
Statistika & Probabilitas Statistika Berhubungan dengan banyak angka Contoh : Numerical Description pergerakan IHSG, jumlah penduduk di suatu wilayah. Dalam dunia usaha sekumpulan data : pergerakan tingkat
8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 3 KOMBINATORIAL Tujuan 1.Mahasiswa
PTI15004 MatematikaKomputasi
PTI15004 MatematikaKomputasi PencacahanCounting Justanintermezzo Pengelola Pantai Hanakapiai, Hawaii memperingatkan pengunjung agar tidak mendekati kawasan air, dan menegaskan peringatan tersebut dengan
C. Tujuan Dengan memahami rumusan masalah yang ada di atas, mahasiswa dapat menggunakan dan mengaplikasikan kombinatorial dalam kehidupan nyata.
BAB I PENDAHULUAN A. Latar Belakang Misalkan nomor plat mobil di negara X terdiri atas 5 angka angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat?
PELATIHAN OLIMPIADE MATEMATIKA
MATERI PELATIHAN OLIMPIADE MATEMATIKA SMA N 7 PURWOREJO 26-28 FEBRUARI 2008 DI HOTEL PAKEMSARI SLEMAN DISUSUN OLEH : HIMMAWATI PUJI LESTARI, M.Si JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU
BAB III INDUKSI MATEMATIK dan KOMBINATORIK
BAB III INDUKSI MATEMATIK dan KOMBINATORIK 1. Kata pengantar Kebenaran pernyataan matematika yang berkaitan dengan bilangan bulat perlu pembuktian salah satu metode pembuktian dapat menggunakan Induksi
TEKNIK MEMBILANG. b T U V W
TEKNIK MEMBILANG Berikut ini teknik-teknik (cara-cara) membilang atau menghitung banyaknya anggota ruang sampel dari suatu eksperimen tanpa harus mendaftar seluruh anggota ruang sampel tersebut. A. Prinsip
CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF
CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF 1 2 ATURAN PERKALIAN LEMBAR KERJA SISWA KE-1 Perhatikan soal yang berkaitan dengan perjalanan berikut ini. Pak Zidan dengan mobilnya akan bepergian dari kota
B. Aturan Permutasi ATURAN PENCACAHAN 11/20/2015. B. Aturan Permutasi
Jurnal Materi Umum B. Aturan Permutasi Daftar Hadir Materi B SoalLatihan ATURAN PENCACAHAN Kelas XI, Semester 4 B. Aturan Permutasi Notasi faktorial : n! = n (n - 1) (n - 2) (n - 3) 3. 2. 1 dimana n bilangan
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
Kombinatorial adalah cabang matematika yang berguna untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan
Kombinatorial adalah cabang matematika yang berguna untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. Contoh : Sebuah password panjangnya 6 sampai 8
PRINSIP INKLUSI DAN EKSKLUSI
PRINSIP INKLUSI DAN EKSKLUSI Misalkan A dan B sembarang himpunan. Penjumlahan A + B menghitung banyaknya elemen A yang tidak terdapat dalam B dan banyaknya elemen B yang tidak terdapat dalam A tepat satu
BAB III KOMBINATORIK
37 BAB III KOMBINATORIK Persoalan kombinatorik bukan merupakan persoalan yang baru dalam kehidupan nyata. Banyak persoalan kombinatorik yang sederhana telah diselesaiakan dalam masyarakat. Misalkan, saat
Permutasi dan Kombinasi Peluang Diskrit
dan Kombinasi Peluang Diskrit Pengantar Permutasi -Faktorial Misalkan n adalah bilangan bulat positif. Besaran n faktorial (n!) didefinisikan sebagai hasil kali semua bilangan bulat antara n hingga 1.
