0.(0.1)=(0.0).1 0.0=0.1 0=0
|
|
|
- Sucianty Hermawan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Latihan : 1. Diketahui himpunan B dengan tiga buah nilai (0,1,2) dan dua buah operator, + dan. kaidah operasi dengan operator + dan didefinisikan pada tabel di bawah ini : (a) Dari keempat aksioma dasar (komutatif, asosiatif, identitas dan komplemen), aksioma manakah yang dipenuhi oleh kedua tabel di atas? Apakah elemen identitas untuk masing-masing operator + dan tersebut? (b) Apakah himpunan B dengan dua buah operator di atas membentuk aljabar Boolean? jelaskan jawaban anda! Peyelesaian : (a) Aksioma yang sesuai : Identitas Elemen + untuk Elemen untuk + (b) 2. Buktikan hukum assosiatif a+(b+c)=(a+b)+c dan a (b c)=(a b) c. a+(b+c)=(a+b)+c a.(bc)=(ab).c 1+(1+1)=(1+1)+1 1+1=1+1 1=1 0.(0.1)=(0.0).1 0.0=0.1 0=0 3. Nyatakan fungsi boolean f(x,y) = x (x+y +z ), hanya dengan menggunakan operator + dan komplemen ( ) saja. F(x,y) = x (x+y +z ) = x x+x y +x z = 0+x y +x z = x y +x z = (x+y) + (x+z)
2 4. Nyatakan f(a,b,c) = (ab) c) ((a +c)(b +c )) dalam bentuk baku SOP dan bentuk kanonik SOP. f(a,b,c) = (ab) c) ((a +c)(b +c )) tabel kebenaran : a B C A B C ((ab) c) (a +c) (b +c ) ((a +c)(b +c )) F SOP = (4,6,7) = m 4 +m 6 +m 7 = (ab c )+(abc )+(abc) = (abc )+(ab) = (ab)(c +1) = ab 5. Perlihatkan bahwa dual dari ekspresi XOR berikut : (x y) sama dengan komplemennya (petunjuk : nyatakan ekspresi Xor dalam bentuk operator + dan ). Dualnya XOR(x y) (x + y) = x. y (x. y ) = x + y 6. Carilah komplemen dari fungsi f(w,x,y,z) = x z + w xy + wyz +w xy Penyelesaian: F(w,x,y,z) = x z + w xy + wyz +w xy = (x z + w xy + wyz +w xy) menggunakan hukum de Morgan = x+z w+x +y w +y +z w+x +y 7. Sederhanakan fungsi Boolean di bawah ini secara aljabar (menggunakan aksioma/teorema) : (a) Xy+x z + yz (b) (x+y)(x +z)(y+z) (dengan memanfaatkan prinsip dualitas dari fungsi (a) di atas) (a) xy + x z + yz xy + z ( x + y ) x z + y (x+z)
3 8. Diketahui fungsi Boolean berikut : f(w,x,y,z)= (0,1,2,3,7,11,13) d(w,x,y,z)= (5,9,14,15) dengan d(w,x,y,z) adalah fungsi don t care. Minimisasi fungsi tersebut di atas dengan menggunakan metode Peta Karnaugh. Setelah itu tuliskan fungsi sederhana itu dalam bentuk baku SOP dan bentuk baku POS. f(w,x,y,z)= (0,1,2,3,7,11,13) peta Karnaugh: Wx Yz X X X X POS : {kotak biru} (W+x+y+z)(W+x+y+z )(W+x+y +z)(w+x+y +z) = (w+x) (W+x+y+z )(W+x +y+z )(W +x+y+z )(W +x +y+z ) = (y+z ) (W+x+y +z )(W+x +y +z )(W +x+y +z )(W +x +y +z ) = (y +z ) (W +x +y+z) (W +x +y+z ) (W +x +y +z) (W +x +y +z ) = (w +x ) (w+x)(y+z )(y +z )(w +x ) = (y+z )(y +z ) = z +(y y ) = z SOP : {kotak merah} (W xy z )+ (W xy z)+ (Wx y z )+ (Wx y z) = y (W xyz)+ (Wx yz ) = y (Wxyz )+ (Wxyz) = wxy Y +y+wxy = wxy 9. Temukan fungsi Boolean yang paling sederhana dalam bentuk product of sum (POS) dari fungsi berikut : f(w,x,y,z) = (0,1,2,3,7,8,11,13) dan d(w,x,y,z) = (5,9,14,15) 10. Diberikan 2 fungsi Boolean f dan g. Maka, fungsi h= fg diperoleh dengan meng-and kan dua buah fungsi, yang hasilnya adalah minterm bersama yang terdapat baik pada f maupun pada g. Jika F = wxy +y z+w yz+x yz Dan G = (w+x+y +z )(x +y +z)(w +y+z ) Maka, dengan menggunakan peta karnaugh, temukan bentuk yang paling sederhana dari h = fg.
