Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed"

Transkripsi

1 Kombinatorial dan Peluang Diskret Matematika Diskret (TKE072107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan <stwn at unsoed.ac.id> Tahun Ajaran 2012/2013

2 Kombinatorial: cabang matematika yang mempelajari pengaturan kumpulan objek.

3 Jumlah cara pengaturan sekumpulan objek dalam himpunannya.

4 Contoh Masalah Berapa banyak nomor plat mobil yang dapat dibuat dengan digit pertama huruf, diikuti 5 angka, dan angka pertama tidak boleh 0? Berapa banyak kata sandi yang dapat dibuat dengan panjang 6-8 karakter, berupa huruf atau angka?

5 Contoh Masalah Berapa banyak nomor plat mobil yang dapat dibuat dengan digit pertama 1 huruf, diikuti 5 angka, dan angka pertama tidak boleh 0? Berapa banyak kata sandi yang dapat dibuat dengan panjang 6-8 karakter, berupa huruf atau angka?

6 abcdef bcdefg vwku20... akucakep m4kank0l... z14pgr4k...

7 Melakukan enumerasi kemungkinan.

8 Cocok untuk masalah yang kecil, musibah untuk masalah yang besar.

9 Kaidah menghitung.

10 Kombinatorial didasarkan pada hasil yang diperoleh dari sebuah percobaan.

11 Percobaan mempunyai hasil yang dapat diamati.

12 Melempar koin, memilih ketua, menyusun jumlah kata dengan panjang 8 huruf,...

13 Kaidah Dasar Menghitung

14 Kita harus menghitung semua kemungkinan pengaturan obyek.

15 Kaidah Dasar Menghitung 1) Kaidah perkalian, rule of product Bila percobaan 1 mempunyai p kemungkinan hasil, percobaan 2 mempunyai q kemungkinan hasil. Bila percobaan 1 dan 2 dilakukan, maka akan terdapat p x q kemungkinan hasil percobaan. 2) Kaidah penjumlahan, rule of sum Bila percobaan 1 mempunyai p kemungkinan hasil, percobaan 2 mempunyai q kemungkinan hasil. Bila hanya 1 percobaan saja yang dilakukan, percobaan 1 atau percobaan 2, maka akan terdapat p + q kemungkinan hasil percobaan.

16 Berapa banyak cara memilih satu orang ketua, laki-laki atau perempuan, jika terdapat 60 orang laki-laki dan 25 orang perempuan?

17 = 85 cara

18 Berapa banyak cara memilih perwakilan 1 mahasiswa dan 1 mahasiswi dari 45 orang mahasiswa dan 12 orang mahasiswi?

19 45 x 12 = 540 cara

20 Kursi-kursi dalam ruang seminar akan diberi nomor dengan sebuah huruf diikuti dengan bilangan bulat positif yang tidak lebih dari 25. Berapa jumlah maksimum kursi yang dapat diberi nomor?

21 Perluasan Kaidah Menghitung Kita ingin menggunakan kaidah menghitung untuk lebih dari 2 percobaan, p i Jika n buah percobaan masing-masing memiliki p 1, p 2, p 3,, p n hasil, maka jumlah kemungkinan hasil adalah: p 1 x p 2 x p 3 x x p n untuk kaidah perkalian p 1 + p 2 + p p n untuk kaidah penjumlahan

22 Berapa banyak string biner yang dapat dibentuk jika panjang string: a) 5 bit b) 1 byte Jawaban: a) 2 x 2 x 2 x 2 x 2 = 32 buah b) 2 8 = 256 buah

23 Berapa banyak string biner yang dapat dibentuk jika panjang string: a) 5 bit b) 1 byte Jawaban: a) 2 x 2 x 2 x 2 x 2 = 32 buah b) 2 8 = 256 buah

24 Prinsip Inklusi-Eksklusi

25 Setiap byte disusun oleh 8-bit. Berapa banyak jumlah byte yang dimulai dengan 11 atau berakhir dengan 11? Penyelesaian: Misalkan A = himpunan byte yang dimulai dengan 11, B = himpunan byte yang diakhiri dengan 11 A B = himpunan byte yang berawal dan berakhir dengan 11 maka A B = himpunan byte yang berawal dengan 11 atau berakhir dengan 11 A = 2 6 = 64, B = 2 6 = 64, A B = 2 4 = 16. maka A B = A + B A B = = = 112.

26 Setiap byte disusun oleh 8-bit. Berapa banyak jumlah byte yang dimulai dengan 11 atau berakhir dengan 11? Penyelesaian: Misalkan A = himpunan byte yang dimulai dengan 11, B = himpunan byte yang diakhiri dengan 11 A B = himpunan byte yang berawal dan berakhir dengan 11 maka A B = himpunan byte yang berawal dengan 11 atau berakhir dengan 11 A = 2 6 = 64, B = 2 6 = 64, A B = 2 4 = 16. maka A B = A + B A B = = = 112.

27 Permutasi

28 Permutasi: jumlah urutan berbeda dari pengaturan objek-objek.

29 Bola: Kotak: m b p Berapa jumlah urutan berbeda yang mungkin dibuat? dari penempatan bola ke dalam kotak-kotak tersebut?

30 Bola: Kotak: m b p Berapa jumlah urutan berbeda yang mungkin dibuat dari penempatan bola ke dalam kotak-kotak tersebut?

31 Kotak 1 Kotak 2 Kotak 3 Urutan b p mbp m p b mpb m p bmp b p m bpm m b pmb p b m pbm Jumlah kemungkinan urutan berbeda dari penempatan bola ke dalam kotak adalah (3)(2)(1) = 3! = 6.

32 Permutasi adalah bentuk khusus dari perkalian.

33 Jika jumlah objek n buah, maka.. Urutan pertama dipilih dari n objek Urutan kedua dipilih dari n-1 objek Urutan ketiga dipilih dari n-2 objek... Dan urutan terakhir dipilih dari 1 objek tersisa Menurut kaidah perkalian, permutasi dari n objek adalah n(n-1)(n-2) (2)(1) = n!

