8 June 2011 MATEMATIKA DISKRIT 2
|
|
|
- Hartanti Rachman
- 9 tahun lalu
- Tontonan:
Transkripsi
1
2 MisalkanterdapatDuaoperator biner: + dan Sebuah operator uner:. B: himpunanyang didefinisikanpadaoperator +,, dan dan1 adalahduaelemenyang berbedadarib. Tupel(B, +,, ) disebutaljabarbooleanjika untuksetiapa, b, c Bberlakuaksiomaaksioma atau postulat Huntington berikut: 8 June 211 MATEMATIKA DISKRIT 2
3 1. Closure:(i) a+ b B (ii) a b B 2. Identitas: (i) a+ = a (ii) a 1 = a 3. Komutatif: (i) a+ b= b+ a (ii) a b= b. a
4 4. Distributif: (i) a (b+ c) = (a b) + (a c) (ii) a+ (b c) = (a+ b) (a+ c) 5. Komplemen: (i) a+ a = 1 (ii) a a =
5 Untuk mempunyai sebuah aljabar Boolean, harus diperlihatkan: 1. Elemen-elemen himpunan B, 2. Kaidah operasi untuk operator biner dan operator uner, 3. Memenuhi postulat Huntington.
6 Aljabar Boolean dua-nilai: B= {, 1} operator biner, + dan operator uner, Kaidahuntukoperator binerdanoperator uner: a b a b a b a + b a a
7 Misalkan(B, +,, ) adalahsebuahaljabar Boolean. Suatu ekspresi Boolean dalam (B, +,, ) adalah: (i) setiapelemendidalamb, (ii) setiap peubah, (iii) jikae 1 dane 2 adalahekspresiboolean, makae 1 + e 2, e 1 e 2, e 1 adalahekspresi Boolean
8 Contoh: a (b+ c) jikaa=, b= 1, danc=, makahasilevaluasi ekspresinya adalah (1 + ) = 1 1 = 1 Dua ekspresi Boolean dikatakan ekivalen (dilambangkan dengan = ) jika keduanya mempunyai nilai yang sama untuk setiap pemberiannilai-nilaikepadanpeubah.
9 Perlihatkanbahwaa+ a b= a+ b a b a a b a + a b a + b
10 1. Perlihatkanbahwaa(a + b) = ab 2. Perlihatkanbahwa( a+ b) = a b 3. Perlihatkanbahwaa (b +c )=(a b )+(ac )
11 Misalkan S adalah kesamaan(identity) di dalam aljabar Boolean yang melibatkan operator +,, dan komplemen, maka jika pernyataan S* diperoleh dengan cara mengganti dengan + + dengan dengan 1 1 dengan dan membiarkan operator komplemen tetap apa adanya, maka kesamaan S* juga benar. S* disebut sebagai dual dari S.
12 (i) (a 1)( + a ) = dualnya (a+ ) + (1 a ) = 1 (ii) a(a + b) = ab dualnyaa+ a b= a+ b
13 1. Hukum identitas: (i) a+ = a (ii) a 1 = a 2. Hukum idempoten: (i) a+ a = a (ii) a a= a 3. Hukum komplemen: (i) a+ a = 1 (ii) aa = 4. Hukum dominansi: (i) a = (ii) a+ 1 = 1 5. Hukum involusi: (i) (a ) = a 6. Hukum penyerapan: (i) a+ ab= a (ii) a(a+ b) = a
14 7. Hukum komutatif: (i) a+ b= b+ a (ii) ab= ba 8. Hukum asosiatif: (i) a+ (b+ c) = (a+ b) + c (ii) a(bc) = (ab) c 9. Hukum distributif: (i)a+(bc) = (a+ b) (a+ c) (ii) a(b+ c) = ab+ ac 1. Hukum De Morgan: (i) (a+ b) = a b (ii)(ab) = a + b 11. Hukum/1 (i) = 1 (ii) 1 =
15 Buktikan(i) a+ a b= a+ b dan (ii) a(a + b) = ab Penyelesaian: (i) a+ a b = (a+ ab) + a b (ii) adalah dual dari(i) (Penyerapan) = a+ (ab+ a b) (Asosiatif) = a+ (a+ a )b (Distributif) = a+ 1 b (Komplemen) = a+ b (Identitas)
16 FungsiBoolean(disebutjugafungsibiner) adalahpemetaandarib n kebmelaluiekspresi Boolean, kita menuliskannya sebagai f: B n B yang dalamhalinib n adalahhimpunanyang beranggotakan pasangan terurut ganda-n (ordered n-tuple) didalamdaerahasalb.
