Representasi Boolean
|
|
|
- Sukarno Atmadja
- 7 tahun lalu
- Tontonan:
Transkripsi
1 Aljabar Boolean Boolean Variable dan Tabel Kebenaran Gerbang Logika Aritmatika Boolean Identitas Aljabar Boolean Sifat-sifat Aljabar Boolean Aturan Penyederhanaan Boolean Fungsi Eksklusif OR Teorema De Morgan Konversi Table Kebenaran ke Aljabar Boolean
2 Representasi Boolean Representasi Boolean Variable dan Konstanta Boolean Tabel Kebenaran (Truth Table)
3 Operasi Dasar Gerbang OR (Operasi OR) Gerbang AND (Operasi AND) Gerbang NOT (Operasi NOT)
4 Aljabar Boolean Sifat-sifat Aljabar Boolean Identitas Aljabar Boolean Penyederhanaan Rangkaian Teorema De Morgan
5 Variable Boolean dan Tabel Kebenaran
6 Representasi Boolean Logic 0 Logic 1 False True Off On Low High No Yes Open Switch Close Switch
7 Variable Boolean Binary 0: besar tegangan antara 0 0,8 volt Binary 1: besar tegangan antara 2 5 volt Not used: besar tegangan antara 0,8 2 volt Not used dapat mengakibatkan error Nilai boolean 0 dan 1 tidak merepresentasikan nilai sebenarnya hanya merepresentasikan keadaan sebuah variabel tegangan
8 Tabel Kebenaran Tabel kebenaran fungsinya memberikan gambaran hubungan output suatu rangkaian digital terhadap kombinasi input yang diberikan Terdapat semua kombinasi input yang mungkin (dari variable A dan B) dengan level keadaan output yang berkesesuaian
9 Logic Gates
10 Gerbang OR (operasi OR) Pernyataan: X=A+B X sama dengan A or B Tanda + operasi or tidak memilki arti yang sama dengan aljabar penjumlahan
11 Gerbang AND (operasi AND) Pernyataan: X=A*B X sama dengan A and B
12 Gerbang (operasi) NOT
13 Gerbang (operasi) NOR
14 Gerbang (operasi) NAND
15 Aritmatika Boolean (1) Dengan menambahkan bilangan-bilangan biner, diperoleh: 0+0=0 0+1=1 1+0=1 1+1=1
16 Aritmatika Boolean (3) Pejumlahan boolean ekuivalen dengan gerbang OR
17 Aritmatika Boolean (4) Perkalian dalam aljabar boolean, 0x0=0 0x1=0 1x0=0 1x1=1
18 Aritmatika Boolean (5) Perkalian dalam aljabar boolean dan gerbang AND
19 Aritmatika Boolean (6) Seperti aljabar pada umumnya, aljabar boolean menggunakan huruf untuk merepresentasikan sebuah variable. Aljabar boolean menggunakan huruf CAPITAL Karena hanya memiliki dua kemungkinan nilai, yaitu 0 dan 1, maka setiap variable boolean memiliki komplementnya. Komplement ditandai dengan bar atau tanda petik tunggal yang dituliskan di atas sebuah variable boolean JikaA 0, maka A 1, atau A' 1 Jika A 1, maka A 0, atau A' 0
20 Aritmatika Boolean (7) Komplement boolean ekuivalen dengan gerbang NOT
21 Identitas Aljabar Boolean (1) Penjumlahan Dalam istilah matematika, identitas adalah sebuah pernyataan bernilai benar untuk semua kemungkinan nilai variable.
22 Identitas Aljabar Boolean (2) Penjumlahan Identitas 1 aljabar boolean adalah: Penjumlahan sebuah variable dengan 0 sama dengan nilai variable itu sendiri
23 Identitas Aljabar Boolean (3) Penjumlahan Identitas berikutnya merupakan identitas yang sangat berbeda dengan identitas aljabar aritmatika, yaitu Penjumlahan sebuah variable dengan 1 akan selalu menghasilkan nilai 1.
24 Identitas Aljabar Boolean (4) Penjumlahan sebuah variable ditambahkan denga variable itu sendiri akan menghasilkan nilai yang sama dengan nilai variable tersebut.