34 Berapa banyak kata yang dapat dibentuk dari kata HAPUS?

35 (5)(4)(3)(2)(1) = 120 buah kata

36 Permutasi 5 dari 5 objek P(5,5) = 5! = 120 buah kata

37 Berapa banyak cara mengurutkan nama 14 orang mahasiswi?

38 P(14,14) = 14! =...

39 Permutasi r dari n Objek Terdapat 6 buah bola yang berbeda warna dan 3 kotak. Masing-masing kotak hanya boleh diisi 1 buah bola. Berapa jumlah urutan berbeda yang mungkin dibuat? Bola: m b p h k j Kotak: Ada n buah bola dan r kotak, dimana r n. n(n-1)(n-2) (n-(r-1)) (6)(5)(4) = 120 buah

40 Definisi 2. Permutasi r dari n elemen adalah jumlah kemungkinan urutan r buah elemen yang dipilih dari n buah elemen, dengan r n, yang dalam hal ini, pada setiap kemungkinan urutan tidak ada elemen yang sama. P ( n, r) = n( n 1)( n 2)...( n ( r 1)) = n! ( n r)!

41 Kombinasi

42 Bentuk khusus dari permutasi.

43 Pada kombinasi, urutan kemunculan diabaikan.

44 Jika ada 2 buah bola yang berwarna sama diminta untuk dimasukkan ke 3 kotak dan setiap kotak hanya dapat dimasuki 1 bola.

45 a a b b sama b b a a a a b hanya 3 cara sama b b a b a a a b b sama b b a 1 2 3

46 Jika ada 2 buah bola yang berwarna sama diminta untuk dimasukkan ke 3 kotak dan setiap kotak hanya dapat dimasuki 1 bola. Jumlah cara memasukkan bola ke dalam kotak = 3! P (3,2) (3,2) 1! (3)(2) = P = = 2 2! 2! 2 = 3.

47 Bila sekarang jumlah bola 3 dan jumlah kotak 10, maka jumlah cara memasukkan bola ke dalam kotak adalah 10! P(10,3) 7! (10)(9)(8) = = 3! 3! 3! karena ada 3! cara memasukkan bola yang warnanya sama. Secara umum, jumlah cara memasukkan r buah bola yang berwarna sama ke dalam n buah kotak adalah n( n 1)( n 2)...( n r! ( r 1)) = n! r!( n r)! n = C(n, r) atau r n diambil r

48 Bila sekarang jumlah bola 3 dan jumlah kotak 10, maka jumlah cara memasukkan bola ke dalam kotak adalah 10! P(10,3) 7! (10)(9)(8) = = 3! 3! 3! karena ada 3! cara memasukkan bola yang warnanya sama. Secara umum, jumlah cara memasukkan r buah bola yang berwarna sama ke dalam n buah kotak adalah n( n 1)( n 2)...( n r! ( r 1)) = n! r!( n r)! n = C(n, r) atau r n diambil r

49 Bila sekarang jumlah bola 3 dan jumlah kotak 10, maka jumlah cara memasukkan bola ke dalam kotak adalah 10! P(10,3) 7! (10)(9)(8) = = 3! 3! 3! karena ada 3! cara memasukkan bola yang warnanya sama. Secara umum, jumlah cara memasukkan r buah bola yang berwarna sama ke dalam n buah kotak adalah n( n 1)( n 2)...( n r! ( r 1)) = n! r!( n r)! n = C(n, r) atau r n diambil r

50 Kombinasi r elemen dari n elemen adalah jumlah pemilihan yang tidak terurut r elemen yang diambil dari n buah elemen.

51 Interpretasi Kombinasi 1. C(n, r) = banyaknya himpunan bagian yang terdiri dari r elemen yang dapat dibentuk dari himpunan dengan n elemen. Misalkan A = {1, 2, 3} Jumlah Himpunan bagian dengan 2 elemen: {1, 2} = {2, 1} {1, 3} = {3, 1} 3 buah {2, 3} = {3, 2} 3 3! 3! atau = = = 3 2 (3 2)!2! 1!2! buah

52 2. C(n, r) = cara memilih r buah elemen dari n buah elemen yang ada, tetapi urutan elemen di dalam susunan hasil pemilihan tidak penting. Contoh: Berapa banyak cara membentuk panitia (komite, komisi, dsb) yang beranggotakan 5 orang orang dari sebuah fraksi di DPR yang beranggotakan 25 orang? Penyelesaian: Panitia atau komite adalah kelompok yang tidak terurut, artinya setiap anggota di dalam panitia kedudukannya sama. Misal lima orang yang dipilih, A, B, C, D, dan E, maka urutan penempatan masing-masingnya di dalam panitia tidak penting (ABCDE sama saja dengan BACED, ADCEB, dan seterusnya). Banyaknya cara memilih anggota panitia yang terdiri dari 5 orang anggota adalah C(25,5) = cara.

53 2. C(n, r) = cara memilih r buah elemen dari n buah elemen yang ada, tetapi urutan elemen di dalam susunan hasil pemilihan tidak penting. Contoh: Berapa banyak cara membentuk panitia (komite, komisi, dsb) yang beranggotakan 5 orang orang dari sebuah fraksi di DPR yang beranggotakan 25 orang? Penyelesaian: Panitia atau komite adalah kelompok yang tidak terurut, artinya setiap anggota di dalam panitia kedudukannya sama. Misal lima orang yang dipilih, A, B, C, D, dan E, maka urutan penempatan masing-masingnya di dalam panitia tidak penting (ABCDE sama saja dengan BACED, ADCEB, dan seterusnya). Banyaknya cara memilih anggota panitia yang terdiri dari 5 orang anggota adalah C(25,5) = cara.

54 2. C(n, r) = cara memilih r buah elemen dari n buah elemen yang ada, tetapi urutan elemen di dalam susunan hasil pemilihan tidak penting. Contoh: Berapa banyak cara membentuk panitia (komite, komisi, dsb) yang beranggotakan 5 orang orang dari sebuah fraksi di DPR yang beranggotakan 25 orang? Penyelesaian: Panitia atau komite adalah kelompok yang tidak terurut, artinya setiap anggota di dalam panitia kedudukannya sama. Misal lima orang yang dipilih, A, B, C, D, dan E, maka urutan penempatan masing-masingnya di dalam panitia tidak penting (ABCDE sama saja dengan BACED, ADCEB, dan seterusnya). Banyaknya cara memilih anggota panitia yang terdiri dari 5 orang anggota adalah C(25,5) = cara.

55 Permutasi dan Kombinasi Bentuk Umum

56 Misalkan: ada n buah bola yang tidak seluruhnya berbeda warna (jadi, ada beberapa bola yang warnanya sama - indistinguishable). n 1 bola diantaranya berwarna 1, n 2 bola diantaranya berwarna 2, n k bola diantaranya berwarna k, dan n 1 + n n k = n. Berapa jumlah cara pengaturan n buah bola ke dalam kotak-kotak tersebut (tiap kotak maks. 1 buah bola)?