4 h = (wxy +y z+w yz+x yz )( (w+x+y +z )(x +y +z)(w +y+z )) = ( 11. Minimisasi fungsi-fungsi Booleanberikut dengan metode peta karnaugh, dalam bentuk baku SOP dan bentuk baku POS : (a) F(x,y,z) = (2,3,6,7) (b) F(x,y,z) = xy+x y z +x yz (c) F(w,x,y,z) = (4,6,7,15) (d) F(w,x,y,z) = (0,1,2,6,8,9,12) (e) Diberikan Tabel kebenaran : X Y Z F(x,y,z) (a) F(x,y,z) = (2,3,6,7) Peta karnaugh : Xy Z SOP : (2,3,6,7) = (x yz )+(x yz)+(xyz )+(xyz) = x y(z +z)+xy(z +z) = x y+xy = y(x +x) = y POS : (0,1,4,5) = (x+y+z) (x+y+z ) (x +y+z) (x +y+z ) = (x+y)+(z z )(x +y)+(z z ) = (x+y)(x +y) = y+(x+x ) = y (b) F(x,y,z) = xy+x y z +x yz Tabel kebenaran : X Y z xy X y z X yz F
5 Peta karnaugh : Xy Z SOP : (0,2,5,6) = (x y z ) +(x y z)+ (xyz )+ (xyz) = (x y )(z +z)+(xy)(z +z) = x y +xy POS : (1,3,4,5) = (x+y+z ) (x+y +z ) (x +y +z) (x +y +z ) = (x+y)+(z z)(x +y )+(z+z ) = (x+y)(x +y ) (c) F(w,x,y,z) = (4,6,7,15) Peta karnaugh : Wx Yz SOP : (4,6,7,15) = (w xy z ) (w xyz ) (w xyz) (wxyz) = (w xy z )(w xy)(z +z)(wxyz) = (w xy z )(w xy)(wxyz) = (x)(w y z +wxy)(w xy) = (x)(w xy) = w xy POS : (0,1,2,3,5,8,9,10,11,12,13,14) = (w+x+y+z) (w+x+y+z ) (w+x+y +z) (w+x+y +z ) (w+x +y+z ) (w +x+y+z) (w +x+y+z ) (w +x+y +z) (w +x+y +z ) (w +x +y+z) (w +x +y+z ) (w +x +y +z) = (w+x+y)(w+x+y )(w +x+y)(w +x+y )(w +x +y)(w+x +y+z )(w +x +y +z) = (w+x)(w +x)(w +x +y) (w+x +y+z )(w +x +y +z) = (x) (w +x +y) (w+x +y+z )(w +x +y +z)
6 =(x)(w +x )(y y +z) (w+x +y+z ) = (x)(w +x )(y+z)(w+x +y+z ) = (x)(w +x )(y)+(z w+x +z ) = (x)(w +x )(y+wz+x z) =(xw )(y+wz+x z) = w xy (d) F(w,x,y,z) = (0,1,2,6,8,9,12) Peta Karnaugh : (e) Wx Yz (0,1,2,6,8,9,12) = (w+x+y+z) (w+x+y+z ) (w+x+y +z) (w+x +y +z) (w +x+y+z) (w +x+y+z ) (w +x +y+z) = (w+x+y)(w+y +z)(w +x+y)(w +x +y+z) = (x+y)(w+y +z)(w +x +y+z) = (wx+y x+zx+wy+yz)(w +x +y+z) = x(w+y +z)+y(w+z) 12. Gunakan peta Karnaugh untuk membuat rangkaian logika yang menerima masukan berupa kode biner dari suatu digit desimal dan menghilangkan keluaran 1 jika digit yang berkoresponden dengan masukan tersebut tidak habis dibagi 3 fungsi minimisasi bentuk baku SOP. 13. Rancang dan gambarkan rangkaian kombinasional yang menerima masukan bilangan 3-bit dan membangkitkan keluaran bilangan biner yang sama dengan kuadrat dari bilangan masukannya. 14. Diberikan gambar rangkaian logika seperti di bawah ini :
7 V1 0V V2 5V U3A V3 5V U4A U4C U1B U2A L1 U4D U1C U4B (a) Tuliskan fungsi Boolean f(x,y,z) yang mempresentasikan rangkaian di atas (b) Tuliskan fungsi Boolean f(x,y,z) dalam bentuk kanonik POS (c) Sederhanakan rangkaian di atas dengan menggunakan peta Karnaugh, lalu gambarkan rangkaian hasil penyederhanaan. Jawab : (a) ( xyz + xy + x z + x ) (b) x Y z f X \ yz (c) x y + xy + x y + xyz x (y +y)+x(y +yz ) x +xy +xyz x +x(y +yz ) 15. Rancanglah rangkaian logika untuk menghitung koin uang logam yang dimasukkan pada pengumpul bea otomatis sebagai penbayar jasa tol. Mesin penghitung ditempatkan pada gerbang tol. Tarif tol adalah 15 sen. Mesin hanya dapat menerima koin 5 sen dan koin 10 sen. Bila mesin telah menerima sejumlah koin senilai 15 sen, maka lampu hijau manyala (arinya boleh lewat gerbang tol), dan jika belum 15 sen, lampu merah tetap menyala (artinya belum boleh lewat gerbang tol). Gambarkan rangkaian logika yang dimaksud! 16. (a) sederhanakan fungsi Boolean f berikut dalam bentuk product of sum dengan menggunakan fungsi don t care (disimbolkan dengan d) : F(w,x,y,z) = w x z+w yz+w xy D(w,x,y,z) = w xy z+wyz+wx z