CHAPTER 7 DISCRETE PROBABILITY
CHAPTER 7 DISCRETE PROBABILITY 1 7.1 AN INTRODUCTION TO DISCRETE PROBABILITY 2 Sejarah 1526: Cardano menulis Liber de Ludo Aleae (Book on Games of Chance). Abad 17: Pascal menentukan kemungkinan untuk
6.3 PERMUTATIONS AND COMBINATIONS
6.3 PERMUTATIONS AND COMBINATIONS Pengaturan dengan urutan Sering kali kita perlu menghitung banyaknya cara pengaturan obyek tertentu dengan memperhatikan urutan maupun tanpa memperhatikan urutan. Contoh
ATURAN PENCACAHAN 7/8/2015. B. Aturan Permutasi. Soal 01W362. Nilai dari 5!. 2! Adalah A. 120 B. 200 C. 240 D. 280 E Soal 02W168.
Jurnal Latihan W22b Soal 01W362 Daftar Hadir Materi B SoalLKS ATURAN PENCACAHAN Kelas XI, Semester 4 B. Aturan Permutasi Nilai dari 5!. 2! Adalah A. 120 B. 200 C. 240 D. 280 E. 480 SoalLatihan www.yudarwi.com
WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP
WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP Ilham Rizkianto FMIPA Universitas Negeri Yogyakarta [email protected] Wonosari, 9 Mei 2014 MASALAH KOMBINATORIK Mengecoh,
KOMBINATORIKA. Berapa banyak cara menyusun sebuah bilangan yang terdiri dari empat buah angka yang tidak mengandung angka yang berulang?
P a g e 1 KOMBINATORIKA Beberapa prinsip penting dalam menyelesaikan masalah kombinatorika yaitu permutasi dan kombinasi, prinsip inklusi-eksklusi, koefisien binomial, prinsip sarang merpati (pigeon hole
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 1 PELUANG
Pertemuan 2. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 1.3 Menghitung titik sampel 1 PELUANG Teorema 1.1 (Kaedah pencacahan) Bila suatu operasi dapat dilakukan dengan n 1
Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya
2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu
Permutasi & Kombinasi. Dr.Oerip S Santoso MSc
Permutasi & Kombinasi Dr.Oerip S Santoso MSc Aturan Pejumlahan dan Perkalian Aturan Penjumlahan Himpunan S dipartisi menjadi subset S1,S2, Sm Jumlah objek di S = jumlah objek dari semua subset Contoh 1:
Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo
Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Hendy - 13507011 Jurusan Teknik Informatika, ITB, Bandung 40116, email: [email protected] Abstract Makalah ini membahas
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
Bab 9. Peluang Diskrit
Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas
B. Aturan Permutasi ATURAN PENCACAHAN 7/8/2015. B. Aturan Permutasi
Jurnal Materi W22b B. Aturan Permutasi Daftar Hadir Materi B SoalLKS SoalLatihan ATURAN PENCACAHAN Kelas XI, Semester 4 B. Aturan Permutasi Notasi faktorial : n! = n (n - 1) (n - 2) (n - 3) 3. 2. 1 dimana
Mencari Solusi Persamaan Rekursif Bilangan Catalan dengan Prinsip-prinsip Kombinatorial
Mencari Solusi Persamaan Rekursif Bilangan Catalan dengan Prinsip-prinsip Kombinatorial Ahmad Zaky - 13512076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
Matematika Diskrit. Rudi Susanto
Matematika Diskrit Rudi Susanto Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah Kuliah kita.. Matematika
APLIKASI TEORI KOMBINATORIAL PADA TANDA NOMOR KENDARAAN BERMOTOR (TNKB) DI INDONESIA KHUSUSNYA KOTA SEMARANG
APLIKASI TEORI KOMBINATORIAL PADA TANDA NOMOR KENDARAAN BERMOTOR (TNKB) DI INDONESIA KHUSUSNYA KOTA SEMARANG Jonathan Ery Pradana Program Studi Teknik Informatika Institut Teknologi Bandung Jl. Kebon Bibit
Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker
Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker Johan Sentosa - 13514026 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
PERMUTASI & KOMBINASI ARUM H. PRIMANDARI
PERMUTASI & KOMBINASI ARUM H. PRIMANDARI ATURAN PENGALIAN ATURAN 1 ATURAN 2 MENGHITUNG TITIK SAMPEL Dasar dari prinsip menghitung titik sampel sering di diartikan sebagai aturan pengalian. Aturan 1: Jika
Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata
dan Statistika Ruang Adam Hendra Brata adalah suatu ilmu untuk memprediksi suatu kejadian (event) atau dapat disebut peluang suatu kejadian berdasarkan pendekatan matematis. Dengan ilmu probabilitas, kita
Perluasan permutasi dan kombinasi
Perluasan permutasi dan kombinasi Permutasi dengan pengulangan Kombinasi dengan pengulangan Permutasi dengan obyek yang tidak dapat dibedakan Distribusi obyek ke dalam kotak Permutasi dengan pengulangan
Gembong Edhi Setyawan
Gembong Edhi Setyawan Matakuliah : Matematika Komputasi Prasyarat : - Sifat : Wajib Bobot : 4 sks Mata kuliah ini membahas topik yang menjadi dasar matematika bagi mahasiswa informatika-ilmu komputer.
. Alamat mempunyai 2 bagian yaitu : 1. Dipisahkan oleh
Email Setelah sekian lama menghilang dalam dunia maya hari ini kembali muncul lagi dengan topic membuat Email kebetulan saya mengajari teman membuat Email, baiklah supaya tidak berbelit-belit dalam menulis
KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO
KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan
KONSEP DASAR PROBABILITAS
KONSEP DASAR PROBABILITAS PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat 5 orang calon presiden,
Aplikasi Kombinatorial dan Peluang dalam Permainan Poker
Aplikasi Kombinatorial dan Peluang dalam Permainan Poker Hably Robbi Wafiyya - 13507128 Program Studi Teknik Informatika ITB, Bandung, email : [email protected] Abstract Makalah ini membahas tentang
Pengantar Matematika. Diskrit. Bahan Kuliah IF2091 Struktur Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG
PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Matematika Bahan Kuliah IF2091 Struktur Diksrit Diskrit RINALDI MUNIR Lab Ilmu dan Rekayasa
VI Matematika Diskrit
VI041201 Matematika Diskrit Jam/Minggu 2 Jam Semester : 1 Sifat: Wajib Kode Mata Kuliah Nama Matakuliah Silabus ringkas Tujuan Umum (TIU) VI041201 Matematika Diskrit Kuliah ini mengajarkan bagaimana siswa
RENCANA PEMBELAJARAN
ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Matematika Diskrit Semester :2 Kode :
INF-104 Matematika Diskrit
Relasi dan Fungsi Jurusan Informatika FMIPA Unsyiah March 10, 2014 Suatu fungsi f : A B disebut pada (onto) atau surjektif (surjective) jika f(a) = B, yaitu jika untuk semua b B ada sekurang-kurangnya
Algoritma Pemrograman I
Algoritma Pemrograman I Konsep Dasar Algoritma Ika Menarianti 1 Apakah Algoritma itu? Masalah adalah pertanyaan atau tugas yang kita cari jawabannya. Untuk masalah yang kecil, dapat ditemukan solusi dengan
Dasar-dasar Kaidah Pencacahan
Dasar-dasar Kaidah Pencacahan Djamilah Bondan W. M.Si. September 2009 1 Kaidah Penjumlahan 1.1 Kaidah Penjumlahan Sederhana Jika ada m pilihan untuk proses/kegiatan P, dan ada n pilihan untuk proses atau
Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB
Matematika Komputasional Himpunan Oleh: M. Ali Fauzi PTIIK - UB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah
Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2 2/24/2016 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: [email protected]
PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M.
