Representasi Boolean

Ukuran: px
Mulai penontonan dengan halaman:

Download "Representasi Boolean"

Transkripsi

1 Aljabar Boolean Boolean Variable dan Tabel Kebenaran Gerbang Logika Aritmatika Boolean Identitas Aljabar Boolean Sifat-sifat Aljabar Boolean Aturan Penyederhanaan Boolean Fungsi Eksklusif OR Teorema De Morgan Konversi Table Kebenaran ke Aljabar Boolean

2 Representasi Boolean Representasi Boolean Variable dan Konstanta Boolean Tabel Kebenaran (Truth Table)

3 Operasi Dasar Gerbang OR (Operasi OR) Gerbang AND (Operasi AND) Gerbang NOT (Operasi NOT)

4 Aljabar Boolean Sifat-sifat Aljabar Boolean Identitas Aljabar Boolean Penyederhanaan Rangkaian Teorema De Morgan

5 Variable Boolean dan Tabel Kebenaran

6 Representasi Boolean Logic 0 Logic 1 False True Off On Low High No Yes Open Switch Close Switch

7 Variable Boolean Binary 0: besar tegangan antara 0 0,8 volt Binary 1: besar tegangan antara 2 5 volt Not used: besar tegangan antara 0,8 2 volt Not used dapat mengakibatkan error Nilai boolean 0 dan 1 tidak merepresentasikan nilai sebenarnya hanya merepresentasikan keadaan sebuah variabel tegangan

8 Tabel Kebenaran Tabel kebenaran fungsinya memberikan gambaran hubungan output suatu rangkaian digital terhadap kombinasi input yang diberikan Terdapat semua kombinasi input yang mungkin (dari variable A dan B) dengan level keadaan output yang berkesesuaian

9 Logic Gates

10 Gerbang OR (operasi OR) Pernyataan: X=A+B X sama dengan A or B Tanda + operasi or tidak memilki arti yang sama dengan aljabar penjumlahan

11 Gerbang AND (operasi AND) Pernyataan: X=A*B X sama dengan A and B

12 Gerbang (operasi) NOT

13 Gerbang (operasi) NOR

14 Gerbang (operasi) NAND

15 Aritmatika Boolean (1) Dengan menambahkan bilangan-bilangan biner, diperoleh: 0+0=0 0+1=1 1+0=1 1+1=1

16 Aritmatika Boolean (3) Pejumlahan boolean ekuivalen dengan gerbang OR

17 Aritmatika Boolean (4) Perkalian dalam aljabar boolean, 0x0=0 0x1=0 1x0=0 1x1=1

18 Aritmatika Boolean (5) Perkalian dalam aljabar boolean dan gerbang AND

19 Aritmatika Boolean (6) Seperti aljabar pada umumnya, aljabar boolean menggunakan huruf untuk merepresentasikan sebuah variable. Aljabar boolean menggunakan huruf CAPITAL Karena hanya memiliki dua kemungkinan nilai, yaitu 0 dan 1, maka setiap variable boolean memiliki komplementnya. Komplement ditandai dengan bar atau tanda petik tunggal yang dituliskan di atas sebuah variable boolean JikaA 0, maka A 1, atau A' 1 Jika A 1, maka A 0, atau A' 0

20 Aritmatika Boolean (7) Komplement boolean ekuivalen dengan gerbang NOT

21 Identitas Aljabar Boolean (1) Penjumlahan Dalam istilah matematika, identitas adalah sebuah pernyataan bernilai benar untuk semua kemungkinan nilai variable.

22 Identitas Aljabar Boolean (2) Penjumlahan Identitas 1 aljabar boolean adalah: Penjumlahan sebuah variable dengan 0 sama dengan nilai variable itu sendiri

23 Identitas Aljabar Boolean (3) Penjumlahan Identitas berikutnya merupakan identitas yang sangat berbeda dengan identitas aljabar aritmatika, yaitu Penjumlahan sebuah variable dengan 1 akan selalu menghasilkan nilai 1.