8 (b) gambarkan rangkaian logika fungsi yang telah disederhanakan pada jawaban (a) di atas dengna hanya menggunakan gerbang NOT dan NOR saja. 17. Sederahanakan fungsi Boolean berikut dengan menggunakan metode Quine-Mc Cluskey : F(v,w,x,y,z) = (9,11,13,15,17,21,25,27,29,31) 18. Minimisasi fungsi f(x,y,z) = (0,2,4,5,6) dengan metode Quine-Mc Cluskey, lalu gambarkan hasil penyedehanaannya hanya dengan menggunakan gerbang NAND saja. 19. Sederhanakan dan implementasikan fungsi Boolean berikut dalam rangkaian digital : (a) Menggunakan sembarang gerbang F(x,y) = xy +x y (b) Menggunakan hanya gerbang NAND F(v,w,x,y,z) = vx +vxz+vxz +v xy +v y z (a) F(x,y) = xy +x y x U3A U2A U1A L1 U3B U2B y (b) F(v,w,x,y,z) = vx +vxz+vxz +v xy +v y z = vx +vx+v xy +v y z = v+v xy+v y z = v+xy+v yz = v+xy+yz = v+y(x+z ) 20. Carilah komplemen dari fungsi Boolean berikut : F(w,x,y,z) = x z+w xy +wyz+w xy F(w,x,y,z) = x z+w xy +wyz+w xy Menggunakan hukum de Morgan : ( x z+w xy +wyz+w xy) = (x+z )(w+x +y)(w +y +z )(w+x +y ) 21. Gambarkan rangkaian pensaklaran yang menyatakan ekspresi Boolean xy+xy z+y(x +z)+y z xy+xy z+y(x +z)+y z x y x y z x
9 y z y z 22. Sebuah peraga angka digital disusun oleh tujuh buah segmen (selanjutnya disebut dekoder tujuh-segmen). _ / _ / /_/ / _ / / Dekoder 7-segmen angka 4 Piranti tersebut mengubah masukan 4 bit BCD menjadi keluaran yang dapat menunjukkan angka desimal yangg dinyatakannya (misalnya, jika masukan adalah 0100 (angka 4 dalam desimal), maka batang /segmen yang menyala adalah a,d,c,dan e). Tulislah fungsi Boolean untuk setiap segmen, dan gambarkan kombinasionalnya. 23. Sebuah instruksi dalam algoritma adalah : If A B then A A + 1 else A A +2 (a) Nilai A dan B yang dibandingkan masing-masing panjangnya dua bit (misalkan a 1 a 2 dan b 1 b 2 ). Buatlah rangkaian logika (yang sudah disederhanakan tentunya) yang menghasilkan keluaran 1 jika A B atau 0 jika tidak. (b) Gambarkan kembali rangkaian logikanya jika hanya menggunakan gerbang NOR saja (petunjuk : gunakan hukum de Morgan)
Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit
Aljabar Boolean IF22 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF22 Matematika Diskrit Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun
Definisi Aljabar Boolean
Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1
Aljabar Boolean Rinaldi Munir/IF25 Mat. Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
Aljabar Boolean. Bahan Kuliah Matematika Diskrit
Aljabar Boolean Bahan Kuliah Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013
Penyusun :. Imam Purwanto, S.Kom, MMSI 2. Ega Hegarini, S.Kom., MM 3. Rifki Amalia, S.Kom., MMSI 4. Arie Kusumawati, S.Kom ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma
2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya.
Tugas! (Materi Aljabar Boolean). Gambarkan jaringan switching yang dinyatakan dengan polinominal Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya, kapan jaringan tsb on atau off.