LA - WB (Lembar Aktivitas Warga Belajar) PELUANG Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 13 Peluang Kompetensi Dasar 1. Menggunakan
Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan. Tak kenal maka tak sayang, tak sayang maka tak cinta
Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah 1 Dahulu namanya.. Matematika Diskrit 2 Mengapa
Pengantar Matematika Diskrit
Materi Kuliah Matematika Diskrit Pengantar Matematika Diskrit Didin Astriani Prasetyowati, M.Stat Program Studi Informatika UIGM 1 Apakah Matematika Diskrit itu? Matematika Diskrit: cabang matematika yang
CHAPTER 8. Advanced Counting Techniques
CHAPTER 8 Advanced Counting Techniques Banyak problem counting yang tidak dapat dipecahkan dengan menggunakan hanya aturan dasar, kombinasi, permutasi, dan aturan sarang merpati. Misalnya: Ada berapa banyak
REPRESENTASI DATA. Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma
REPRESENTASI DATA Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma Pendahuluan Materi ini mendiskusikan beberapa konsep penting mencakup sistem bilangan biner dan hexadecimal, organisasi
MATEMATIKA MATEMATIK A DISKRIT : : MAT-3615/ 3 : : VI
Nama Kode /SKS Program Studi Semester : : MAT-3615/ 3 sks : Pendidikan : VI (Enam) Oleh : Nego Linuhung, M.Pd Nurain Suryadinata, M.Pd Penyajian materi dalam mata kuliah ini tidak hanya berpusat pada dosen,
KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL
KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL Fransisca Cahyono (13509011) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
MAKALAH MATEMATIKA SEKOLAH 2 ATURAN PERKALIAN DAN PERMUTASI
MAKALAH MATEMATIKA SEKOLAH 2 ATURAN PERKALIAN DAN PERMUTASI Oleh: Anggota Kelompok 2 : 1. Alfia Anggraeni Putri (12030174021) 2. Lusi Rahmawati (12030 174208) 3. Rahma Anggraeni (12030 174226) 4. Raka
Algoritma Pemrograman I KONSEP DASAR
Algoritma Pemrograman I KONSEP DASAR Apakah Algoritma itu? Masalah adalah pertanyaan atau tugas yang kita cari jawabannya. Untuk masalah yang kecil, dapat ditemukan solusi dengan mudah dan cepat. Jika
L/O/G/O KOMBINATORIK. By : ILHAM SAIFUDIN
L/O/G/O KOMBINATORIK By : ILHAM SAIFUDIN Senin, 09 Mei 2016 1.2 Kaidah Dasar menghitung BAB 4. KOMBINATORIK 1.1 Pendahuluan 1.2 Kaidah Dasar Menghitung 1.3 Permutasi 1.4 Kombinasi 1.5 Permutasi dan Kombinasi
Pengantar Matematika. Diskrit. Bahan Kuliah IF2120 Matematika Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG
PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Matematika Bahan Kuliah IF2120 Matematika Diksrit Diskrit RINALDI MUNIR Lab Ilmu dan Rekayasa
Tipe dan Mode Algoritma Simetri (Bagian 2)
Bahan Kuliah ke-10 IF5054 Kriptografi Tipe dan Mode Algoritma Simetri (Bagian 2) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 Rinaldi Munir IF5054
PENCACAHAN RUANG SAMPEL
PENCACAHAN RUANG SAMPEL PERTEMUAN VII EvanRamdan PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat
BAB X Pokok Bahasan PELUANG
BUKU MATEMATIKA SMP KELAS VII KURIKULUM 2013 Soal dan Pembahasan Uji Kompetensi 10.1 BAB X Pokok Bahasan PELUANG 1. Ambil sebuah paku payung sebagai percobaan, lempar hingga jatuh ke lantai. Dapatkah kamu
DASAR SISTEM BILANGAN
Pengantar Sistem Digital / Sistem Digital Materi 1 DASAR SISTEM BILANGAN Hugo Aprilianto Pengertian Sistem bilangan merupakan tata aturan atau susunan dalam menentukan nilai suatu bilangan, antara lain