24 Identitas Aljabar Boolean (4) Penjumlahan sebuah variable ditambahkan denga variable itu sendiri akan menghasilkan nilai yang sama dengan nilai variable tersebut.

25 Identitas Aljabar Boolean (5) Penjumlahan Identitas berikut ini berhubungan dengan sifat komplement bilangan biner, yaitu Sebuah variable ditambahkan dengan komplement variable tersebut

26 Identitas Aljabar Boolean (6) Perkalian Terdapat juga empat identitas untuk perkalian aljabar boolean, yaitu: A x 0, A x 1, A x A, and A x A

27 Identitas Aljabar Boolean (7) Perkalian Identitas I: Identitas II:

28 Identitas Aljabar Boolean (8) Perkalian Identitas III:

29 Identitas Aljabar Boolean (9) Perkalian Identitas IV:

30 Identitas Aljabar Boolean (10) Identitas penjumlahan dan perkalian dalam aljabar boolean dapat dirangkum sebagai berikut: Identitas Dasar Aljabar Boolean Penjumlahan A + 0 = A A + 1 = 1 A + A = A A + A = 1 Perkalian 0A=0 1A=A AA=A AA=0

31 Sifat-sifat Aljabar Boolean (1) Jenis lain dari sebuah identitas dalam istilah matematika adalah sifat atau hukum (aturan) Sifat-sifat (hukum-hukum) aljabar boolean adalah: Kamutatif, asosiatif, dan distributif

32 Sifat-sifat Aljabar Boolean (2) Sifat komutatif

33 Sifat-sifat Aljabar Boolean (3) Sifat asosiatif penjumlahan Sifat asosiatif perkalian

34 Sifat-sifat Aljabar Boolean (4) Sifat berikutnya adalah distributif,

35 Sifat-sifat Aljabar Boolean (5) Sifat-sifat aljabar boolean dapat dirangkum sebagai berikut: Sifat-sifat Dasar Aljabar Boolean Penjumlahan A + B = B + A A + ( B + C ) = ( A + B ) + C A ( B + C ) = AB + AC Perkalian AB = BA A(BC) = (AB)C

36 Aturan Penyederhanaan Aljabar Boolean (1) Dengan menggunakan identitas dan sifat aljabar boolen dapat digunakan untuk menyederhanakan persamaan aljabar boolean yang lebih kompleks

37 Aturan Penyederhanaan Aljabar Boolean (2) Contoh: sederhanakanlah A+AB

38 Aturan Penyederhanaan Aljabar Boolean (3) Aturan ini dapat dibuktikan dengan langkah-langkah: Faktorkan A, terapkan identitas A + 1 = 1, dan terapkan identitas 1A=A Perhatikan: identitas A + 1 =1 digunakan untuk mereduksi (1 + B) = 1. Dengan demikian dapat disimpulkan ABC + 1 juga akan menghasilkan nilai 1 dengan menggunakan identitas tersebut

39 Aturan Penyederhanaan Aljabar Boolean (4) Contoh: sederhanakanlah A+A B

40 Aturan Penyederhanaan Aljabar Boolean (5) Untuk membuktikan aturan penyederhanaan di atas dilakukan dengan cara: A diekspand, faktorkan B, gunakan identitas A + A = 1, dan gunakan identitas 1A = A Perhaitkan bahwa (A+AB) digunakan untuk mengekspand A menjadi A+AB. Langkah ini disebut backward. Kadang kala di dalam matematika, langkah backward diperlukan untuk memperoleh solusi yang baik.