Aljabar Boolean. Matematika Diskrit
Aljabar Boolean Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua
Aljabar Boolean. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom
Aljabar Boolean Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom September 2015 Representasi Fungsi Boolean Sistem dan Logika
DEFINISI ALJABAR BOOLEAN
ALJABAR BOOLEAN DEFINISI ALJABAR BOOLEAN Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
Matematika informatika 1 ALJABAR BOOLEAN
Matematika informatika 1 ALJABAR BOOLEAN ALJABAR BOOLEAN Matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya
Logika Matematika. Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan
Logika Matematika Bab 1: Aljabar Boolean Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan 1 Nilai fungsi Fungsi Boolean dinyatakan nilainya pada setiap variabel yaitu
BAB 4. Aljabar Boolean
BAB 4 Aljabar Boolean 1. PENDAHULUAN Aljabar Boolean merupakan lanjutan dari matakuliah logika matematika. Definisi aljabar boolean adalah suatu jenis manipulasi nilai-nilai logika secara aljabar. Contoh
Aljabar Boolean. Adri Priadana
Aljabar Boolean Adri Priadana Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun 854. Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (kemiripan hukum-hukum
FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN
I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product
K-Map. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom
K-Map Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S Teknik Informatika Fakultas Informatika Universitas Telkom September 205 Peta Karnaugh (K-Map) () Sistem dan Logika Digital/205
ALJABAR BOOLEAN. Misalkan terdapat. Definisi:
ALJABAR BOOLEAN Definisi: Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada opeartor +,, dan - dan adalah dua elemen yang berbeda dari B. Tupel
Sistem dan Logika Digital
Sistem dan Logika Digital Aljabar Boolean Tim SLD KK Telematika FIF Telkom University 1 Aljabar Boolean-Definisi Sistem aljabar dengan dua operasi penjumlahan (+) dan perkalian (.) yang didefinisikan sehingga
TI 2013 IE-204 Elektronika Industri & Otomasi UKM
TI 23 IE-24 Elektronika Industri & Otomasi UKM Lampiran C Aljabar Boolean Tupel Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan ang didefinisikan pada operaror +,,
Definisi Aljabar Boolean
1 UNTUK DOWNLOAD LEBIH BANYAK EBOOKS TENTANG KOMPUTER KUNJUNGI http://wirednotes.blogspot.com Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner: - B : himpunan
Penyederhanaan Fungsi Boolean
Penyederhanaan Fungsi Boolean Contoh. f(x, y) = x y + xy + y disederhanakan menjadi f(x, y) = x + y Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara:. Secara aljabar 2. Menggunakan Peta Karnaugh
MATERI 2 COMBINATIONAL LOGIC
Pengantar : :. MATERI 2 COMBINATIONAL LOGIC Rangkaian digital adalah mrp komponen perangkat keras (hardware) yang memanipulasi informasi biner. Rangkaian diimplementasikan dengan menggunakan transistor-transistor
yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya (Definisi 2.1 Menurut Lipschutz, Seymour & Marc Lars Lipson dalam
2.1 Definisi Aljabar Boolean Aljabar Boolean dapat didefinisikan secara abstrak dalam beberapa cara. Cara yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya dan operasi operasi yang
Definisi Aljabar Boolean
Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf
LOGIKA MATEMATIKA. 3 SKS By : Sri Rezeki Candra Nursari
LOGIKA MATEMATIKA 3 SKS By : Sri Rezeki Candra Nursari Komposisi nilai UAS = 36% Open note UTS = 24% Open note ABSEN = 5 % TUGAS = 35% ============================ % Blog : reezeki2.wordpress.com MATERI
Pertemuan ke-5 ALJABAR BOOLEAN III
Pertemuan ke-5 ALJABAR BOOLEAN III Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami bentuk kanonik dan menuliskan suatu ekspresi aljabar dalam bentuk kanonik. Kompetensi
18/09/2017. Fakultas Teknologi dan Desain Program Studi Teknik Informatika
8/09/207 Fakultas Teknologi dan Desain Program Studi Teknik Informatika 8/09/207 Capaian Pembelajaran Mahasiswa mampu menyederhanakan persamaan logika menggunakan Karnaugh Map (K-Map). Mahasiswa mampu
Review Sistem Digital : Aljabar Boole
JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Aljabar Boole S dan D3 Mata Kuliah : Elektronika Industri 2 x 5 Lembar Kerja Dalam Aljabar Boole, Misalkan terdapat
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S AGENDA SISTEM BILANGAN DESIMAL, BINER, OCTAL, HEXADESIMAL DEFINISI ALJABAR BOOLEAN TABEL KEBENARAN ALJABAR BOOLEAN
Pertemuan 8. Aplikasi dan penyederhanaan Aljabar Boolean
Pertemuan 8 Aplikasi dan penyederhanaan Aljabar Boolean Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Aplikasi Aljabar Boolean Aljabar Boolean mempunyai
Logika Matematika Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika IT Telkom
1 Logika Matematika Bab 1: Aljabar Boolean Andrian Rakhmatsyah Teknik Informatika IT Telkom 2 Referensi Rosen, Kenneth H.,Discrete Mathematic and Its Applications, 4 th edition, McGraw Hill International
Aljabar Boolean. Rudi Susanto
Aljabar Boolean Rudi Susanto Tujuan Pembelajaran Bisa menghasilkan suatu realisasi rangkaian elektronika digital dari suatu persamaan logika matematika Persamaan logika matematika tersebut dimodifikasi
Ada dua macam bentuk kanonik:
Ada dua macam bentuk kanonik: ) Penjumlahan dari hasil kali (sum-of-product atau SOP) 2) Perkalian dari hasil jumlah(product-of-sum atau POS) Contoh:. f(x, y, z) = x y z+ xy z + xyz SOP Setiap suku(term)
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean Yusron Sugiarto Materi Kuliah Rangkaian Logika Ada beberapa operasi-operasi dasar pada suatu rangkaian logika dan untuk
Matematika Logika Aljabar Boolean
Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu
Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012
Bahan Kuliah LOGIKA Aljabar MATEMATIKA- Boolean Priode UTS-UAS DADANG MULYANA dadang mulana 22 ALJABAR BOOLEAN dadang mulana 22 Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan -
09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean.