17 Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean. Misalkan sebuah fungsi Boolean adalah f(x, y, z) = xyz + x y+ y z Fungsi f memetakan nilai-nilai pasangan terurut ganda-3 (x, y, z) kehimpunan{, 1}. Contoh (1,, 1) yang berartix= 1, y=, danz= 1 f(1,, 1) = = = 1.
18 Contoh-contoh fungsi Boolean yang lain: f(x) = x f(x, y) = x y+ xy + y f(x, y) = x y f(x, y) = (x+ y) f(x, y, z) = xyz Setiappeubahdidalam fungsiboolean, termasuk dalam bentuk komplemennya, disebut literal. Contoh: Fungsih(x, y, z) = xyz pada contoh di atas terdiri dari 3 buah literal, yaitux, y, danz.
19 DiketahuifungsiBooelanf(x, y, z) = xyz, nyatakan f dalam tabel kebenaran. x y z f(x, y, z) = xy z
20 BilasebuahfungsiBoolean dikomplemenkan, kitamemperolehfungsikomplemen. Fungsi komplemen berguna pada saat penyederhanaanfungsiboolean. Fungsikomplemendarif, yaitu f dapatdicari denganduacara, yaitu:
21 1. Menggunakan hukum De Morgan Hukum De Morgan untuk dua buah peubah (berlakuuntukn peubah), x 1 danx 2, adalah: (i) (x 1 + x 2 ) = x 1 x 2 (ii) (x 1 x 2 ) = x 1 + x 2 (dual dari(i))
22 Misalkanf(x, y, z) = x(y z + yz), tentukanf! Solusi: f (x, y, z) = (x(y z + yz)) = x + (y z + yz) = x + (y z ) (yz) = x + (y+ z) (y + z )
23 2. Menggunakanprinsipdualitas. Tentukandual dariekspresiboolean yang merepresentasikan f, lalu komplemenkan setiap literal di dalam dual tersebut. Contoh Misalkanf(x, y, z) = x(y z + yz), maka Dual dari f =x+ (y + z ) (y+ z) Komplemenkantiapliteralnya: x + (y+ z) (y + z ) = f Jadi, f (x, y, z) = x + (y+ z)(y + z )
24 1. DiketahuifungsiBoolean h(x,y,z)=x yz,nyatakan h dalam tabel kebenaran 2. Buktikanbahwaf(x,y,z) = x y z+ x yz+ xy ekivalendengang(x,y,z) = x z+ xy tabel kebenaran 3. Misalkanf(x, y, z) = y ((x+z ) (xy)), tentukanf dengan: a. Hukum D Morgan b. Prinsip Dualitas
25 1. Jaringan Pensaklaran(Switching Network) Saklar: objek yang mempunyai dua buah keadaan: bukadantutup. Tiga bentuk gerbang paling sederhana: 1. a x b Outputbhanyaadajikadanhanyajikax dibuka x
26 2. a x y b Outputbhanyaadajikadanhanyajikaxdany dibuka xy 3. a x b y Outputchanyaadajikadanhanyajikaxatauy dibuka x+ y c
27 Contoh rangkaian pensaklaran pada rangkaian listrik: 1. Saklar dalam hubungan SERI: logika AND Sumber tegangan A B Lampu 2. Saklar dalam hubungan PARALEL: logika OR A Lampu B Sumber Tegangan Rinaldi Munir/IF2151 Mat. Diskrit 27
28 2. Rangkaian Logika x xy y Gerbang AND x x+ y y Gerbang OR x x' Gerbang NOT (inverter) Contoh: Nyatakan fungsi f(x, y, z) = xy + x y ke dalam rangkaian logika. Jawab: (a) Cara pertama x y x y x' xy x'y xy+x'y Rinaldi Munir/IF2151 Mat. Diskrit 28
29 Cara Kedua x y xy xy+x'y x' x'y
30 Cara Ketiga x y xy xy+x'y x' x'y
31 x y (xy)' x y x + y Gerbang NAND Gerbang XOR x y (x+y)' x y (x + y)' Gerbang NOR Gerbang XNOR Rinaldi Munir/IF2151 Mat. Diskrit 31
32 Gambarkan rangkaian logika dari fungsi berikut: 1. f(x, y, z) = y (xz + z) 2. f(x, y, z)= x y z + xy +z 3. f(x, y, z) = x yz + xy z + xyz + xyz
Definisi Aljabar Boolean
Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf
Definisi Aljabar Boolean
1 UNTUK DOWNLOAD LEBIH BANYAK EBOOKS TENTANG KOMPUTER KUNJUNGI http://wirednotes.blogspot.com Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner: - B : himpunan
ALJABAR BOOLEAN. Misalkan terdapat. Definisi:
ALJABAR BOOLEAN Definisi: Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada opeartor +,, dan - dan adalah dua elemen yang berbeda dari B. Tupel
Definisi Aljabar Boolean
Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1
Aljabar Boolean Rinaldi Munir/IF25 Mat. Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
Matematika informatika 1 ALJABAR BOOLEAN
Matematika informatika 1 ALJABAR BOOLEAN ALJABAR BOOLEAN Matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya
Aljabar Boolean. Matematika Diskrit
Aljabar Boolean Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua
Review Sistem Digital : Aljabar Boole
JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Aljabar Boole S dan D3 Mata Kuliah : Elektronika Industri 2 x 5 Lembar Kerja Dalam Aljabar Boole, Misalkan terdapat
2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya.
Tugas! (Materi Aljabar Boolean). Gambarkan jaringan switching yang dinyatakan dengan polinominal Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya, kapan jaringan tsb on atau off.
Aljabar Boolean. Bahan Kuliah Matematika Diskrit
Aljabar Boolean Bahan Kuliah Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012
Bahan Kuliah LOGIKA Aljabar MATEMATIKA- Boolean Priode UTS-UAS DADANG MULYANA dadang mulana 22 ALJABAR BOOLEAN dadang mulana 22 Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan -
Matematika Logika Aljabar Boolean
Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu
ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013
Penyusun :. Imam Purwanto, S.Kom, MMSI 2. Ega Hegarini, S.Kom., MM 3. Rifki Amalia, S.Kom., MMSI 4. Arie Kusumawati, S.Kom ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma
TI 2013 IE-204 Elektronika Industri & Otomasi UKM
TI 23 IE-24 Elektronika Industri & Otomasi UKM Lampiran C Aljabar Boolean Tupel Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan ang didefinisikan pada operaror +,,
DEFINISI ALJABAR BOOLEAN
ALJABAR BOOLEAN DEFINISI ALJABAR BOOLEAN Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
Aljabar Boolean. Adri Priadana
Aljabar Boolean Adri Priadana Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun 854. Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (kemiripan hukum-hukum
Pertemuan ke-4 ALJABAR BOOLEAN I
Pertemuan ke-4 ALJABAR BOOLEAN I Materi Perkuliahan a. Pengertian Aljabar Boolean b. Ekspresi Boolean c Prinsip Dualitas Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami
Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit
Aljabar Boolean IF22 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF22 Matematika Diskrit Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya (Definisi 2.1 Menurut Lipschutz, Seymour & Marc Lars Lipson dalam
2.1 Definisi Aljabar Boolean Aljabar Boolean dapat didefinisikan secara abstrak dalam beberapa cara. Cara yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya dan operasi operasi yang
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 --
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 23/24 STMIK Dumai -- Materi 8 -- Digital Principles and Applications, Leach-Malvino, McGraw-Hill Adhi Yuniarto L.Y. Boolean Algebra. Fasilkom
FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN
I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product
Aljabar Boolean. Rudi Susanto