57 Jika n buah bola itu kita anggap berbeda semuanya, maka jumlah cara pengaturan n buah bola ke dalam n buah kotak adalah: P(n, n) = n!. Dari pengaturan n buah bola itu, ada n 1! cara memasukkan bola berwarna 1 ada n 2! cara memasukkan bola berwarna 2 ada n k! cara memasukkan bola berwarna k Permutasi n buah bola yang mana n 1 diantaranya berwarna 1, n 2 bola berwarna 2,, n k bola berwarna k adalah: P( n, n) P ( n; n, n,..., n ) = = 1 2 k n! n!... n! n 1 2 k 1 n!! n!... n 2 k!

58 Jika n buah bola itu kita anggap berbeda semuanya, maka jumlah cara pengaturan n buah bola ke dalam n buah kotak adalah: P(n, n) = n!. Dari pengaturan n buah bola itu, ada n 1! cara memasukkan bola berwarna 1 ada n 2! cara memasukkan bola berwarna 2 ada n k! cara memasukkan bola berwarna k Permutasi n buah bola yang mana n 1 diantaranya berwarna 1, n 2 bola berwarna 2,, n k bola berwarna k adalah: P( n, n) P ( n; n, n,..., n ) = = 1 2 k n! n!... n! n 1 2 k 1 n!! n!... n 2 k!

59 Jika n buah bola itu kita anggap berbeda semuanya, maka jumlah cara pengaturan n buah bola ke dalam n buah kotak adalah: P(n, n) = n!. Dari pengaturan n buah bola itu, ada n 1! cara memasukkan bola berwarna 1 ada n 2! cara memasukkan bola berwarna 2 ada n k! cara memasukkan bola berwarna k Permutasi n buah bola yang mana n 1 diantaranya berwarna 1, n 2 bola berwarna 2,, n k bola berwarna k adalah: P( n, n) P ( n; n, n,..., n ) = = 1 2 k n! n!... n! n 1 2 k 1 n!! n!... n 2 k!

60 Jumlah cara pengaturan seluruh bola kedalam kotak adalah: C(n; n 1, n 2,, n k ) = C(n, n 1 ) C(n n 1, n 2 ) C(n n 1 n 2, n 3 ) C(n n 1 n 2 n k-1, n k ) n! ( n n )! 1 = n!( n n )! 1 1 n!( n n n )! ( n n n )! 1 2 n!( n n n n )! k ( n n n... n )! 1 2 k 1 n!( n n n... n n k 1 2 k 1 k )! = n! n 1 2 n!! n!... 3 n k

61 Kesimpulan: P ( n; n, n,..., n ) = C( n; n, n,..., n ) = 1 2 k 1 2 k n! n! n!... n 1 2 k!

62 Contoh 10. Berapa banyak kata yang dapat dibentuk dengan menggunakan huruf-huruf dari kata MISSISSIPPI? Penyelesaian: S = {M, I, S, S, I, S, S, I, P, P, I} huruf M = 1 buah (n 1 ) huruf I = 4 buah (n 2 ) huruf S = 4 buah (n 3 ) huruf P = 2 buah (n 4 ) n = = 11 buah = S Cara 1: Jumlah string = P(11; 1, 4, 4, 2) 11! = = 34650buah. (1!)(4!)(4!)(2!) Cara 2: Jumlah string = C(11, 1)C(10, 4)C(6, 4)C(2, 2) 11! 10! 6! 2! =... (1!)(10!) (4!)(6!) (4!)(2!) (2!)(0!) 11! = (1!)(4!)(4!)(2!) = buah

63 Contoh 10. Berapa banyak kata yang dapat dibentuk dengan menggunakan huruf-huruf dari kata MISSISSIPPI? Penyelesaian: S = {M, I, S, S, I, S, S, I, P, P, I} huruf M = 1 buah (n 1 ) huruf I = 4 buah (n 2 ) huruf S = 4 buah (n 3 ) huruf P = 2 buah (n 4 ) n = = 11 buah = S Cara 1: Jumlah string = P(11; 1, 4, 4, 2) 11! = = 34650buah. (1!)(4!)(4!)(2!) Cara 2: Jumlah string = C(11, 1)C(10, 4)C(6, 4)C(2, 2) 11! 10! 6! 2! =... (1!)(10!) (4!)(6!) (4!)(2!) (2!)(0!) 11! = (1!)(4!)(4!)(2!) = buah

64 Contoh 10. Berapa banyak kata yang dapat dibentuk dengan menggunakan huruf-huruf dari kata MISSISSIPPI? Penyelesaian: S = {M, I, S, S, I, S, S, I, P, P, I} huruf M = 1 buah (n 1 ) huruf I = 4 buah (n 2 ) huruf S = 4 buah (n 3 ) huruf P = 2 buah (n 4 ) n = = 11 buah = S Cara 1: Jumlah string = P(11; 1, 4, 4, 2) 11! = = 34650buah. (1!)(4!)(4!)(2!) Cara 2: Jumlah string = C(11, 1)C(10, 4)C(6, 4)C(2, 2) 11! 10! 6! 2! =... (1!)(10!) (4!)(6!) (4!)(2!) (2!)(0!) 11! = (1!)(4!)(4!)(2!) = buah

65 Kombinasi dengan Pengulangan

66 Misalkan terdapat r buah bola yang semua warnanya sama dan n buah kotak. (i) Masing-masing kotak hanya boleh diisi paling banyak satu buah bola. Jumlah cara memasukkan bola: C(n, r). (ii) Masing-masing kotak boleh lebih dari satu buah bola (tidak ada pembatasan jumlah bola) Jumlah cara memasukkan bola: C(n + r 1, r). C(n + r 1, r) = C(n + r 1, n 1).

67 Contoh 13. Pada persamaan x 1 + x 2 + x 3 + x 4 = 12, x i adalah bilangan bulat 0. Berapa jumlah kemungkinan solusinya? Penyelesaian: Analogi: 12 buah bola akan dimasukkan ke dalam 4 buah kotak (dalam hal ini, n = 4 dan r = 12). Bagilah keduabelas bola itu ke dalam tiap kotak. Misalnya, Kotak 1 diisi 3 buah bola (x 1 = 3) Kotak 2 diisi 5 buah bola (x 2 = 5) Kotak 3 diisi 2 buah bola (x 3 = 2) Kotak 4 diisi 2 buah bola (x 4 = 2) x 1 + x 2 + x 3 + x 4 = = 12 Ada C( , 12) = C(15, 12) = 455 buah solusi.