Prio Handoko, S. Kom., M.T.I. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. George Boole (ahli matematika asal Inggris) Aljabar yang
BAB IV PENYEDERHANAAN RANGKAIAN LOGIKA
B IV PENYEDERHANAAN RANGKAIAN LOGIKA 4. Penyederhanaan Secara Aljabar Bentuk persamaan logika sum of minterm dan sum of maxterm yang diperoleh dari tabel kebenaran umumnya jika diimplementasikan ternyata
Logika Matematika Aljabar Boolean
Pertemuan ke-5 Logika Matematika Aljabar Boolean Oleh : Mellia Liyanthy 1 TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Bentuk Kanonik dan Bentuk baku atau standar Fungsi boolean yang
BAB IV PETA KARNAUGH (KARNAUGH MAPS)
TEKNIK DIGITAL-PETA KARNAUGH/HAL. 1 BAB IV PETA KARNAUGH (KARNAUGH MAPS) PETA KARNAUGH Selain dengan teorema boole, salah satu cara untuk memanipulasi dan menyederhanakan fungsi boole adalah dengan teknik
Gerbang gerbang Logika -5-
Sistem Digital Gerbang gerbang Logika -5- Missa Lamsani Hal 1 Gerbang Logika 3 gerbang dasar adalah : AND OR NOT 4 gerbang turunan adalah : NAND NOR XOR XNOR Missa Lamsani Hal 2 Gerbang NAND (Not-AND)
BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN
A III GERANG LOGIKA DAN ALJAAR OOLEAN 3. Pendahuluan Komputer, kalkulator, dan peralatan digital lainnya kadang-kadang dianggap oleh orang awam sebagai sesuatu yang ajaib. Sebenarnya peralatan elektronika
MAKALAH SISTEM DIGITAL
MAKALAH SISTEM DIGITAL Konsep Dasar Teorema Boole & De Morgan Disusun Oleh : Anin Rodahad (12131307) Abdurrahman Ar-Rohim (12131299) Bayu Ari Utomo () TEKNIK INFORMATIKA STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 --
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 23/24 STMIK Dumai -- Materi 8 -- Digital Principles and Applications, Leach-Malvino, McGraw-Hill Adhi Yuniarto L.Y. Boolean Algebra. Fasilkom
Perancangan Rangkaian Logika. Sintesis Rangkaian Logika
Sintesis Rangkaian Logika Eko Didik Widianto ([email protected]) 21 Maret 2011 Program Studi Sistem Komputer - Universitas Diponegoro Artikel ini menjelaskan secara khusus langkah-langkah sintesis untuk
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C )
5. RANGKAIAN KOMBINASIONAL Pada dasarnya rangkaian logika (digital) yang dibentuk dari beberapa gabungan komponen elektronik yang terdiri dari bermacam-macam Gate dan rangkaian-rangkaian lainnya, sehingga
STUDI METODE QUINE-McCLUSKEY UNTUK MENYEDERHANAKAN RANGKAIAN DIGITAL S A F R I N A A M A N A H S I T E P U
STUDI METODE QUINE-McCLUSKEY UNTUK MENYEDERHANAKAN RANGKAIAN DIGITAL S A F R I N A A M A N A H S I T E P U 0 3 0 8 2 3 0 4 2 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
Output b akan ada aliran arus dari a jika saklar x ditutup dan sebaliknya Output b tidak aliran arus dari a jika saklar x dibuka.