25 Identitas Aljabar Boolean (5) Penjumlahan Identitas berikut ini berhubungan dengan sifat komplement bilangan biner, yaitu Sebuah variable ditambahkan dengan komplement variable tersebut
26 Identitas Aljabar Boolean (6) Perkalian Terdapat juga empat identitas untuk perkalian aljabar boolean, yaitu: A x 0, A x 1, A x A, and A x A
27 Identitas Aljabar Boolean (7) Perkalian Identitas I: Identitas II:
28 Identitas Aljabar Boolean (8) Perkalian Identitas III:
29 Identitas Aljabar Boolean (9) Perkalian Identitas IV:
30 Identitas Aljabar Boolean (10) Identitas penjumlahan dan perkalian dalam aljabar boolean dapat dirangkum sebagai berikut: Identitas Dasar Aljabar Boolean Penjumlahan A + 0 = A A + 1 = 1 A + A = A A + A = 1 Perkalian 0A=0 1A=A AA=A AA=0
31 Sifat-sifat Aljabar Boolean (1) Jenis lain dari sebuah identitas dalam istilah matematika adalah sifat atau hukum (aturan) Sifat-sifat (hukum-hukum) aljabar boolean adalah: Kamutatif, asosiatif, dan distributif
32 Sifat-sifat Aljabar Boolean (2) Sifat komutatif
33 Sifat-sifat Aljabar Boolean (3) Sifat asosiatif penjumlahan Sifat asosiatif perkalian
34 Sifat-sifat Aljabar Boolean (4) Sifat berikutnya adalah distributif,
35 Sifat-sifat Aljabar Boolean (5) Sifat-sifat aljabar boolean dapat dirangkum sebagai berikut: Sifat-sifat Dasar Aljabar Boolean Penjumlahan A + B = B + A A + ( B + C ) = ( A + B ) + C A ( B + C ) = AB + AC Perkalian AB = BA A(BC) = (AB)C
36 Aturan Penyederhanaan Aljabar Boolean (1) Dengan menggunakan identitas dan sifat aljabar boolen dapat digunakan untuk menyederhanakan persamaan aljabar boolean yang lebih kompleks
37 Aturan Penyederhanaan Aljabar Boolean (2) Contoh: sederhanakanlah A+AB
38 Aturan Penyederhanaan Aljabar Boolean (3) Aturan ini dapat dibuktikan dengan langkah-langkah: Faktorkan A, terapkan identitas A + 1 = 1, dan terapkan identitas 1A=A Perhatikan: identitas A + 1 =1 digunakan untuk mereduksi (1 + B) = 1. Dengan demikian dapat disimpulkan ABC + 1 juga akan menghasilkan nilai 1 dengan menggunakan identitas tersebut
39 Aturan Penyederhanaan Aljabar Boolean (4) Contoh: sederhanakanlah A+A B
40 Aturan Penyederhanaan Aljabar Boolean (5) Untuk membuktikan aturan penyederhanaan di atas dilakukan dengan cara: A diekspand, faktorkan B, gunakan identitas A + A = 1, dan gunakan identitas 1A = A Perhaitkan bahwa (A+AB) digunakan untuk mengekspand A menjadi A+AB. Langkah ini disebut backward. Kadang kala di dalam matematika, langkah backward diperlukan untuk memperoleh solusi yang baik.
41 Aturan Penyederhanaan Aljabar Boolean (6) Aturan penyederhaan pada contoh berikut melibatkan sifat distributif Sederhanakan: (A+B)(A+C)
42 Aturan Penyederhanaan Aljabar Boolean (7) Bukti aturan penyederhaan di atas adalah: Langkah-langkahnya adalah: -Distribusikan -Gunakan identitas AA = A -Gunakan aturan A + AB = A untuk mereduksi A + AC -Gunakan aturan A + AB = A untuk mereduksi A + AB
43 Aturan Penyederhanaan Aljabar Boolean (8) Beberapa aturan penyederhanaan dapat dirangkum sebagai berikut: Aturan Penyederhanaan yang Sering Digunakan A + AB = A A + AB = A + B (A + B)(A + C) = A + BC
44 Fungsi Eksklusif OR (1) Selain fungsi-fungsi yang telah dibahas, terdapat fungsi yang cukup penting adalah fungsi eksklusif OR Jika fungsi OR ekuivalen dengan aljabar penjumlahan, fungsi AND ekuivalen dengan aljabar perkalian dan fungsi NOT ekuivalen dengan aljabar kompelementer, maka untuk fungsi Eksklusif OR tidak ada tidak ada ekuivalen secara langsung
45 Fungsi Eksklusif OR (2) Fungsi eksklusif OR (XOR) direpresentasikan dengan simbol: Fungsi tersebut: A B ekuivalen dengan AB +A B
46 Fungsi Eksklusif OR (3) Dalam bentuk rangkaian, Ekuivalensi aljabar boolean ini sangat membantu dalam proses penyederhanaan rangkaian: Suatu pernyataan boolean yang berbentuk AB +A B ( atau sebuah rangkain yang terdiri dari dua gerbang AND dan sebuah gerbang OR) dapat diwakili oleh A B (atau gerbang XOR
47 Aturan De Morgan (1) Jika semua input suatu gerbang AND diinvers, maka fungsi gerbang tersebut sama seperti fungsi gerbang NOR Jika semua input suatu gerbang OR diinvers, maka fungsi gerbang tersebut sama seperti fungsi gerbang NAND Aturan De Morgan memiliki prinsip yang sama, tetapi yang diinvers adalah outputnya.