41 Aturan Penyederhanaan Aljabar Boolean (6) Aturan penyederhaan pada contoh berikut melibatkan sifat distributif Sederhanakan: (A+B)(A+C)

42 Aturan Penyederhanaan Aljabar Boolean (7) Bukti aturan penyederhaan di atas adalah: Langkah-langkahnya adalah: -Distribusikan -Gunakan identitas AA = A -Gunakan aturan A + AB = A untuk mereduksi A + AC -Gunakan aturan A + AB = A untuk mereduksi A + AB

43 Aturan Penyederhanaan Aljabar Boolean (8) Beberapa aturan penyederhanaan dapat dirangkum sebagai berikut: Aturan Penyederhanaan yang Sering Digunakan A + AB = A A + AB = A + B (A + B)(A + C) = A + BC

44 Fungsi Eksklusif OR (1) Selain fungsi-fungsi yang telah dibahas, terdapat fungsi yang cukup penting adalah fungsi eksklusif OR Jika fungsi OR ekuivalen dengan aljabar penjumlahan, fungsi AND ekuivalen dengan aljabar perkalian dan fungsi NOT ekuivalen dengan aljabar kompelementer, maka untuk fungsi Eksklusif OR tidak ada tidak ada ekuivalen secara langsung

45 Fungsi Eksklusif OR (2) Fungsi eksklusif OR (XOR) direpresentasikan dengan simbol: Fungsi tersebut: A B ekuivalen dengan AB +A B

46 Fungsi Eksklusif OR (3) Dalam bentuk rangkaian, Ekuivalensi aljabar boolean ini sangat membantu dalam proses penyederhanaan rangkaian: Suatu pernyataan boolean yang berbentuk AB +A B ( atau sebuah rangkain yang terdiri dari dua gerbang AND dan sebuah gerbang OR) dapat diwakili oleh A B (atau gerbang XOR

47 Aturan De Morgan (1) Jika semua input suatu gerbang AND diinvers, maka fungsi gerbang tersebut sama seperti fungsi gerbang NOR Jika semua input suatu gerbang OR diinvers, maka fungsi gerbang tersebut sama seperti fungsi gerbang NAND Aturan De Morgan memiliki prinsip yang sama, tetapi yang diinvers adalah outputnya.

48 Aturan De Morgan (2) Contoh ekuivalensi De Morgan:

49 Teorema De Morgan (1) Teorema De Morgan dapat diilustrasikan sebagai pemisah simbol bar yang panjang,

50 Teorema De Morgan (2) Jika terdapat lebih dari satu bar untuk suatu variable (atau beberapa variable), pemisahan bar hanya boleh dilakukan satu per satu Untuk mempermudah penyederhanaan rangkaian, pemisahan bar dilakukan pertama kali untuk bar paling panjag (paling atas)

51 Teorema De Morgan (3) Sebagai ilustrasi, misal sebuah pernyataan boolean: (A + (BC)) Disederhanakan menggunakan aturan de Morgan

52 Alternative Representasi

53 Sederhanakan Rangkaian ini:

54 Teorema De Morgan (4) Latihan: Sederhanakan rangkaian berikut ini menggunakan teorema demorgan

55 Teorema De Morgan (5) Latihan:

ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S

ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S AGENDA SISTEM BILANGAN DESIMAL, BINER, OCTAL, HEXADESIMAL DEFINISI ALJABAR BOOLEAN TABEL KEBENARAN ALJABAR BOOLEAN

Lebih terperinci

I. Judul Percobaan Rangkaian Gerbang Logika dan Aljabar Boolean

I. Judul Percobaan Rangkaian Gerbang Logika dan Aljabar Boolean I. Judul Percobaan Rangkaian Gerbang Logika dan Aljabar Boolean II. Tujuan Percobaan 1. Praktikan memahami antara input dan output pada rangkaian logika AND, OR, NOT, XOR, NAND, NOR dan XNOR. 2. Praktikan

Lebih terperinci

Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJABAR BOOLEAN

Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJABAR BOOLEAN Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJAAR OOLEAN Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf

Lebih terperinci

LAPORAN PRAKTIKUM SISTEM DIGITAL PEMBUKTIAN DALIL-DALIL ALJABAR BOOLEAN

LAPORAN PRAKTIKUM SISTEM DIGITAL PEMBUKTIAN DALIL-DALIL ALJABAR BOOLEAN LAPORAN PRAKTIKUM SISTEM DIGITAL PEMBUKTIAN DALIL-DALIL ALJABAR BOOLEAN Dosen Pengampu : Shoffin Nahwa Utama, M.T. Disusun Oleh: MUHAMMAD IBRAHIM NIM : 362015611040 FAKULTAS SAINS DAN TEKNOLOGI TEKNIK

Lebih terperinci

BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA)

BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA) TEKNIK DIGITAL-ALJABAR Boole/HAL. 1 BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA) PRINSIP DASAR ALJABAR BOOLE Aljabar boole adalah suatu teknik matematika yang dipakai untuk menyelesaikan masalah-masalah logika.

Lebih terperinci

O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012

O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 Outline Penjelasan tiga operasi logika dasar dalam sistem digital. Penjelasan Operasi dan Tabel Kebenaran logika AND, OR, NAND, NOR

Lebih terperinci

GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE

GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE I. KISI-KISI 1. Sistem Digital dan Sistem Analog 2. Sistem Bilangan Biner 3. Konversi Bilangan 4. Aljabar Boole II. DASAR TEORI GERBANG LOGIKA Sistem elektronika sekarang ini masih mengandalkan bahan semikonduktor

Lebih terperinci

Rangkaian digital yang ekivalen dengan persamaan logika. Misalnya diketahui persamaan logika: x = A.B+C Rangkaiannya:

Rangkaian digital yang ekivalen dengan persamaan logika. Misalnya diketahui persamaan logika: x = A.B+C Rangkaiannya: ALJABAR BOOLEAN Aljabar Boolean Aljabar Boolean adalah aljabar yang menangani persoalan-persoalan logika. Aljabar Boolean menggunakan beberapa hukum yang sama seperti aljabar biasa untuk fungsi OR (Y =

Lebih terperinci

LAB #1 DASAR RANGKAIAN DIGITAL

LAB #1 DASAR RANGKAIAN DIGITAL LAB #1 DASAR RANGKAIAN DIGITAL TUJUAN 1. Untuk mempelajari operasi dari gerbang logika dasar. 2. Untuk membangun rangkaian logika dari persamaan Boolean. 3. Untuk memperkenalkan beberapa konsep dasar dan

Lebih terperinci

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA PERCOBAAN DIGITAL GERBANG LOGIKA DAN RANGKAIAN LOGIKA .. TUJUAN PERCOBAAN. Mengenal berbagai jenis gerbang logika 2. Memahami dasar operasi logika untuk gerbang AND, NAND, OR, NOR. 3. Memahami struktur

Lebih terperinci

BAB 7 PENYEDERHANAAN

BAB 7 PENYEDERHANAAN BAB 7 PENYEDERHANAAN 1. Pendahuluan Bab ini membahaspenggunaan hukum-hukum logika pada operasi logika yang dinamakan penyederhaan (simplifying). Berbagai macam ekuivalensi dari berbagai ekpresi logika

Lebih terperinci

Aljabar Boolean. Rudi Susanto

Aljabar Boolean. Rudi Susanto Aljabar Boolean Rudi Susanto Tujuan Pembelajaran Bisa menghasilkan suatu realisasi rangkaian elektronika digital dari suatu persamaan logika matematika Persamaan logika matematika tersebut dimodifikasi

Lebih terperinci

PRAKTIKUM RANGKAIAN DIGITAL

PRAKTIKUM RANGKAIAN DIGITAL PRAKTIKUM RANGKAIAN DIGITAL RANGKAIAN LOGIKA TUJUAN 1. Memahami berbagai kombinasi logika AND, OR, NAND atau NOR untuk mendapatkan gerbang dasar yang lain. 2. Menyusun suatu rangkaian kombinasi logika