A. TUJUAN : FAKULTAS TEKNIK Semester 5 LOGIKA KOMBINASIONAL 2 4 5 No. LST/EKA/PTE23 Revisi : Tgl : 7-2-2 Hal dari 22 Setelah selesai pembelajaran diharapkan mahasiswa dapat. Menjelaskan kembali prinsip-prinsip
II. TINJAUAN PUSTAKA. disebut vertex, sedangkan E(G) (mungkin kosong) adalah himpunan tak terurut dari
II. TINJAUAN PUSTAKA Definisi 2.1 Graf Graf G adalah suatu struktur (V,E) dengan V(G) himpunan tak kosong dengan elemenelemenya disebut vertex, sedangkan E(G) (mungkin kosong) adalah himpunan tak terurut
Review Sistem Digital : Logika Kombinasional
JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Logika Kombinasional S dan D3 Mata Kuliah : Elektronika Industri 2 5 Lembar Kerja 2. Jaringan Pensaklaran (Switching
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan)
MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan) Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Latihan 1 Simplify the following Boolean functions using Boolean
Pertemuan 10. Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku
Pertemuan Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Fungsi Boolean Pada aljabar Boolean dua-nilai
SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283
SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: [email protected]
Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM :
Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Institut Teknologi Bandung T.tangan: Solusi Kuis ke-2 IF2120 Matematika Diskrit (3 SKS) Relasi dan Fungsi, Aljabar Boolean,
Tabulasi Quine McCluskey
Tabulasi Quine McCluskey Tabulasi Quine McCluskey Penyederhanaan fungsi menggunakan tabulasi atau metode Quine McCluskey. Metode penyederhanaan atau yang sering diesebut dengan metode Quine McCluskey,
BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA)
TEKNIK DIGITAL-ALJABAR Boole/HAL. 1 BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA) PRINSIP DASAR ALJABAR BOOLE Aljabar boole adalah suatu teknik matematika yang dipakai untuk menyelesaikan masalah-masalah logika.
PENERAPAN METODE QUINE-MC CLUSKEY UNTUK MENYEDERHANAKAN FUNGSI BOOLEAN
IJCCS, Vol.x, No.x, Julyxxxx, pp. 1~5ISSN: 1978-1520 PENERAPAN METODE QUINE-MC CLUSKEY UNTUK MENYEDERHANAKAN FUNGSI BOOLEAN Herman Saputra Program Studi Sistem Informasi, STMIK Royal Kisaran Jl. Prof.
1.1.1 BAB I PENDAHULUAN TEORI HIMPUNAN
1.1.1 BAB I PENDAHULUAN TEORI HIMPUNAN 1.1 DEFINISI HIMPUNAN Pengertian Himpunan adalah kumpulan objek yang didefinisikan secara jelas dalam sembarang urutan atau keberurutan objek-objek anggotanya tidak
Aljabar Boolean dan Peta Karnough
Aljabar Boolean dan Peta Karnough a. Logic Function minimization Pada rangkaian yang cukup rumit, kombinasi variable di logic function yang diperoleh dari hasil table kebenaran biasanya pun cukup banyak.
GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE
GERBANG LOGIKA I. KISI-KISI. Gerbang Logika Dasar (AND, OR, NOT, NAND, NOR, EXOR, EXNOR). AStable Multi Vibrator (ASMV) dan MonoStable MultiVibrator (MSMV). BiStable Multi Vibrator (SR-FF, JK-FF, D-FF,
Modul Praktikum. Logika Dasar. Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun:
Daftar Isi Modul Praktikum Logika Dasar Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun: Arif munandar Dinora Refiasari Gandi Laksana Putra Muhammad Saleh Firmansyah Feri Krisnanto Muammar Rizki F.I.