48 Aturan De Morgan (2) Contoh ekuivalensi De Morgan:
49 Teorema De Morgan (1) Teorema De Morgan dapat diilustrasikan sebagai pemisah simbol bar yang panjang,
50 Teorema De Morgan (2) Jika terdapat lebih dari satu bar untuk suatu variable (atau beberapa variable), pemisahan bar hanya boleh dilakukan satu per satu Untuk mempermudah penyederhanaan rangkaian, pemisahan bar dilakukan pertama kali untuk bar paling panjag (paling atas)
51 Teorema De Morgan (3) Sebagai ilustrasi, misal sebuah pernyataan boolean: (A + (BC)) Disederhanakan menggunakan aturan de Morgan
52 Alternative Representasi
53 Sederhanakan Rangkaian ini:
54 Teorema De Morgan (4) Latihan: Sederhanakan rangkaian berikut ini menggunakan teorema demorgan
55 Teorema De Morgan (5) Latihan:
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S AGENDA SISTEM BILANGAN DESIMAL, BINER, OCTAL, HEXADESIMAL DEFINISI ALJABAR BOOLEAN TABEL KEBENARAN ALJABAR BOOLEAN
I. Judul Percobaan Rangkaian Gerbang Logika dan Aljabar Boolean
I. Judul Percobaan Rangkaian Gerbang Logika dan Aljabar Boolean II. Tujuan Percobaan 1. Praktikan memahami antara input dan output pada rangkaian logika AND, OR, NOT, XOR, NAND, NOR dan XNOR. 2. Praktikan
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJABAR BOOLEAN
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJAAR OOLEAN Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan
Definisi Aljabar Boolean
Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf
LAPORAN PRAKTIKUM SISTEM DIGITAL PEMBUKTIAN DALIL-DALIL ALJABAR BOOLEAN
LAPORAN PRAKTIKUM SISTEM DIGITAL PEMBUKTIAN DALIL-DALIL ALJABAR BOOLEAN Dosen Pengampu : Shoffin Nahwa Utama, M.T. Disusun Oleh: MUHAMMAD IBRAHIM NIM : 362015611040 FAKULTAS SAINS DAN TEKNOLOGI TEKNIK
BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA)
TEKNIK DIGITAL-ALJABAR Boole/HAL. 1 BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA) PRINSIP DASAR ALJABAR BOOLE Aljabar boole adalah suatu teknik matematika yang dipakai untuk menyelesaikan masalah-masalah logika.