Aljabar Boolean Rudi Susanto Tujuan Pembelajaran Bisa menghasilkan suatu realisasi rangkaian elektronika digital dari suatu persamaan logika matematika Persamaan logika matematika tersebut dimodifikasi
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 Outline Penjelasan tiga operasi logika dasar dalam sistem digital. Penjelasan Operasi dan Tabel Kebenaran logika AND, OR, NAND, NOR
BAB 2 GERBANG LOGIKA & ALJABAR BOOLE
SISTEM DIGITL 16 2 GERNG LOGIK & LJR OOLE Gerbang Logika (Logical Gates) atau gerbang digital merupakan komponen dasar elektronika digital. erbeda dengan komponen elektronika analog yang mempunyai tegangan
BAB 4. Aljabar Boolean
BAB 4 Aljabar Boolean 1. PENDAHULUAN Aljabar Boolean merupakan lanjutan dari matakuliah logika matematika. Definisi aljabar boolean adalah suatu jenis manipulasi nilai-nilai logika secara aljabar. Contoh
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S AGENDA SISTEM BILANGAN DESIMAL, BINER, OCTAL, HEXADESIMAL DEFINISI ALJABAR BOOLEAN TABEL KEBENARAN ALJABAR BOOLEAN
Logika Matematika Aljabar Boolean
Pertemuan ke-5 Logika Matematika Aljabar Boolean Oleh : Mellia Liyanthy 1 TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Bentuk Kanonik dan Bentuk baku atau standar Fungsi boolean yang
a + b B a + b = b + a ( ii) a b = b. a
A ljabar Boolean M isalkan terdapat - Dua operator biner: + dan - S ebuah operator uner:. - B : himpunan ang didefinisikan pada opeartor +,, dan - dan adalah dua elemen ang berbeda dari B. T upel (B, +,,
Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar
Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan
PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA
PERCOBAAN DIGITAL GERBANG LOGIKA DAN RANGKAIAN LOGIKA .. TUJUAN PERCOBAAN. Mengenal berbagai jenis gerbang logika 2. Memahami dasar operasi logika untuk gerbang AND, NAND, OR, NOR. 3. Memahami struktur
Representasi Boolean
Aljabar Boolean Boolean Variable dan Tabel Kebenaran Gerbang Logika Aritmatika Boolean Identitas Aljabar Boolean Sifat-sifat Aljabar Boolean Aturan Penyederhanaan Boolean Fungsi Eksklusif OR Teorema De
I. Judul Percobaan Rangkaian Gerbang Logika dan Aljabar Boolean
I. Judul Percobaan Rangkaian Gerbang Logika dan Aljabar Boolean II. Tujuan Percobaan 1. Praktikan memahami antara input dan output pada rangkaian logika AND, OR, NOT, XOR, NAND, NOR dan XNOR. 2. Praktikan
Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C )
5. RANGKAIAN KOMBINASIONAL Pada dasarnya rangkaian logika (digital) yang dibentuk dari beberapa gabungan komponen elektronik yang terdiri dari bermacam-macam Gate dan rangkaian-rangkaian lainnya, sehingga
MATERI 2 COMBINATIONAL LOGIC
Pengantar : :. MATERI 2 COMBINATIONAL LOGIC Rangkaian digital adalah mrp komponen perangkat keras (hardware) yang memanipulasi informasi biner. Rangkaian diimplementasikan dengan menggunakan transistor-transistor
Pengaplikasian Aljabar Boolean dalam Menghias Permukaan Roti Panggang oleh Pemanggang Roti Pintar (Smart Toaster)
Pengaplikasian Aljabar Boolean dalam Menghias Permukaan Roti Panggang oleh Pemanggang Roti Pintar (Smart Toaster) Yoga Prasetyo/13515148 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika
MAKALAH SISTEM DIGITAL
MAKALAH SISTEM DIGITAL Konsep Dasar Teorema Boole & De Morgan Disusun Oleh : Anin Rodahad (12131307) Abdurrahman Ar-Rohim (12131299) Bayu Ari Utomo () TEKNIK INFORMATIKA STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja
Komplemen Boolean dituliskan dengan bar/garis atas dengan aturan sebagai berikut
9. Aljabar Boole Aljabar Boolean menediakan operasi dan aturan untuk bekerja dengan himpunan {0, 1}. Akan dibahas 3 buah operasi : komplemen Boolean, penjumlahan Boolean, dan perkalian Boolean Komplemen
BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN
A III GERANG LOGIKA DAN ALJAAR OOLEAN 3. Pendahuluan Komputer, kalkulator, dan peralatan digital lainnya kadang-kadang dianggap oleh orang awam sebagai sesuatu yang ajaib. Sebenarnya peralatan elektronika
STUDI METODE QUINE-McCLUSKEY UNTUK MENYEDERHANAKAN RANGKAIAN DIGITAL S A F R I N A A M A N A H S I T E P U
STUDI METODE QUINE-McCLUSKEY UNTUK MENYEDERHANAKAN RANGKAIAN DIGITAL S A F R I N A A M A N A H S I T E P U 0 3 0 8 2 3 0 4 2 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
Aljabar Boolean. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom
Aljabar Boolean Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom September 2015 Representasi Fungsi Boolean Sistem dan Logika
Review Sistem Digital : Logika Kombinasional
JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Logika Kombinasional S dan D3 Mata Kuliah : Elektronika Industri 2 5 Lembar Kerja 2. Jaringan Pensaklaran (Switching
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJABAR BOOLEAN
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJAAR OOLEAN Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan
0.(0.1)=(0.0).1 0.0=0.1 0=0
Latihan : 1. Diketahui himpunan B dengan tiga buah nilai (0,1,2) dan dua buah operator, + dan. kaidah operasi dengan operator + dan didefinisikan pada tabel di bawah ini : + 0 1 2 0 0 0 0 1 0 1 1 2 0 1
Modul Praktikum. Logika Dasar. Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun:
Daftar Isi Modul Praktikum Logika Dasar Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun: Arif munandar Dinora Refiasari Gandi Laksana Putra Muhammad Saleh Firmansyah Feri Krisnanto Muammar Rizki F.I.
PENERAPAN METODE QUINE-MC CLUSKEY UNTUK MENYEDERHANAKAN FUNGSI BOOLEAN
IJCCS, Vol.x, No.x, Julyxxxx, pp. 1~5ISSN: 1978-1520 PENERAPAN METODE QUINE-MC CLUSKEY UNTUK MENYEDERHANAKAN FUNGSI BOOLEAN Herman Saputra Program Studi Sistem Informasi, STMIK Royal Kisaran Jl. Prof.
Rangkaian digital yang ekivalen dengan persamaan logika. Misalnya diketahui persamaan logika: x = A.B+C Rangkaiannya:
ALJABAR BOOLEAN Aljabar Boolean Aljabar Boolean adalah aljabar yang menangani persoalan-persoalan logika. Aljabar Boolean menggunakan beberapa hukum yang sama seperti aljabar biasa untuk fungsi OR (Y =
BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA
BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA Alokasi Waktu : 8 x 45 menit Tujuan Instruksional Khusus : 1. Mahasiswa dapat menjelaskan theorema dan sifat dasar dari aljabar Boolean. 2. Mahasiswa dapat menjelaskan
Output b akan ada aliran arus dari a jika saklar x ditutup dan sebaliknya Output b tidak aliran arus dari a jika saklar x dibuka.
A. TUJUAN : FAKULTAS TEKNIK Semester 5 LOGIKA KOMBINASIONAL 2 4 5 No. LST/EKA/PTE23 Revisi : Tgl : 7-2-2 Hal dari 22 Setelah selesai pembelajaran diharapkan mahasiswa dapat. Menjelaskan kembali prinsip-prinsip
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean Yusron Sugiarto Materi Kuliah Rangkaian Logika Ada beberapa operasi-operasi dasar pada suatu rangkaian logika dan untuk
BAB IV : RANGKAIAN LOGIKA
BAB IV : RANGKAIAN LOGIKA 1. Gerbang AND, OR dan NOT Gerbang Logika adalah rangkaian dengan satu atau lebih dari satu sinyal masukan tetapi hanya menghasilkan satu sinyal berupa tegangan tinggi atau tegangan
Aplikasi Aljabar Boolean dalam Komparator Digital
Aplikasi Aljabar Boolean dalam Komparator Digital Ade Yusuf Rahardian / 13514079 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Pertemuan 8. Aplikasi dan penyederhanaan Aljabar Boolean
Pertemuan 8 Aplikasi dan penyederhanaan Aljabar Boolean Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Aplikasi Aljabar Boolean Aljabar Boolean mempunyai
ALJABAR BOLEAN. Hukum hukum ALjabar Boolean. 1. Hukum Komutatif
LJBR BOLEN Diktat Elektronika Digital ljabar Boolean Dalam matematika dan ilmu komputer, ljabar Boolean adalah struktur aljabar yang "mencakup intisari" operasi logika DN, TU dan TIDK dan juga teori himpunan
JUMANTAKA Halaman Jurnal: Halaman LPPM STMIK DCI:
JUMANTAKA Vol 01 No 01 (2018) PISSN: 2613-9138 EISSN : 2613-9146 JUMANTAKA Halaman Jurnal: http://jurnal.stmik-dci.ac.id/index.php/jumantaka/ Halaman LPPM STMIK DCI: http://lppm.stmik-dci.ac.id/ PENYEDERHAAN
Gerbang dan Rangkaian Logika
Gerbang dan Rangkaian Logika Teknik Digital (TKE 071207) Iwan Setiawan stwn at unsoed.ac.id Pemutakhiran terakhir: 24/04/11 20:51 rangkaian digital beroperasi dalam mode biner. (masukan tegangan bernilai
Gerbang Logika & Aljabar Boole. Eka Maulana, ST, MT, Meng. Brawijaya University
Gerbang Logika & ljabar oole Eka Maulana, ST, MT, Meng. rawijaya University ljabar oole (oolean lgebra) ljabar oolean adalah sistem operasi matematis logika pada himpunan atau proposisi yang memenuhi aturanaturan
BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU
Buku Panduan Belajar atematika Diskrit STIK TRIGUNA DHARA BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU 9.1 Fungsi Boolean Pada aljabar Boolean dua-nilai B = {,1}. Peubah (variabel) x disebut peubah
ALJABAR BOOLEAN. -Definisi -AB dua-nilai. Altien Jonathan Rindengan, S.Si, M.Kom
ALJABAR BOOLEAN -Definisi -AB dua-nilai Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Aljabar Boolean (AB), pertama kali dikemukakan oleh matematikawan Inggris, George Boole tahun 1854. Tahun 1938,
Gerbang gerbang Logika -5-
Sistem Digital Gerbang gerbang Logika -5- Missa Lamsani Hal 1 Gerbang Logika 3 gerbang dasar adalah : AND OR NOT 4 gerbang turunan adalah : NAND NOR XOR XNOR Missa Lamsani Hal 2 Gerbang NAND (Not-AND)
09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean.
Prio Handoko, S. Kom., M.T.I. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. George Boole (ahli matematika asal Inggris) Aljabar yang
ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya
ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya Disusun Oleh : Indra Gustiaji Wibowo (233) Kelas B Dosen Hidayatulah Himawan,ST.,M.M.,M.Eng JURUSAN TEKNIK INFORMATIKA
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan.
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan. Pada aljabar Boolean terdapat hukum-hukum aljabar Boolean yang memungkinkan
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)
dasar pembentuk dlm sistem digital. beroperasi dlm bilangan biner (gerbang logika biner).
Gerbang Logika dasar pembentuk dlm sistem digital. beroperasi dlm bilangan biner (gerbang logika biner). Logika biner menggunakan dua buah nilai yaitu 0 dan 1. Logika biner yang digunakan dlm sistem digital,
Ada dua macam bentuk kanonik:
Ada dua macam bentuk kanonik: ) Penjumlahan dari hasil kali (sum-of-product atau SOP) 2) Perkalian dari hasil jumlah(product-of-sum atau POS) Contoh:. f(x, y, z) = x y z+ xy z + xyz SOP Setiap suku(term)
GERBANG dan ALJABAR BOOLE
GERBNG dan LJBR BOOLE Konsep dasar aljabar Boole (Boolean lgebra) telah diletakkan oleh seorang matematisi Inggeris George Boole, pada tahun 1854. Konsep dasar itu membutuhkan waktu yang cukup lama untuk
Tabel kebenaran untuk dua masukan (input) Y = AB + AB A B Y
G.Gerbang X-OR dan Gerbang X-NOR 1. Gerbang X-OR dalah komponen logika yang keluarannya bernilai 1 bila terminal masukannya tidak sama, atau dengan persamaan ditulis : Y = + Simbol gerbang X-OR untuk dua
Organisasi & Arsitektur Komputer
Organisasi & Arsitektur Komputer 1 Logika Digital Eko Budi Setiawan, S.Kom., M.T. Eko Budi Setiawan [email protected] www.ekobudisetiawan.com Teknik Informatika - UNIKOM 2013 Pendahuluan Gerbang
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II
No. LST/EKO/DEL 214/02 Revisi : 04 Tgl : 1 Februari 2012 Hal 1 dari 8 1. Kompetensi Memahami Product hukum aljabar Boolean termasuk hukum De Morgan, dan prinsip Sum of 2. Sub Kompetensi Memahami penerapan
Bentuk Standar Ungkapan Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Bentuk Standar Ungkapan Boolean Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Bentuk Standar Ungkapan Boolean Sum-of-Product (SOP) Diturunkan dari tabel kebenaran untuk fungsi dengan mempertimbangkan baris
BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016
PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER BAB 2. HIMPUNAN ILHAM SAIFUDIN Senin, 17 Oktober 2016 Universitas Muhammadiyah Jember ILHAM SAIFUDIN MI HIMPUNAN 1 DASAR-DASAR
Aljabar Boolean dan Gerbang Logika Dasar
Modul 1 : Aljabar Boolean dan Gerbang Logika Dasar 1.1 Tujuan Setelah mengikuti praktek ini mahasiswa diharapkan dapat: 1. Memahami Aksioma dan Teorema Aljabar Boolean. 2. Memahami gerbang logika dasar
Rangkaian Logika. Eko Didik Widianto. Sistem Komputer - Universitas eko didik widianto - siskom undip SK205 Sistem Digital 1 / 32
Rangkaian Eko Didik Widianto Sistem Komputer - Universitas Diponegoro @2011 eko didik widianto - siskom undip SK205 Sistem Digital 1 / 32 Bahasan Representasi Biner Konsep Dasar Elemen Biner Fungsi AND
Rangkaian Logika. Kuliah#2 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto. Teknik Sistem Komputer - Universitas Diponegoro.
Kuliah#2 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Tentang Kuliah Sebelumnya dibahas tentang: Deskripsi, tujuan, sasaran dan materi kuliah TSK205 Sistem
63 ISSN: (Print), (Online)
Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-Mc Cluskey Wahyu Nugraha Program Studi Manajemen Informatika, AMIK BSI Pontianak [email protected] ABSTRACT - Three way to
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Brown, Vranesic (2005) Tocci, Widmer, Moss (2007)
Logika Matematika Teori Himpunan
Pertemuan ke-2 Logika Matematika Teori Himpunan Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Perampatan Operasi Himpunan A1 A2... An = Ai A1 U A2 U... U An = U
GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE
I. KISI-KISI 1. Sistem Digital dan Sistem Analog 2. Sistem Bilangan Biner 3. Konversi Bilangan 4. Aljabar Boole II. DASAR TEORI GERBANG LOGIKA Sistem elektronika sekarang ini masih mengandalkan bahan semikonduktor
Pertemuan 10. Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku
Pertemuan Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Fungsi Boolean Pada aljabar Boolean dua-nilai
Perancangan Rangkaian Logika. Sintesis Rangkaian Logika
Sintesis Rangkaian Logika Eko Didik Widianto ([email protected]) 21 Maret 2011 Program Studi Sistem Komputer - Universitas Diponegoro Artikel ini menjelaskan secara khusus langkah-langkah sintesis untuk
MK SISTEM DIGITAL SESI III GERBANG LOGIKA
MK SISTEM DIGITAL SESI III GERBANG LOGIKA OLEH : HIDAAT Gerbang Logika Gerbang Logika adl. dasar pembentuk dalam sistem digital. beroperasi dalam bilangan biner (gerbang logika biner). Logika biner menggunakan
LANDASAN MATEMATIKA Handout 2
LANDASAN MATEMATIKA Handout 2 (Himpunan bagian, kesamaan dua himpunan, comparable, himpunan kosong, himpunan kuasa, kardinalitas, himpunan hingga dan tak hingga) Tatik Retno Murniasih, S.Si., M.Pd. [email protected]
Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-MC Cluskey
Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-MC Cluskey Wahyu Nugraha Program Studi Manajemen Informatika, AMIK BSI Pontianak Jl. Abdurahman Saleh No. 18A, Pontianak, Indonesia
DISUSUN OLEH AMALIA NURJANNAH, S.Pd
DISUSUN OLEH AMALIA NURJANNAH, S.Pd i DAFTAR ISI Halaman KATA PENGANTAR... i DAFTAR ISI... ii ALJABAR BOOLE I. Defenisi Dasar AljabarBoole.....1 II. Dualitas & Teorema-teorema......2 III. Fungsi Boolean...4
Pertemuan ke-5 ALJABAR BOOLEAN III
Pertemuan ke-5 ALJABAR BOOLEAN III Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami bentuk kanonik dan menuliskan suatu ekspresi aljabar dalam bentuk kanonik. Kompetensi
Pertemuan 6. Operasi Himpunan
Pertemuan 6 Operasi Himpunan Operasi Terhadap Himpunan 1. Irisan (intersection) Notasi : A B = { x x A dan x B } Contoh (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A B = {4, 10} (ii) Jika
18/09/2017. Fakultas Teknologi dan Desain Program Studi Teknik Informatika
8/09/207 Fakultas Teknologi dan Desain Program Studi Teknik Informatika 8/09/207 Capaian Pembelajaran Mahasiswa mampu menyederhanakan persamaan logika menggunakan Karnaugh Map (K-Map). Mahasiswa mampu
BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA)
TEKNIK DIGITAL-ALJABAR Boole/HAL. 1 BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA) PRINSIP DASAR ALJABAR BOOLE Aljabar boole adalah suatu teknik matematika yang dipakai untuk menyelesaikan masalah-masalah logika.
BAB 7 PENYEDERHANAAN
BAB 7 PENYEDERHANAAN 1. Pendahuluan Bab ini membahaspenggunaan hukum-hukum logika pada operasi logika yang dinamakan penyederhaan (simplifying). Berbagai macam ekuivalensi dari berbagai ekpresi logika
4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar. Gambar 4.1 Rangkaian logika dengan ekspresi Booleannya
BAB IV ALJABAR BOOLEAN 4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar Setiap rangkaian logika, bagaimanapun kompleksnya, dapat diuraikan secara lengkap dengan menggunakan operasi-operasi Boolean
Ungkapan Boolean dan Aljabar Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Ungkapan Boolean dan Aljabar Boolean Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Ungkapan Boolean Ungkapan Boolean terdiri dari Contoh Literal variabel dan komplemennya Operasi Logika F = A.B'.C + A'.B.C'
LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR)
LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR) Diajukan untuk memenuhi salah satu tugas mata kuliah Elektronika Lanjut Dosen Pengampu : Ahmad Aminudin, M.Si Oleh : Aceng Kurnia Rochmatulloh (1305931)
Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Misalkan p(n) adalah pernyataan yang menyatakan: Jumlah bilangan bulat positif dari 1 sampai n adalah
Himpunan adalah kumpulan objek objek yang berbeda (Liu, 1986)
BAB I TEORI HIMPUNAN 1.1 Dasar dasar Teori Himpunan Definisi : Himpunan adalah kumpulan objek objek yang berbeda (Liu, 1986) Biasanya dinotasikan dengan huruf besar. Dan objek yang berada di dalamnya disebut
RANGKAIAN KOMBINASIONAL
RANGKAIAN KOMBINASIONAL LUH KESUMA WARDHANI JurusanTIF UIN SUSKA Riau LOGIKA KOMBINASI Merupakan jenis rangkaian logika yang keadaan outputnya hanya tergantung dari kombinasi input nya saja. Aljabar Boolean
MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan)
MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan) Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Latihan 1 Simplify the following Boolean functions using Boolean
Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 Cakupan Himpunan Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 Himpunan Tujuan Mahasiswa memahami konsep dasar
Perancangan Rangkaian Logika. Sintesis Rangkaian Logika
Sintesis Rangkaian Logika Eko Didik Widianto ([email protected]) 21 Maret 2011 Program Studi Sistem Komputer - Universitas Diponegoro Artikel ini menjelaskan secara khusus langkah-langkah sintesis untuk