Gerbang dan Rangkaian Logika
Gerbang dan Rangkaian Logika Teknik Digital (TKE 071207) Iwan Setiawan stwn at unsoed.ac.id Pemutakhiran terakhir: 24/04/11 20:51 rangkaian digital beroperasi dalam mode biner. (masukan tegangan bernilai
JUMANTAKA Halaman Jurnal: Halaman LPPM STMIK DCI:
JUMANTAKA Vol 01 No 01 (2018) PISSN: 2613-9138 EISSN : 2613-9146 JUMANTAKA Halaman Jurnal: http://jurnal.stmik-dci.ac.id/index.php/jumantaka/ Halaman LPPM STMIK DCI: http://lppm.stmik-dci.ac.id/ PENYEDERHAAN
BAB I GERBANG LOGIKA DASAR & ALJABAR BOOLEAN
BAB I GERBANG LOGIKA DASAR & ALJABAR BOOLEAN A. Tabel Kebenaran (Truth Table) Tabel kebenaran merupakan tabel yang menunjukkan pengaruh pemberian level logika pada input suatu rangkaian logika terhadap
Kuliah Sistem Digital Aljabar Boolean
Kuliah Sistem Digital Aljabar Boolean 1 Topik 2 Aljabar Boolean Aturan-2 u/ menentukan logika digital, atau `switching algebra Terkait dengan nilai-2 Boolean 0, 1 Nilai sinyal dinyatakan dengan variabel-2
Aplikasi Aljabar Boolean dalam Komparator Digital
Aplikasi Aljabar Boolean dalam Komparator Digital Ade Yusuf Rahardian / 13514079 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
BAB I PENDAHULUAN. Fungsi Boolean seringkali mengandung operasi operasi yang tidak perlu, literal
BAB I PENDAHULUAN 1.1 Latar Belakang Fungsi Boolean seringkali mengandung operasi operasi yang tidak perlu, literal atau suku suku yang berlebihan. Oleh karena itu fungsi Boolean dapat disederhanakan lebih
Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar
Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan
Aljabar Boolean dan Sintesis Fungsi. Logika
dan Sintesis Fungsi dan Sintesis Fungsi Kuliah#3 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro http://didik.blog.undip.ac.id 1 Pengantar dan Sintesis Fungsi Dalam
PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA
PERCOBAAN DIGITAL GERBANG LOGIKA DAN RANGKAIAN LOGIKA .. TUJUAN PERCOBAAN. Mengenal berbagai jenis gerbang logika 2. Memahami dasar operasi logika untuk gerbang AND, NAND, OR, NOR. 3. Memahami struktur
Perancangan Rangkaian Logika. Sintesis Rangkaian Logika
Sintesis Rangkaian Logika Eko Didik Widianto ([email protected]) 21 Maret 2011 Program Studi Sistem Komputer - Universitas Diponegoro Artikel ini menjelaskan secara khusus langkah-langkah sintesis untuk
METODE MC CLUESKEY. Disusun Oleh: Syabrul Majid
METODE MC CLUESKEY Disusun Oleh: Syabrul Majid 131421058 PROGRAM STUDI S1 ILMU KOMPUTER EKSTENSI DEPARTEMEN ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN
RANGKAIAN KOMBINASIONAL
RANGKAIAN KOMBINASIONAL LUH KESUMA WARDHANI JurusanTIF UIN SUSKA Riau LOGIKA KOMBINASI Merupakan jenis rangkaian logika yang keadaan outputnya hanya tergantung dari kombinasi input nya saja. Aljabar Boolean
BAB 2 GERBANG LOGIKA & ALJABAR BOOLE
SISTEM DIGITL 16 2 GERNG LOGIK & LJR OOLE Gerbang Logika (Logical Gates) atau gerbang digital merupakan komponen dasar elektronika digital. erbeda dengan komponen elektronika analog yang mempunyai tegangan
PRAKTIKUM RANGKAIAN DIGITAL
PRAKTIKUM RANGKAIAN DIGITAL RANGKAIAN LOGIKA TUJUAN 1. Memahami berbagai kombinasi logika AND, OR, NAND atau NOR untuk mendapatkan gerbang dasar yang lain. 2. Menyusun suatu rangkaian kombinasi logika
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II
No. LST/EKO/DEL 214/02 Revisi : 04 Tgl : 1 Februari 2012 Hal 1 dari 8 1. Kompetensi Memahami Product hukum aljabar Boolean termasuk hukum De Morgan, dan prinsip Sum of 2. Sub Kompetensi Memahami penerapan
a + b B a + b = b + a ( ii) a b = b. a
A ljabar Boolean M isalkan terdapat - Dua operator biner: + dan - S ebuah operator uner:. - B : himpunan ang didefinisikan pada opeartor +,, dan - dan adalah dua elemen ang berbeda dari B. T upel (B, +,,
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan.