68 Contoh 13. Pada persamaan x 1 + x 2 + x 3 + x 4 = 12, x i adalah bilangan bulat 0. Berapa jumlah kemungkinan solusinya? Penyelesaian: Analogi: 12 buah bola akan dimasukkan ke dalam 4 buah kotak (dalam hal ini, n = 4 dan r = 12). Bagilah keduabelas bola itu ke dalam tiap kotak. Misalnya, Kotak 1 diisi 3 buah bola (x 1 = 3) Kotak 2 diisi 5 buah bola (x 2 = 5) Kotak 3 diisi 2 buah bola (x 3 = 2) Kotak 4 diisi 2 buah bola (x 4 = 2) x 1 + x 2 + x 3 + x 4 = = 12 Ada C( , 12) = C(15, 12) = 455 buah solusi.

69 Contoh 13. Pada persamaan x 1 + x 2 + x 3 + x 4 = 12, x i adalah bilangan bulat 0. Berapa jumlah kemungkinan solusinya? Penyelesaian: Analogi: 12 buah bola akan dimasukkan ke dalam 4 buah kotak (dalam hal ini, n = 4 dan r = 12). Bagilah keduabelas bola itu ke dalam tiap kotak. Misalnya, Kotak 1 diisi 3 buah bola (x 1 = 3) Kotak 2 diisi 5 buah bola (x 2 = 5) Kotak 3 diisi 2 buah bola (x 3 = 2) Kotak 4 diisi 2 buah bola (x 4 = 2) x 1 + x 2 + x 3 + x 4 = = 12 Ada C( , 12) = C(15, 12) = 455 buah solusi.

70 Koefisien Binomial

71 (x + y) 0 = 1 1 (x + y) 1 = x + y 1 1 (x + y) 2 = x 2 + 2xy + y (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y (x + y) 4 = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y (x + y) 5 = x 5 + 5x 4 y + 10x 3 y x 2 y 3 + 5xy 4 + y (x + y) n = C(n, 0) x n + C(n, 1) x n-1 y C(n, k) x n-k y k + + n C(n, n) y n = C ( n, k) x n-k y k k= 0 Koefisien untuk x n-k y k adalah C(n, k). Bilangan C(n, k) disebut koefisien binomial.

72 Contoh 15. Jabarkan (3x - 2) 3. Penyelesaian: Misalkan a = 3x dan b = -2, (a + b) 3 = C(3, 0) a 3 + C(3, 1) a 2 b 1 + C(3, 2) a 1 b 2 + C(3, 3) b 3 = 1 (3x) (3x) 2 (-2) + 3 (3x) (-2) (-2) 3 = 27 x 3 54x x 8

73 Contoh 15. Jabarkan (3x - 2) 3. Penyelesaian: Misalkan a = 3x dan b = -2, (a + b) 3 = C(3, 0) a 3 + C(3, 1) a 2 b 1 + C(3, 2) a 1 b 2 + C(3, 3) b 3 = 1 (3x) (3x) 2 (-2) + 3 (3x) (-2) (-2) 3 = 27 x 3 54x x 8

74 Referensi Munir, R Kombinatorial, Presentasi Munir, R Matematika Diskret, Edisi Ketiga, Penerbit Informatika

Permutasi & Kombinasi

Permutasi & Kombinasi Permutasi & Kombinasi 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat????? abcdef

Lebih terperinci

Pendahuluan. abcdef aaaade a123fr. erhtgahn yutresik ????

Pendahuluan. abcdef aaaade a123fr. erhtgahn yutresik ???? Kombinatorial 1 Percobaan! Melampar dadu! Berapa saja angka yang muncul? Memilih 4 wakil dari kelas ini! Berapa kemungkinan perwakilan yang dapat dibentuk? Menyusun 5 huruf dari a,b,c,d,e, tidak boleh

Lebih terperinci

Kombinatorial. Pendahuluan. Definisi. Kaidah Dasar Menghitung. Sesi 04-05

Kombinatorial. Pendahuluan. Definisi. Kaidah Dasar Menghitung. Sesi 04-05 Pendahuluan Kombinatorial Sesi 04-05 Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan sandi-lewat yang dapat dibuat? abcdef

Lebih terperinci

Kombinatorial. Matematika Deskrit. Sirait, MT 1

Kombinatorial. Matematika Deskrit. Sirait, MT 1 Kombinatorial Matematika Deskrit By @Ir.Hasanuddin Sirait, MT 1 Pendahuluan Sebuah sandi-lewat (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

Pertemuan 14. Kombinatorial

Pertemuan 14. Kombinatorial Pertemuan 14 Kombinatorial 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan kata-sandi yang dapat dibuat? abcdef

Lebih terperinci

KOMBINATORIAL. /Nurain Suryadinata, M.Pd

KOMBINATORIAL. /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

KOMBINATORIAL STRUKTUR DISKRIT K-1. Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia.

KOMBINATORIAL STRUKTUR DISKRIT K-1. Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. STRUKTUR DISKRIT K-1 KOMBINATORIAL Program Studi Teknik Komputer Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia Suryadi MT Struktur Diskrit 1 Pendahuluan Sebuah password panjangnya 6 sampai

Lebih terperinci

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa

Lebih terperinci

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa

Lebih terperinci

L/O/G/O KOMBINATORIK. By : ILHAM SAIFUDIN

L/O/G/O KOMBINATORIK. By : ILHAM SAIFUDIN L/O/G/O KOMBINATORIK By : ILHAM SAIFUDIN Senin, 09 Mei 2016 1.2 Kaidah Dasar menghitung BAB 4. KOMBINATORIK 1.1 Pendahuluan 1.2 Kaidah Dasar Menghitung 1.3 Permutasi 1.4 Kombinasi 1.5 Permutasi dan Kombinasi

Lebih terperinci

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Ruang Sampel Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Ruang Sampel (Sample Space) Ruang sampel: himpunan semua hasil (outcome) yang

Lebih terperinci

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara. Kombinatorial. Pemodelan dan Simulasi

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara. Kombinatorial. Pemodelan dan Simulasi Matematika Diskret Mahmud Imrona Rian Febrian Umbara Pemodelan dan Simulasi Kombinatorial 1 9/26/2017 Definisi Kombinatorial Kombinatorial adalah salah satu cabang matematika yang mempelajari teknik menghitung

Lebih terperinci

BAB III KOMBINATORIK

BAB III KOMBINATORIK 37 BAB III KOMBINATORIK Persoalan kombinatorik bukan merupakan persoalan yang baru dalam kehidupan nyata. Banyak persoalan kombinatorik yang sederhana telah diselesaiakan dalam masyarakat. Misalkan, saat