Komputer menggunakan dan memanipulasi data untuk perhitungan aritmatik, pemrosesan data dan operasi logik. Data adalah bilangan biner dan informasi
Komputer menggunakan dan memanipulasi data untuk perhitungan aritmatik, pemrosesan data dan operasi logik. Data adalah bilangan biner dan informasi berkode biner yang dioperasikan untuk mencapai beberapa
Aplikasi Matematika Diskrit dalam Permainan Nonogram
Aplikasi Matematika Diskrit dalam Permainan Nonogram Mahesa Gandakusuma (13513091) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011
Matematika Diskrit Sesi 01-02 Dosen Pembina : Danang Junaedi Tujuan Instruksional Setelah proses perkuliahan, mahasiswa memiliki kemampuan Softskill Meningkatkan kerjasama dalam kelompok dan kemampuan
Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya
Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya Hanif Eridaputra (13510091) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
PENCARIAN SOLUSI TTS ANGKA DENGAN ALGORITMA RUNUT BALIK BESERTA PENGEMBANGANNYA
PENCARIAN SOLUSI TTS ANGKA DENGAN ALGORITMA RUNUT BALIK BESERTA PENGEMBANGANNYA Wahyu Fahmy Wisudawan Program Studi Teknik Informatika Institut Teknologi Bandung, NIM: 506 Jl. Dago Asri 4 No. 4, Bandung
PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah
1 PELUANG Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Menggunakan aturan perkalian, permutasi dan kombinasi
Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya
Matematika Diskrit Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya Nama : Andreas NIM : 1313004 Departemen Teknologi Informasi INSTITUT TEKNOLOGI HARAPAN BANGSA 2014 Kata Pengantar Puji
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I oleh : Lisna Zahrotun, S.T, M.Cs [email protected] lisnazahrotun.tif.uad.ac.id 1 Penilaian : 1. UTS 25% 2. UAS 30% 3. Keaktifan 4. Praktikum
Penggunaan Pohon Huffman Sebagai Sarana Kompresi Lossless Data
Penggunaan Pohon Huffman Sebagai Sarana Kompresi Lossless Data Aditya Rizkiadi Chernadi - 13506049 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Modul ke: STATISTIK Probabilitas atau Peluang. 05Teknik. Fakultas. Bethriza Hanum ST., MT. Program Studi Teknik Mesin
Modul ke: STATISTIK Probabilitas atau Peluang Fakultas 05Teknik Bethriza Hanum ST., MT Program Studi Teknik Mesin Pengertian dan Pendekatan Mempelajari probabilitas kejadian suatu peristiwa sangat bermanfaat
ATURAN PENCACAHAN 9/29/2014. C. Aturan Kombinasi. Soal 01W362. Latihan W22c
Latihan W22c ATURAN PENCACAHAN Kelas XI, Semester 2 C. Aturan Kombinasi Soal 01W362 Diketahui P = {a, b, c, d, e}. Berapa banyaknya cara mengambil tiga huruf dari huruf-huruf pada himpunan P jika urutannya
PERKENALAN STRUKTUR DATA. Firmansyah, S.Kom
PERKENALAN STRUKTUR DATA Firmansyah, S.Kom A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema Perkenalan Struktur Data 2. Fokus Pembahasan Materi Pokok 1. Definisi Struktur Data 2. Tipe-tipe data 3. Algoritma
Tipe Data dan Operator dalam Pemrograman
Diktat Pelatihan Olimpiade Komputer Oleh Fakhri Pertemuan ke 2 : Tipe Data dan Operator dalam Pemrograman 2.1 Tipe Data Tipe data adalah jenis dari suatu nilai pada pemrograman, baik itu angka, tulisan,
matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran
Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan