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan. Pada aljabar Boolean terdapat hukum-hukum aljabar Boolean yang memungkinkan
Rangkaian digital yang ekivalen dengan persamaan logika. Misalnya diketahui persamaan logika: x = A.B+C Rangkaiannya:
ALJABAR BOOLEAN Aljabar Boolean Aljabar Boolean adalah aljabar yang menangani persoalan-persoalan logika. Aljabar Boolean menggunakan beberapa hukum yang sama seperti aljabar biasa untuk fungsi OR (Y =
Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan:
Peta Karnaugh Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan: Tabel kebenaran yang menggambarkan bagaimana sebuah sistem digital harus bekarja Perancangan sistem
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Brown, Vranesic (2005) Tocci, Widmer, Moss (2007)
Himpunan adalah kumpulan objek objek yang berbeda (Liu, 1986)
BAB I TEORI HIMPUNAN 1.1 Dasar dasar Teori Himpunan Definisi : Himpunan adalah kumpulan objek objek yang berbeda (Liu, 1986) Biasanya dinotasikan dengan huruf besar. Dan objek yang berada di dalamnya disebut
Soal Latihan Bab Tentukanlah kompelemen 1 dan kompelemen 2 dari bilangan biner berikut:
1 Soal Latihan Bab 1 1. Nyatakanlah bilangan-bilangan desimal berikut dalam sistem bilangan: a. Biner, b. Oktal, c. Heksadesimal. 5 11 38 1075 35001 0.35 3.625 4.33 2. Tentukanlah kompelemen 1 dan kompelemen
Ungkapan Boolean dan Aljabar Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Ungkapan Boolean dan Aljabar Boolean Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Ungkapan Boolean Ungkapan Boolean terdiri dari Contoh Literal variabel dan komplemennya Operasi Logika F = A.B'.C + A'.B.C'
BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU
Buku Panduan Belajar atematika Diskrit STIK TRIGUNA DHARA BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU 9.1 Fungsi Boolean Pada aljabar Boolean dua-nilai B = {,1}. Peubah (variabel) x disebut peubah
IMPLEMENTASI PETA KARNOUGH UNTUK MENYELESAIKAN SUATU MASALAH DALAM KEHIDUPAN SEHARI-HARI
Techno.COM, Vol. 13, No. 4, November 2014: 238-244 IMPLEMENTASI PETA KARNOUGH UNTUK MENYELESAIKAN SUATU MASALAH DALAM KEHIDUPAN SEHARI-HARI Sripurwani Hariningsih 1, Erna Zuni Astuti 2, Setia Astuti 3
Implementasi Greedy Dalam Menemukan Rangkaian Logika Minimal Menggunakan Karnaugh Map
Implementasi Greedy Dalam Menemukan Rangkaian Logika Minimal Menggunakan Karnaugh Map Aldy Wirawan 13511035 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Pertemuan ke-4 ALJABAR BOOLEAN I
Pertemuan ke-4 ALJABAR BOOLEAN I Materi Perkuliahan a. Pengertian Aljabar Boolean b. Ekspresi Boolean c Prinsip Dualitas Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami
DIKTAT SISTEM DIGITAL
DIKTAT SISTEM DIGITAL Di Susun Oleh: Yulianingsih Fitriana Destiawati UNIVERSITAS INDRAPRASTA PGRI JAKARTA 2013 DAFTAR ISI BAB 1. SISTEM DIGITAL A. Teori Sistem Digital B. Teori Sistem Bilangan BAB 2.
Kuliah#5 TKC205 Sistem Digital. Eko Didik Widianto
& & Kuliah#5 TKC205 Sistem Digital Eko Didik Departemen Teknik Sistem Komputer, Universitas Diponegoro http://didik.blog.undip.ac.id/buku/sistem-digital/ 1 Umpan Balik & Sebelumnya dibahas tentang: penyederhanaan
GERBANG dan ALJABAR BOOLE
GERBNG dan LJBR BOOLE Konsep dasar aljabar Boole (Boolean lgebra) telah diletakkan oleh seorang matematisi Inggeris George Boole, pada tahun 1854. Konsep dasar itu membutuhkan waktu yang cukup lama untuk
MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL
MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL YAYASAN SANDHYKARA PUTRA TELKOM SMK TELKOM SANDHY PUTRA MALANG 2008 RENCANA PELAKSANAAN PEMBELAJARAN MODUL IV ALJABAR BOOLE & RANGKAIAN
Kuliah#3 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto
,, Kuliah#3 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro , Sebelumnya dibahas tentang konsep rangkaian logika: Representasi biner dan saklar sebagai elemen
Perancangan Sistem Digital. Yohanes Suyanto
Perancangan Sistem Digital 2009 Daftar Isi 1 SISTEM BILANGAN 1 1.1 Pendahuluan........................... 1 1.2 Nilai Basis............................. 2 1.2.1 Desimal.......................... 2 1.2.2
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJABAR BOOLEAN
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJAAR OOLEAN Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan
8 June 2011 MATEMATIKA DISKRIT 2
MisalkanterdapatDuaoperator biner: + dan Sebuah operator uner:. B: himpunanyang didefinisikanpadaoperator +,, dan dan1 adalahduaelemenyang berbedadarib. Tupel(B, +,, ) disebutaljabarbooleanjika untuksetiapa,
Penyederhanaan Fungsi Logika [Sistem Digital] Eka Maulana, ST, MT, MEng. Universitas Brawijaya
Penyederhanaan Fungsi Logika [Sistem Digital] Eka Maulana, ST, MT, MEng. Universitas Brawijaya Mengapa perlu Penyederhanaan? SEDERHANA Cheaper Smaller Faster Diperlukan MANIPULASI ALJABAR BOOLE Metode:
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 Outline Penjelasan tiga operasi logika dasar dalam sistem digital. Penjelasan Operasi dan Tabel Kebenaran logika AND, OR, NAND, NOR
63 ISSN: (Print), (Online)
Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-Mc Cluskey Wahyu Nugraha Program Studi Manajemen Informatika, AMIK BSI Pontianak [email protected] ABSTRACT - Three way to