Lebih terperinci

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain KOMBINATORIAL Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek objek Solusi yang ingin kita peroleh dari kombinatorial ini adalah jumlah cara pengaturan objek objek didalam kumpulanya

Lebih terperinci

PTI15004 MatematikaKomputasi

PTI15004 MatematikaKomputasi PTI15004 MatematikaKomputasi PencacahanCounting Justanintermezzo Pengelola Pantai Hanakapiai, Hawaii memperingatkan pengunjung agar tidak mendekati kawasan air, dan menegaskan peringatan tersebut dengan

Lebih terperinci

Kombinatorial. Matematika Diskrit Pertemuan ke - 4

Kombinatorial. Matematika Diskrit Pertemuan ke - 4 Kombinatorial Matematika Diskrit Pertemuan ke - 4 Pengertian Cabang matematika yang mempelajari pengaturan objek-objek Solusi yang diperoleh : jumlah cara pengaturan objek-objek tertentu dalam himpunan

Lebih terperinci

Kombinatorial. Oleh: Panca Mudjirahardjo. Definisi dan tujuan. Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek

Kombinatorial. Oleh: Panca Mudjirahardjo. Definisi dan tujuan. Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek Kombinatorial Oleh: Panca Mudjirahardjo Definisi dan tujuan Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek Menentukan jumlah cara pengaturan objek tersebut 1 Ilustrasi 1

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Statistika Berhubungan dengan banyak angka Contoh : Numerical Description pergerakan IHSG, jumlah penduduk di suatu wilayah. Dalam dunia usaha sekumpulan data : pergerakan tingkat

Lebih terperinci

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Hendy - 13507011 Jurusan Teknik Informatika, ITB, Bandung 40116, email: if17011@students.if.itb.ac.id Abstract Makalah ini membahas

Lebih terperinci

BAB III INDUKSI MATEMATIK dan KOMBINATORIK

BAB III INDUKSI MATEMATIK dan KOMBINATORIK BAB III INDUKSI MATEMATIK dan KOMBINATORIK 1. Kata pengantar Kebenaran pernyataan matematika yang berkaitan dengan bilangan bulat perlu pembuktian salah satu metode pembuktian dapat menggunakan Induksi

Lebih terperinci

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 3 KOMBINATORIAL Tujuan 1.Mahasiswa

Lebih terperinci

Induksi Matematika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Induksi Matematika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Induksi Matematika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Ingat proposisi? Sebuah proposisi mempunyai nilai. Benar

Lebih terperinci

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com Kombiatorial da Peluag Adri Priadaa ilkomadri.com Pedahulua Sebuah kata-sadi (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa bayak kemugkia kata-sadi yag dapat dibuat?

Lebih terperinci

4. Pencacahan. Pengantar. Aturan penjumlahan (sum rule) Aturan penjumlahan Yang Diperumum. Aturan Perkalian (Product Rule)

4. Pencacahan. Pengantar. Aturan penjumlahan (sum rule) Aturan penjumlahan Yang Diperumum. Aturan Perkalian (Product Rule) 4. Pencacahan Pengantar Pencacahan (counting) adalah bagian dari matematika kombinatorial. Matematika kombinatorial berkaitan dengan pengaturan sekumpulan objek. Pencacahan berusaha menjawab pertanyaan-pertanyaan

Lebih terperinci

TEORI KOMBINATORIAL PADA TEBARAN KARTU TAROT

TEORI KOMBINATORIAL PADA TEBARAN KARTU TAROT TEORI KOMBINATORIAL PADA TEBARAN KARTU TAROT Ananda Kurniawan Pramudiono/13511052 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)

Lebih terperinci

Kombinatorial adalah cabang matematika yang berguna untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan

Kombinatorial adalah cabang matematika yang berguna untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan Kombinatorial adalah cabang matematika yang berguna untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. Contoh : Sebuah password panjangnya 6 sampai 8

Lebih terperinci

PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE

PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE Gifari Kautsar 13512020 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya

Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya Studi Tentang Kombinatorial dan Peluang Diskrit Serta Beberapa Aplikasinya Hanif Eridaputra (13510091) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

PELATIHAN OLIMPIADE MATEMATIKA

PELATIHAN OLIMPIADE MATEMATIKA MATERI PELATIHAN OLIMPIADE MATEMATIKA SMA N 7 PURWOREJO 26-28 FEBRUARI 2008 DI HOTEL PAKEMSARI SLEMAN DISUSUN OLEH : HIMMAWATI PUJI LESTARI, M.Si JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Permutasi dan Kombinasi

Permutasi dan Kombinasi Permutasi dan Kombinasi Menghitung Titik Sampel Dasar dari prinsip menghitung titik sampel sering di diartikan sebagai aturan pengalian. Aturan 1: Jika suatu operasi dapat dilakukan dalam n cara, dan dari

Lebih terperinci

C. Tujuan Dengan memahami rumusan masalah yang ada di atas, mahasiswa dapat menggunakan dan mengaplikasikan kombinatorial dalam kehidupan nyata.

C. Tujuan Dengan memahami rumusan masalah yang ada di atas, mahasiswa dapat menggunakan dan mengaplikasikan kombinatorial dalam kehidupan nyata. BAB I PENDAHULUAN A. Latar Belakang Misalkan nomor plat mobil di negara X terdiri atas 5 angka angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat?

Lebih terperinci

KOMBINATORIKA. Berapa banyak cara menyusun sebuah bilangan yang terdiri dari empat buah angka yang tidak mengandung angka yang berulang?

KOMBINATORIKA. Berapa banyak cara menyusun sebuah bilangan yang terdiri dari empat buah angka yang tidak mengandung angka yang berulang? P a g e 1 KOMBINATORIKA Beberapa prinsip penting dalam menyelesaikan masalah kombinatorika yaitu permutasi dan kombinasi, prinsip inklusi-eksklusi, koefisien binomial, prinsip sarang merpati (pigeon hole

Lebih terperinci

I. PENDAHULUAN II. KOMBINATORIAL

I. PENDAHULUAN II. KOMBINATORIAL Aplikasi Hukum Mendel Sebagai Aplikasi dari Teori Kombinatorial Untuk Menentukan Kemungkinan Kemunculan Golongan Darah Dalam Sistem ABO Pada Sebuah Keluarga Chairuni Aulia Nusapati 13513054 Program Sarjana