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 Outline Penjelasan tiga operasi logika dasar dalam sistem digital. Penjelasan Operasi dan Tabel Kebenaran logika AND, OR, NAND, NOR
GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE
I. KISI-KISI 1. Sistem Digital dan Sistem Analog 2. Sistem Bilangan Biner 3. Konversi Bilangan 4. Aljabar Boole II. DASAR TEORI GERBANG LOGIKA Sistem elektronika sekarang ini masih mengandalkan bahan semikonduktor
Rangkaian digital yang ekivalen dengan persamaan logika. Misalnya diketahui persamaan logika: x = A.B+C Rangkaiannya:
ALJABAR BOOLEAN Aljabar Boolean Aljabar Boolean adalah aljabar yang menangani persoalan-persoalan logika. Aljabar Boolean menggunakan beberapa hukum yang sama seperti aljabar biasa untuk fungsi OR (Y =
LAB #1 DASAR RANGKAIAN DIGITAL
LAB #1 DASAR RANGKAIAN DIGITAL TUJUAN 1. Untuk mempelajari operasi dari gerbang logika dasar. 2. Untuk membangun rangkaian logika dari persamaan Boolean. 3. Untuk memperkenalkan beberapa konsep dasar dan
PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA
PERCOBAAN DIGITAL GERBANG LOGIKA DAN RANGKAIAN LOGIKA .. TUJUAN PERCOBAAN. Mengenal berbagai jenis gerbang logika 2. Memahami dasar operasi logika untuk gerbang AND, NAND, OR, NOR. 3. Memahami struktur
BAB 7 PENYEDERHANAAN
BAB 7 PENYEDERHANAAN 1. Pendahuluan Bab ini membahaspenggunaan hukum-hukum logika pada operasi logika yang dinamakan penyederhaan (simplifying). Berbagai macam ekuivalensi dari berbagai ekpresi logika
Aljabar Boolean. Rudi Susanto
Aljabar Boolean Rudi Susanto Tujuan Pembelajaran Bisa menghasilkan suatu realisasi rangkaian elektronika digital dari suatu persamaan logika matematika Persamaan logika matematika tersebut dimodifikasi
PRAKTIKUM RANGKAIAN DIGITAL
PRAKTIKUM RANGKAIAN DIGITAL RANGKAIAN LOGIKA TUJUAN 1. Memahami berbagai kombinasi logika AND, OR, NAND atau NOR untuk mendapatkan gerbang dasar yang lain. 2. Menyusun suatu rangkaian kombinasi logika
MODUL 3 GERBANG LOGIKA DASAR
MODUL 3 GERBANG LOGIKA DASAR A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN. Tema : Gerbang Logika Dasar 2. Fokus Pembahasan Materi Pokok :. Definisi Gerbang Logika Dasar 2. Gerbang-gerbang Logika Dasar 3. Tujuan
BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA
BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA Alokasi Waktu : 8 x 45 menit Tujuan Instruksional Khusus : 1. Mahasiswa dapat menjelaskan theorema dan sifat dasar dari aljabar Boolean. 2. Mahasiswa dapat menjelaskan
BAB 2 GERBANG LOGIKA & ALJABAR BOOLE
SISTEM DIGITL 16 2 GERNG LOGIK & LJR OOLE Gerbang Logika (Logical Gates) atau gerbang digital merupakan komponen dasar elektronika digital. erbeda dengan komponen elektronika analog yang mempunyai tegangan
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan.
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan. Pada aljabar Boolean terdapat hukum-hukum aljabar Boolean yang memungkinkan
Tabel kebenaran untuk dua masukan (input) Y = AB + AB A B Y
G.Gerbang X-OR dan Gerbang X-NOR 1. Gerbang X-OR dalah komponen logika yang keluarannya bernilai 1 bila terminal masukannya tidak sama, atau dengan persamaan ditulis : Y = + Simbol gerbang X-OR untuk dua
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 --
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 23/24 STMIK Dumai -- Materi 8 -- Digital Principles and Applications, Leach-Malvino, McGraw-Hill Adhi Yuniarto L.Y. Boolean Algebra. Fasilkom
X = A Persamaan Fungsi Gambar 1. Operasi NOT
No. LST/EKO/DEL 214/01 Revisi : 01 Tgl : 1 Februari 2010 Hal 1 dari 8 1. Kompetensi Memahami cara kerja gerbang logika dasar dan gerbang perluasan logika dasar 2. Sub Kompetensi - Membuat rangkaian dengan
Aljabar Boolean dan Gerbang Logika Dasar
Modul 1 : Aljabar Boolean dan Gerbang Logika Dasar 1.1 Tujuan Setelah mengikuti praktek ini mahasiswa diharapkan dapat: 1. Memahami Aksioma dan Teorema Aljabar Boolean. 2. Memahami gerbang logika dasar
LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR)
LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR) Diajukan untuk memenuhi salah satu tugas mata kuliah Elektronika Lanjut Dosen Pengampu : Ahmad Aminudin, M.Si Oleh : Aceng Kurnia Rochmatulloh (1305931)
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II
No. LST/EKO/DEL 214/02 Revisi : 04 Tgl : 1 Februari 2012 Hal 1 dari 8 1. Kompetensi Memahami Product hukum aljabar Boolean termasuk hukum De Morgan, dan prinsip Sum of 2. Sub Kompetensi Memahami penerapan
TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1
TEORI DASAR DIGITAL Leterature : (1) Frank D. Petruzella, Essentals of Electronics, Singapore,McGrraw-Hill Book Co, 1993, Chapter 41 (2) Ralph J. Smith, Circuit, Devices, and System, Fourth Edition, California,
Organisasi & Arsitektur Komputer
Organisasi & Arsitektur Komputer 1 Logika Digital Eko Budi Setiawan, S.Kom., M.T. Eko Budi Setiawan [email protected] www.ekobudisetiawan.com Teknik Informatika - UNIKOM 2013 Pendahuluan Gerbang
BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN
A III GERANG LOGIKA DAN ALJAAR OOLEAN 3. Pendahuluan Komputer, kalkulator, dan peralatan digital lainnya kadang-kadang dianggap oleh orang awam sebagai sesuatu yang ajaib. Sebenarnya peralatan elektronika
09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean.
Prio Handoko, S. Kom., M.T.I. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. George Boole (ahli matematika asal Inggris) Aljabar yang
MATERI 2 COMBINATIONAL LOGIC
Pengantar : :. MATERI 2 COMBINATIONAL LOGIC Rangkaian digital adalah mrp komponen perangkat keras (hardware) yang memanipulasi informasi biner. Rangkaian diimplementasikan dengan menggunakan transistor-transistor
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean Yusron Sugiarto Materi Kuliah Rangkaian Logika Ada beberapa operasi-operasi dasar pada suatu rangkaian logika dan untuk
Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C )
5. RANGKAIAN KOMBINASIONAL Pada dasarnya rangkaian logika (digital) yang dibentuk dari beberapa gabungan komponen elektronik yang terdiri dari bermacam-macam Gate dan rangkaian-rangkaian lainnya, sehingga
4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar. Gambar 4.1 Rangkaian logika dengan ekspresi Booleannya
BAB IV ALJABAR BOOLEAN 4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar Setiap rangkaian logika, bagaimanapun kompleksnya, dapat diuraikan secara lengkap dengan menggunakan operasi-operasi Boolean
ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya
ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya Disusun Oleh : Indra Gustiaji Wibowo (233) Kelas B Dosen Hidayatulah Himawan,ST.,M.M.,M.Eng JURUSAN TEKNIK INFORMATIKA
Definisi Aljabar Boolean
1 UNTUK DOWNLOAD LEBIH BANYAK EBOOKS TENTANG KOMPUTER KUNJUNGI http://wirednotes.blogspot.com Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner: - B : himpunan
TEORI DASAR DIGITAL (GERBANG LOGIKA)
#14 TEORI DSR DIGITL (GERNG LOGIK) Gerbang logika dapat didefinisikan sebagai peralatan yang dapat menghasilkan suatu output hanya bila telah ditentukan sebelumnya kondisi input yang ada. Dalam hal ini
TEORI DASAR DIGITAL (GERBANG LOGIKA)
#14 TEORI DSR DIGITL (GERNG LOGIK) Gerbang logika dapat didefinisikan sebagai peralatan yang dapat menghasilkan suatu output hanya bila telah ditentukan sebelumnya kondisi input yang ada. Dalam hal ini
BAB III RANGKAIAN LOGIKA
BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya.
Tugas! (Materi Aljabar Boolean). Gambarkan jaringan switching yang dinyatakan dengan polinominal Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya, kapan jaringan tsb on atau off.
Rangkaian Logika. Kuliah#2 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto. Teknik Sistem Komputer - Universitas Diponegoro.
Kuliah#2 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Tentang Kuliah Sebelumnya dibahas tentang: Deskripsi, tujuan, sasaran dan materi kuliah TSK205 Sistem
Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012
Bahan Kuliah LOGIKA Aljabar MATEMATIKA- Boolean Priode UTS-UAS DADANG MULYANA dadang mulana 22 ALJABAR BOOLEAN dadang mulana 22 Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan -
Gerbang dan Rangkaian Logika
Gerbang dan Rangkaian Logika Teknik Digital (TKE 071207) Iwan Setiawan stwn at unsoed.ac.id Pemutakhiran terakhir: 24/04/11 20:51 rangkaian digital beroperasi dalam mode biner. (masukan tegangan bernilai
Gerbang gerbang Logika -5-
Sistem Digital Gerbang gerbang Logika -5- Missa Lamsani Hal 1 Gerbang Logika 3 gerbang dasar adalah : AND OR NOT 4 gerbang turunan adalah : NAND NOR XOR XNOR Missa Lamsani Hal 2 Gerbang NAND (Not-AND)
PENDAHULUAN SISTEM DIGITAL
PENDAHULUAN SISTEM DIGITAL a. Representation of Logic Function Sejarah sampai terbentuknya Logic function Pada awalnya saat ingin membuat suatu rangkaian, komponen-komponen yang ada harus dirangkai, kemudian
RANGKAIAN KOMBINASIONAL
RANGKAIAN KOMBINASIONAL LUH KESUMA WARDHANI JurusanTIF UIN SUSKA Riau LOGIKA KOMBINASI Merupakan jenis rangkaian logika yang keadaan outputnya hanya tergantung dari kombinasi input nya saja. Aljabar Boolean
Definisi Aljabar Boolean
Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
Sistem Digital. Dasar Digital -4- Sistem Digital. Missa Lamsani Hal 1
Sistem Digital Dasar Digital -4- Missa Lamsani Hal 1 Materi SAP Gerbang-gerbang sistem digital sistem logika pada gerbang : Inverter Buffer AND NAND OR NOR EXNOR Rangkaian integrasi digital dan aplikasi