Lebih terperinci

PENERAPAN TEORI KOMBINATORIAL DAN PELUANG DISKRIT DALAM PERMAINAN POKER

PENERAPAN TEORI KOMBINATORIAL DAN PELUANG DISKRIT DALAM PERMAINAN POKER PENERAPAN TEORI KOMBINATORIAL DAN PELUANG DISKRIT DALAM PERMAINAN POKER Irma Juniati - 13506088 Jurusan Teknik Informatika ITB, Bandung 40116, email: if16088@students.if.itb.ac.id Abstrak Makalah ini membahas

Lebih terperinci

APLIKASI TEORI KOMBINATORIAL PADA TANDA NOMOR KENDARAAN BERMOTOR (TNKB) DI INDONESIA KHUSUSNYA KOTA SEMARANG

APLIKASI TEORI KOMBINATORIAL PADA TANDA NOMOR KENDARAAN BERMOTOR (TNKB) DI INDONESIA KHUSUSNYA KOTA SEMARANG APLIKASI TEORI KOMBINATORIAL PADA TANDA NOMOR KENDARAAN BERMOTOR (TNKB) DI INDONESIA KHUSUSNYA KOTA SEMARANG Jonathan Ery Pradana Program Studi Teknik Informatika Institut Teknologi Bandung Jl. Kebon Bibit

Lebih terperinci

Combinatorics dan Counting

Combinatorics dan Counting CHAPTER 6 COUNTING Combinatorics dan Counting Kombinatorik Ilmu yang mempelajari pengaturan obyek Bagian penting dari Matematika Diskrit Mulai dipelajari di abad 17 Enumerasi Penghitungan obyek dengan

Lebih terperinci

Aplikasi Matematika Diskrit dalam Permainan Nonogram

Aplikasi Matematika Diskrit dalam Permainan Nonogram Aplikasi Matematika Diskrit dalam Permainan Nonogram Mahesa Gandakusuma (13513091) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

TEORI DASAR COUNTING

TEORI DASAR COUNTING TEORI DASAR COUNTING ARGUMEN COUNTING Kombinatorial adalah cabang matematika yang mempelajari pengaturan obyek-obyek. Solusi yang ingin diperoleh dengan kombinatorial adalah jumlah pengaturan obyekobyek

Lebih terperinci

Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker

Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker Penerapan Teori Kombinatorial dan Peluang Dalam Permainan Poker Johan Sentosa - 13514026 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Penggunaan Senarai Sirkuler dan Permutasi Inversi untuk Pengurutan pada Josephus Problem

Penggunaan Senarai Sirkuler dan Permutasi Inversi untuk Pengurutan pada Josephus Problem Penggunaan Senarai Sirkuler dan Permutasi Inversi untuk Pengurutan pada Josephus Problem Ali Akbar Septiandri - 13509001 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Perluasan permutasi dan kombinasi

Perluasan permutasi dan kombinasi Perluasan permutasi dan kombinasi Permutasi dengan pengulangan Kombinasi dengan pengulangan Permutasi dengan obyek yang tidak dapat dibedakan Distribusi obyek ke dalam kotak Permutasi dengan pengulangan

Lebih terperinci

Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya

Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya Matematika Diskrit Kombinatorial pada Tanda Nomor Kendaraan Bermotor Kota Surabaya Nama : Andreas NIM : 1313004 Departemen Teknologi Informasi INSTITUT TEKNOLOGI HARAPAN BANGSA 2014 Kata Pengantar Puji

Lebih terperinci

6.3 PERMUTATIONS AND COMBINATIONS

6.3 PERMUTATIONS AND COMBINATIONS 6.3 PERMUTATIONS AND COMBINATIONS Pengaturan dengan urutan Sering kali kita perlu menghitung banyaknya cara pengaturan obyek tertentu dengan memperhatikan urutan maupun tanpa memperhatikan urutan. Contoh

Lebih terperinci

Permutasi dan Kombinasi Peluang Diskrit

Permutasi dan Kombinasi Peluang Diskrit dan Kombinasi Peluang Diskrit Pengantar Permutasi -Faktorial Misalkan n adalah bilangan bulat positif. Besaran n faktorial (n!) didefinisikan sebagai hasil kali semua bilangan bulat antara n hingga 1.

Lebih terperinci

KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL

KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL KOMBINATORIAL DALAM HUKUM PEWARISAN MENDEL Fransisca Cahyono (13509011) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar seperti teorema dan beberapa definisi yang akan penulis gunakan sebagai landasan berpikir dalam melakukan penelitian ini sehingga mempermudah

Lebih terperinci

Matematika Diskrit. Rudi Susanto

Matematika Diskrit. Rudi Susanto Matematika Diskrit Rudi Susanto Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah Kuliah kita.. Matematika

Lebih terperinci

KOMBINATORIK. Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA

KOMBINATORIK. Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA KOMBINATORIK Disampaikan dalam kegiatan: PEMBEKALAN OSN-2010 SMP STELA DUCE I YOGYAKARTA Oleh: Murdanu Dosen Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta SEKOLAH MENENGAH PERTAMA STELA

Lebih terperinci

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Himpunan. Mempunyai elemen atau anggota. Terdapat hubungan.

Lebih terperinci

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Hanifah Azhar 13509016 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Gugus dan Kombinatorika

Gugus dan Kombinatorika Bab 1 Gugus dan Kombinatorika 1.1 Gugus Gugus, atau juga disebut himpunan adalah kumpulan objek. Objek dalam sebuah himpunan disebut anggota atau unsur. Penulisan himpunan dapat dilakukan dengan dua cara,

Lebih terperinci

Permutasi & Kombinasi. Dr.Oerip S Santoso MSc

Permutasi & Kombinasi. Dr.Oerip S Santoso MSc Permutasi & Kombinasi Dr.Oerip S Santoso MSc Aturan Pejumlahan dan Perkalian Aturan Penjumlahan Himpunan S dipartisi menjadi subset S1,S2, Sm Jumlah objek di S = jumlah objek dari semua subset Contoh 1:

Lebih terperinci

Kombinatorial untuk Membandingkan Kekuatan Suatu Kombinasi Kartu dalam Permainan Kartu Cap Sa

Kombinatorial untuk Membandingkan Kekuatan Suatu Kombinasi Kartu dalam Permainan Kartu Cap Sa Kombinatorial untuk Membandingkan Kekuatan Suatu Kombinasi Kartu dalam Permainan Kartu Cap Sa Rikysamuel - 13512089 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal:

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal: Solusi Pengayaan Matematika Edisi 4 April Pekan Ke-, 006 Nomor Soal: 3-40 3. Manakah yang paling besar di antara bilangan-bilangan 0 9 b, 5 c, 0 d 5, dan 0 e 4 3? A. e B. d C. c D. b E. a Solusi: [E] 5