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi komputer telah membuat ruang batas perangkat lunak dan perangkat keras semakin sempit. Komputer sebagai sistem tidak dapat dipahami tanpa memahami
ALJABAR BOLEAN. Hukum hukum ALjabar Boolean. 1. Hukum Komutatif
LJBR BOLEN Diktat Elektronika Digital ljabar Boolean Dalam matematika dan ilmu komputer, ljabar Boolean adalah struktur aljabar yang "mencakup intisari" operasi logika DN, TU dan TIDK dan juga teori himpunan
BAB IV : RANGKAIAN LOGIKA
BAB IV : RANGKAIAN LOGIKA 1. Gerbang AND, OR dan NOT Gerbang Logika adalah rangkaian dengan satu atau lebih dari satu sinyal masukan tetapi hanya menghasilkan satu sinyal berupa tegangan tinggi atau tegangan
MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA
MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA YAYASAN SANDHYKARA PUTRA TELKOM SMK TELKOM SANDHY PUTRA MALANG 28 MODUL III GERBANG LOGIKA & RANGKAIAN KOMBINASIONAL Mata Pelajaran : Teknik Digital Kelas
BAB V GERBANG LOGIKA DAN ALJABAR BOOLE
V GERNG LOGIK DN LJR OOLE Pendahuluan Gerbang logika atau logic gate merupakan dasar pembentukan system digital. Gerbang ini tidak perlu kita bangun dengan pengkawatan sebab sudah tersedia dalam bentuk
GERBANG GERBANG LOGIKA
GERBANG GERBANG LOGIKA Gerbang-gerbang logika atau dapat juga dinamai rangkaian pintu (gate circuits). Gerbang-gerbang logika ini banyak sekali penerapannya di dunia industri terutama yang digunakan dalam
BAB III RANGKAIAN LOGIKA
BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau 1 (rendah atau tinggi).
Aljabar Boolean. Bahan Kuliah Matematika Diskrit
Aljabar Boolean Bahan Kuliah Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN
I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product
GERBANG UNIVERSAL. I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran
GERBANG UNIVERSAL I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran II. PENDAHULUAN Gerbang universal adalah salah satu gerbang dasar yang dirangkai sehingga menghasilkan
BAHAN AJAR SISTEM DIGITAL
BAHAN AJAR SISTEM DIGITAL JURUSAN TEKNOLOGI KIMIA INDUSTRI PENDIDIKAN TEKNOLOGI KIMIA INDUSTRI MEDAN Disusun oleh : Golfrid Gultom, ST Untuk kalangan sendiri 1 DASAR TEKNOLOGI DIGITAL Deskripsi Singkat
Matematika Logika Aljabar Boolean
Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu
Definisi Gerbang Logika
SISTEM DIGITAL 1 Pendahuluan Seperti kita ketahui, mesin-mesin digital hanya mampu mengenali dan mengolah data yang berbentuk biner. Dalam sistem biner hanya di ijinkan dua keadaan yang tegas berbeda.
Sistem Digital. Sistem Angka dan konversinya
Sistem Digital Sistem Angka dan konversinya Sistem angka yang biasa kita kenal adalah system decimal yaitu system bilangan berbasis 10, tetapi system yang dipakai dalam computer adalah biner. Sistem Biner
Bentuk Standar Ungkapan Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Bentuk Standar Ungkapan Boolean Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Bentuk Standar Ungkapan Boolean Sum-of-Product (SOP) Diturunkan dari tabel kebenaran untuk fungsi dengan mempertimbangkan baris
TI 2013 IE-204 Elektronika Industri & Otomasi UKM
TI 23 IE-24 Elektronika Industri & Otomasi UKM Lampiran C Aljabar Boolean Tupel Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan ang didefinisikan pada operaror +,,
Gerbang logika dasar: AND, OR, NOT, NAND dan NOR
K O N S E P R A N G K A I A N L O G I K A 1 Sistem digital dapat dimodelkan ke dalam rangkaian logika. Rangkaian logika ini mempunyai satu atau lebih masukan dan satu atau/lebih keluaran. Rangkaian logika
Aljabar Boolean. Matematika Diskrit
Aljabar Boolean Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua
Gerbang Logika. Input (A) Output (Y) 0 (Rendah) 1 (Tinggi) Tinggi (1) Rendah (0) Tabel Kebenaran/Logika Inverter
Gerbang Logika Apa itu gerbang logika? Gerbang Logika adalah rangkaian dengan satu atau lebih dari satu sinyal masukan tetapi hanya menghasilkan satu sinyal berupa tegangan tinggi atau tegangan rendah.
Mengenal Gerbang Logika (Logic Gate)
Mengenal Gerbang Logika (Logic Gate) Anjar Syafari [email protected] http://ansitea.blogspot.com Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan
Logika Matematika Aljabar Boolean
Pertemuan ke-5 Logika Matematika Aljabar Boolean Oleh : Mellia Liyanthy 1 TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Bentuk Kanonik dan Bentuk baku atau standar Fungsi boolean yang
RANGKAIAN LOGIKA DISKRIT
RANGKAIAN LOGIKA DISKRIT Materi 1. Gerbang Logika Dasar 2. Tabel Kebenaran 3. Analisa Pewaktuan GERBANG LOGIKA DASAR Gerbang Logika blok dasar untuk membentuk rangkaian elektronika digital Sebuah gerbang
Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1
Aljabar Boolean Rinaldi Munir/IF25 Mat. Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
Perancangan Sistem Digital. Yohanes Suyanto
Perancangan Sistem Digital 2009 Daftar Isi 1 SISTEM BILANGAN 1 1.1 Pendahuluan........................... 1 1.2 Nilai Basis............................. 2 1.2.1 Desimal.......................... 2 1.2.2
ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013
Penyusun :. Imam Purwanto, S.Kom, MMSI 2. Ega Hegarini, S.Kom., MM 3. Rifki Amalia, S.Kom., MMSI 4. Arie Kusumawati, S.Kom ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma
Hanif Fakhrurroja, MT
Pertemuan 3 Organisasi Komputer Logika Digital Hanif Fakhrurroja, MT PIKSI GNESH, 2013 Hanif Fakhrurroja @hanifoza [email protected] http://hanifoza.wordpress.com Pendahuluan Hanif Fakhrurroja, 2013 http://hanifoza.wordpress.com
Pertemuan ke-4 ALJABAR BOOLEAN I
Pertemuan ke-4 ALJABAR BOOLEAN I Materi Perkuliahan a. Pengertian Aljabar Boolean b. Ekspresi Boolean c Prinsip Dualitas Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami
Matematika informatika 1 ALJABAR BOOLEAN
Matematika informatika 1 ALJABAR BOOLEAN ALJABAR BOOLEAN Matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II
No. LST/EKO/DEL 214/02 Revisi : 04 Tgl : 1 Februari 2012 Hal 1 dari 8. Kompetensi Memahami hukum aljabar oolean termasuk hukum De Morgan, dan prinsip Sum of Product. Sub Kompetensi 1. Memahami penerapan
ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL
ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL Oleh : Kelompok 3 I Gede Nuharta Negara (1005021101) Kadek Dwipayana (1005021106) I Ketut Hadi Putra Santosa (1005021122) Sang Nyoman Suka Wardana (1005021114) I
Aljabar Boolean dan Peta Karnough
Aljabar Boolean dan Peta Karnough a. Logic Function minimization Pada rangkaian yang cukup rumit, kombinasi variable di logic function yang diperoleh dari hasil table kebenaran biasanya pun cukup banyak.