Lebih terperinci

Menyelesaikan Kakuro Puzzle dengan Kombinatorial

Menyelesaikan Kakuro Puzzle dengan Kombinatorial Menyelesaikan Kakuro Puzzle dengan Kombinatorial Muhammad Farhan Majid (13514029) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan. Tak kenal maka tak sayang, tak sayang maka tak cinta

Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan. Tak kenal maka tak sayang, tak sayang maka tak cinta Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah 1 Dahulu namanya.. Matematika Diskrit 2 Mengapa

Lebih terperinci

KOMBINATORIKA. (Latihan Soal) Kus Prihantoso Krisnawan. August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN

KOMBINATORIKA. (Latihan Soal) Kus Prihantoso Krisnawan. August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN KOMBINATORIKA (Latihan Soal) Kus Prihantoso August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN Teori Faktorial Teori Faktorial n! = n (n 1) (n 2) (n 3) 2 1 0! = 1 Teori Faktorial n! = n (n 1)

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

Sistem dan Kode Bilangan Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed

Sistem dan Kode Bilangan Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Sistem dan Kode Bilangan Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Sistem bilangan biner penting. (di dalam sistem digital)

Lebih terperinci

Penerapan Kombinatorial dan Peluang Diskrit dalam Double Down Pada BlackJack

Penerapan Kombinatorial dan Peluang Diskrit dalam Double Down Pada BlackJack Penerapan Kombinatorial dan Peluang Diskrit dalam Double Down Pada BlackJack Sanrio Hernanto - 13507019 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Lebih terperinci

RENCANA PEMBELAJARAN

RENCANA PEMBELAJARAN ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Matematika Diskrit Semester :2 Kode :

Lebih terperinci

Pengantar Matematika. Diskrit. Bahan Kuliah IF2091 Struktur Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG

Pengantar Matematika. Diskrit. Bahan Kuliah IF2091 Struktur Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Matematika Bahan Kuliah IF2091 Struktur Diksrit Diskrit RINALDI MUNIR Lab Ilmu dan Rekayasa

Lebih terperinci

Peluang. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO

Peluang. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO Peluang Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO Kompetensi menjelaskan mengenai ruang contoh, titik contoh dan kejadian mencacah titik contoh menghitung peluang

Lebih terperinci

KOMBINATORIKA DAN PELUANG. Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai

KOMBINATORIKA DAN PELUANG. Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai KOMBINATORIKA DAN PELUANG Faktorial Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai n(n-1)(n-2).3.2.1 dan didefinisikan 0!=1 Permutasi Permutasi dari n unsur adalah banyaknya

Lebih terperinci

Pengantar Matematika Diskrit

Pengantar Matematika Diskrit Materi Kuliah Matematika Diskrit Pengantar Matematika Diskrit Didin Astriani Prasetyowati, M.Stat Program Studi Informatika UIGM 1 Apakah Matematika Diskrit itu? Matematika Diskrit: cabang matematika yang

Lebih terperinci

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata dan Statistika Ruang Adam Hendra Brata adalah suatu ilmu untuk memprediksi suatu kejadian (event) atau dapat disebut peluang suatu kejadian berdasarkan pendekatan matematis. Dengan ilmu probabilitas, kita

Lebih terperinci

Solusi dan Penyelesaian. Kombinatorik. (b)

Solusi dan Penyelesaian. Kombinatorik. (b) Solusi dan Penyelesaian Kombinatorik # Ralat Soal Soal 17. (b) (a 2b + c) 2 Soal 30. Peluang Jevon bisa mengerjakan Bagian A Solusi Solusi 1. (a) 4500 (b) 5832 Solusi 16*. 1152 Solusi 2. (a) 2240 (b*)

Lebih terperinci

PERANCANGAN MEDIA BANTU PEMBELAJARAN MANDIRI MATEMATIKA DISKRET MATERI KOMBINATORIK

PERANCANGAN MEDIA BANTU PEMBELAJARAN MANDIRI MATEMATIKA DISKRET MATERI KOMBINATORIK PERANCANGAN MEDIA BANTU PEMBELAJARAN MANDIRI MATEMATIKA DISKRET MATERI KOMBINATORIK Nur Rochmah D P A 1*, Lisna Zahrotun 2 1,2 Teknik Informatika, Teknologi Industri, Universitas Ahmad Dahlan Janturan,

Lebih terperinci

PEMBEKALAN PESERTA OLIMPIADE SMA 1 KALASAN Februari-Maret 2009 SOAL-SOAL LATIHAN

PEMBEKALAN PESERTA OLIMPIADE SMA 1 KALASAN Februari-Maret 2009 SOAL-SOAL LATIHAN PEMBEKALAN PESERTA OLIMPIADE SMA 1 KALASAN Februari-Maret 2009 SOAL-SOAL LATIHAN 1. Wati menuliskan suatu bilangan yang terdiri dari 6 angka di papan tulis, tetapi kemudian Iwan menghapus 2 buah angka

Lebih terperinci

BAB 2 PELUANG RINGKASAN MATERI

BAB 2 PELUANG RINGKASAN MATERI BAB PELUANG A RINGKASAN MATERI. Kaidah Pencacahan Bila terdapat n tempat yang tersedia dengan k cara untuk mengisi tempat pertama, k cara untuk mengisi tempat kedua, dan seterusnya, maka cara untuk mengisi

Lebih terperinci

KATA PENGANTAR. Salatiga, Juni Penulis. iii

KATA PENGANTAR. Salatiga, Juni Penulis. iii KATA PENGANTAR Teori Probabilitas sangatlah penting dalam memberikan dasar pada Statistika dan Statistika Matematika. Di samping itu, teori probabilitas juga memberikan dasar-dasar dalam pembelajaran tentang

Lebih terperinci

LEMBAR AKTIVITAS SISWA PELUANG

LEMBAR AKTIVITAS SISWA PELUANG Nama Siswa : LEMBAR AKTIVITAS SISWA PELUANG 2 2. Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.16 Memahami dan menerapkan berbagai aturan pencacahan melalui beberapa contoh nyata serta menyajikan alur perumusan

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

Aplikasi Struktur Diskrit dalam Game

Aplikasi Struktur Diskrit dalam Game Aplikasi Struktur Diskrit dalam Game Riefky Amarullah R - 13511038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

II. KONSEP DASAR PELUANG

II. KONSEP DASAR PELUANG II. KONSEP DASAR PELUANG Teori Peluang memberikan cara pengukuran kuantitatif tentang kemungkinan munculnya suatu kejadian tertentu dalam suatu percobaan/peristiwa. Untuk dapat menghitung peluang lebih

Lebih terperinci

CHAPTER 7 DISCRETE PROBABILITY

CHAPTER 7 DISCRETE PROBABILITY CHAPTER 7 DISCRETE PROBABILITY 1 7.1 AN INTRODUCTION TO DISCRETE PROBABILITY 2 Sejarah 1526: Cardano menulis Liber de Ludo Aleae (Book on Games of Chance). Abad 17: Pascal menentukan kemungkinan untuk

Lebih terperinci

PERMUTASI & KOMBINASI ARUM H. PRIMANDARI

PERMUTASI & KOMBINASI ARUM H. PRIMANDARI PERMUTASI & KOMBINASI ARUM H. PRIMANDARI ATURAN PENGALIAN ATURAN 1 ATURAN 2 MENGHITUNG TITIK SAMPEL Dasar dari prinsip menghitung titik sampel sering di diartikan sebagai aturan pengalian. Aturan 1: Jika

Lebih terperinci

Kombinatorial dan Peluang Diskrit di Permainan Kartu Poker

Kombinatorial dan Peluang Diskrit di Permainan Kartu Poker Kombinatorial dan Peluang Diskrit di Permainan Kartu Poker Timothy Thamrin Andrew H. Sihombing and 356090 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Pengantar Matematika. Diskrit. Bahan Kuliah IF2120 Matematika Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG

Pengantar Matematika. Diskrit. Bahan Kuliah IF2120 Matematika Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Matematika Bahan Kuliah IF2120 Matematika Diksrit Diskrit RINALDI MUNIR Lab Ilmu dan Rekayasa

Lebih terperinci

Aplikasi Teori Kombinatorial Dalam Penomeran Warna

Aplikasi Teori Kombinatorial Dalam Penomeran Warna Aplikasi Teori Kombinatorial Dalam Penomeran Warna Felix Terahadi - 13510039 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

BEBERAPA APLIKASI SEGITIGA PASCAL

BEBERAPA APLIKASI SEGITIGA PASCAL BEBERAPA APLIKASI SEGITIGA PASCAL Yulino Sentosa NIM : 13507046 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10, Bandung. E-mail : if17046@students.if.itb.ac.id

Lebih terperinci

Suplemen Kuliah STATISTIKA. Prodi Sistem Informasi (SI 3) STIKOM AMBON Pokok Bahasan Sub Pok Bahasan Referensi Waktu

Suplemen Kuliah STATISTIKA. Prodi Sistem Informasi (SI 3) STIKOM AMBON Pokok Bahasan Sub Pok Bahasan Referensi Waktu Suplemen Kuliah STATISTIKA Pertemuan 5 Prodi Sistem Informasi (SI 3) STIKOM AMBON Pokok Bahasan Sub Pok Bahasan Referensi Waktu Konsep Peluang 1. Ruang Contoh dan Kejadian Walpole E. Ronald. (Probabbility

Lebih terperinci

Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan

Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Probabilitas = Peluang (Bagian I) 1. Pendahuluan Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Comment [sls1]: Page: 1 Misal : a. Ruang

Lebih terperinci

PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA

PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA PENERAPAN REPRESENTASI RELASI DENGAN DIAGRAM PANAH UNTUK MEMBUAT SILSILAH KELUARGA Anselmus Krisma Adi Kurniawan - 13508012

Lebih terperinci

Teori Kombinatorial pada Game Defence of The Ancients

Teori Kombinatorial pada Game Defence of The Ancients Teori Kombinatorial pada Game Defence of The Ancients Yanfa Adi Putra/13512037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Bab 4. Koefisien Binomial

Bab 4. Koefisien Binomial Bab 4. Koefisien Binomial Koefisien binomial merupakan bilangan-bilangan yang muncul dari hasil penjabaran penjumlahan dua peubah yang dipangkatkan, misalnya (a + b) n. Sepintas terlihat bahwa ekspresi

Lebih terperinci

Penerapan Logika dan Peluang dalam Permainan Minesweeper

Penerapan Logika dan Peluang dalam Permainan Minesweeper Penerapan Logika dan Peluang dalam Permainan Minesweeper Kharis Isriyanto 13514064 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM :

Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Institut Teknologi Bandung T.tangan: Solusi Kuis ke-2 IF2120 Matematika Diskrit (3 SKS) Relasi dan Fungsi, Aljabar Boolean,

Lebih terperinci

Penerapan Teori Graf dan Kombinatorik pada Teknologi Sandi Masuk Terkini

Penerapan Teori Graf dan Kombinatorik pada Teknologi Sandi Masuk Terkini Penerapan Teori Graf dan Kombinatorik pada Teknologi Sandi Masuk Terkini 13513021 Erick Chandra 1 Program Sarjana Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

Kombinatorika Muhammad Saiful Jumat, 27 Januari 2017 ComLabs C, SMA Negeri 2 Bandung

Kombinatorika Muhammad Saiful Jumat, 27 Januari 2017 ComLabs C, SMA Negeri 2 Bandung Kombinatorika Muhammad Saiful Islam muhammad@saiful.web.id @saifulwebid Jumat, 27 Januari 2017 ComLabs C, SMA Negeri 2 Bandung Referensi Lecture slide by Julio Adisantoso, http://julio.staff.ipb.ac.id/files/2014/02/slide-02-

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya 2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu

Lebih terperinci

Modul ke: STATISTIK Probabilitas atau Peluang. 05Teknik. Fakultas. Bethriza Hanum ST., MT. Program Studi Teknik Mesin

Modul ke: STATISTIK Probabilitas atau Peluang. 05Teknik. Fakultas. Bethriza Hanum ST., MT. Program Studi Teknik Mesin Modul ke: STATISTIK Probabilitas atau Peluang Fakultas 05Teknik Bethriza Hanum ST., MT Program Studi Teknik Mesin Pengertian dan Pendekatan Mempelajari probabilitas kejadian suatu peristiwa sangat bermanfaat

Lebih terperinci

Penerapan Kombinatorial dalam Hukum Pewarisan Sifat pada Manusia

Penerapan Kombinatorial dalam Hukum Pewarisan Sifat pada Manusia Penerapan Kombinatorial dalam Hukum Pewarisan Sifat pada Manusia hmad Fauzul Yogiandra / 13513059 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi andung, Jl. Ganesha

Lebih terperinci

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M.

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M. LA - WB (Lembar Aktivitas Warga Belajar) PELUANG Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 13 Peluang Kompetensi Dasar 1. Menggunakan

Lebih terperinci