Rangkaian Logika. Kuliah#2 TKC205 Sistem Digital - TA 2013/2014. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro
Kuliah#2 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro http://didik.blog.undip.ac.id 1 Tentang Kuliah Sebelumnya dibahas tentang: Deskripsi, tujuan, sasaran dan
MODUL I GERBANG LOGIKA
MODUL PRAKTIKUM ELEKTRONIKA DIGITAL 1 MODUL I GERBANG LOGIKA Dalam elektronika digital sering kita lihat gerbang-gerbang logika. Gerbang tersebut merupakan rangkaian dengan satu atau lebih dari satu sinyal
MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL
MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL YAYASAN SANDHYKARA PUTRA TELKOM SMK TELKOM SANDHY PUTRA MALANG 2008 RENCANA PELAKSANAAN PEMBELAJARAN MODUL IV ALJABAR BOOLE & RANGKAIAN
BAB V RANGKAIAN ARIMATIKA
BAB V RANGKAIAN ARIMATIKA 5.1 REPRESENTASI BILANGAN NEGATIF Terdapat dua cara dalam merepresentasikan bilangan biner negatif, yaitu : 1. Representasi dengan Tanda dan Nilai (Sign-Magnitude) 2. Representasi
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2012/2013 STMIK Dumai -- Materi This presentation is revised by HA
Mata Kuliah rsitektur Komputer Program Studi Sistem Informasi 2012/2013 STMIK Dumai -- Materi 10 -- This presentation is revised by H Digital Principles and pplications, Leach- Malvino, McGraw-Hill dhi
PERANGKAT PEMBELAJARAN
PERANGKAT PEMBELAJARAN ELEKTRONIKA DIGITAL Yohandri, Ph.D JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSTAS NEGERI PADANG 23 BAHAN AJAR (Hand Out) Bahan Kajian : Elektronika Digital
DASAR-DASAR RANGKAIAN SEKUENSIAL 2
PERCOBAAN 2. DASAR-DASAR RANGKAIAN SEKUENSIAL 2 2.1. TUJUAN : Setelah melaksanakan percobaan ini mahasiswa diharapkan mampu : Membuat SR Flip-flop dari gerbang NOR Membuat SR Flip-flop dari gerbang NAND
Aljabar Boolean dan Sintesis Fungsi. Logika
dan Sintesis Fungsi dan Sintesis Fungsi Kuliah#3 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro http://didik.blog.undip.ac.id 1 Pengantar dan Sintesis Fungsi Dalam
Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit
Aljabar Boolean IF22 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF22 Matematika Diskrit Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun
Rangkaian Logika. Eko Didik Widianto. Sistem Komputer - Universitas eko didik widianto - siskom undip SK205 Sistem Digital 1 / 32
Rangkaian Eko Didik Widianto Sistem Komputer - Universitas Diponegoro @2011 eko didik widianto - siskom undip SK205 Sistem Digital 1 / 32 Bahasan Representasi Biner Konsep Dasar Elemen Biner Fungsi AND
MAKALAH SISTEM DIGITAL
MAKALAH SISTEM DIGITAL Konsep Dasar Teorema Boole & De Morgan Disusun Oleh : Anin Rodahad (12131307) Abdurrahman Ar-Rohim (12131299) Bayu Ari Utomo () TEKNIK INFORMATIKA STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja
Aljabar Boolean. Adri Priadana
Aljabar Boolean Adri Priadana Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun 854. Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (kemiripan hukum-hukum
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Brown, Vranesic (2005) Tocci, Widmer, Moss (2007)
Sistem Bilangan. Rudi Susanto
Sistem Bilangan Rudi Susanto 1 Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Sistem bilangan
MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F ANISA PRATIWI / F JUPRI SALINDING / F
MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F 551 12 062 ANISA PRATIWI / F 551 12 075 JUPRI SALINDING / F 551 12 077 WIDYA / F 551 12 059 TEKNIK INFORMATIKA (S1) TEKNIK ELEKTRO
Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan:
Peta Karnaugh Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan: Tabel kebenaran yang menggambarkan bagaimana sebuah sistem digital harus bekarja Perancangan sistem
SISTEM DIGITAL 1. PENDAHULUAN
SISTEM DIGITAL Perkembangan teknologi dalam bidang elektronika sangat pesat, kalau beberapa tahun lalu rangkaian elektronika menggunakan komponen tabung hampa, komponen diskrit, seperti dioda, transistor,
Kuliah#3 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto
,, Kuliah#3 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro , Sebelumnya dibahas tentang konsep rangkaian logika: Representasi biner dan saklar sebagai elemen
STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.
STRUKTUR ALJABAR SEMIGRUP Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. Contoh 1 (Z, +) merupakan sebuah semigrup. Contoh 2 Misalkan
SISTEM BILANGAN BULAT
SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil
GERBANG LOGIKA. A. Tujuan Praktikum. B. Dasar Teori
GERBANG LOGIKA Tugas Pra Praktikum 1. Apa yang dimaksud dengan gerbang logika? Jelaskan! 2. Ada berapa jenis gerbang logika dasar? Sebutkan dan jelaskan! 3. Sebutkan macam-macam gerbang logika jika ditinjau