Lebih terperinci

MODUL 3 GERBANG LOGIKA DASAR

MODUL 3 GERBANG LOGIKA DASAR MODUL 3 GERBANG LOGIKA DASAR A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN. Tema : Gerbang Logika Dasar 2. Fokus Pembahasan Materi Pokok :. Definisi Gerbang Logika Dasar 2. Gerbang-gerbang Logika Dasar 3. Tujuan

Lebih terperinci

BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA

BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA Alokasi Waktu : 8 x 45 menit Tujuan Instruksional Khusus : 1. Mahasiswa dapat menjelaskan theorema dan sifat dasar dari aljabar Boolean. 2. Mahasiswa dapat menjelaskan

Lebih terperinci

BAB 2 GERBANG LOGIKA & ALJABAR BOOLE

BAB 2 GERBANG LOGIKA & ALJABAR BOOLE SISTEM DIGITL 16 2 GERNG LOGIK & LJR OOLE Gerbang Logika (Logical Gates) atau gerbang digital merupakan komponen dasar elektronika digital. erbeda dengan komponen elektronika analog yang mempunyai tegangan

Lebih terperinci

( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan.

( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan. ( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan. Pada aljabar Boolean terdapat hukum-hukum aljabar Boolean yang memungkinkan

Lebih terperinci

Tabel kebenaran untuk dua masukan (input) Y = AB + AB A B Y

Tabel kebenaran untuk dua masukan (input) Y = AB + AB A B Y G.Gerbang X-OR dan Gerbang X-NOR 1. Gerbang X-OR dalah komponen logika yang keluarannya bernilai 1 bila terminal masukannya tidak sama, atau dengan persamaan ditulis : Y = + Simbol gerbang X-OR untuk dua

Lebih terperinci

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 --

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 -- Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 23/24 STMIK Dumai -- Materi 8 -- Digital Principles and Applications, Leach-Malvino, McGraw-Hill Adhi Yuniarto L.Y. Boolean Algebra. Fasilkom

Lebih terperinci

X = A Persamaan Fungsi Gambar 1. Operasi NOT

X = A Persamaan Fungsi Gambar 1. Operasi NOT No. LST/EKO/DEL 214/01 Revisi : 01 Tgl : 1 Februari 2010 Hal 1 dari 8 1. Kompetensi Memahami cara kerja gerbang logika dasar dan gerbang perluasan logika dasar 2. Sub Kompetensi - Membuat rangkaian dengan

Lebih terperinci

Aljabar Boolean dan Gerbang Logika Dasar

Aljabar Boolean dan Gerbang Logika Dasar Modul 1 : Aljabar Boolean dan Gerbang Logika Dasar 1.1 Tujuan Setelah mengikuti praktek ini mahasiswa diharapkan dapat: 1. Memahami Aksioma dan Teorema Aljabar Boolean. 2. Memahami gerbang logika dasar

Lebih terperinci

LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR)

LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR) LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR) Diajukan untuk memenuhi salah satu tugas mata kuliah Elektronika Lanjut Dosen Pengampu : Ahmad Aminudin, M.Si Oleh : Aceng Kurnia Rochmatulloh (1305931)

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II No. LST/EKO/DEL 214/02 Revisi : 04 Tgl : 1 Februari 2012 Hal 1 dari 8 1. Kompetensi Memahami Product hukum aljabar Boolean termasuk hukum De Morgan, dan prinsip Sum of 2. Sub Kompetensi Memahami penerapan

Lebih terperinci

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1 TEORI DASAR DIGITAL Leterature : (1) Frank D. Petruzella, Essentals of Electronics, Singapore,McGrraw-Hill Book Co, 1993, Chapter 41 (2) Ralph J. Smith, Circuit, Devices, and System, Fourth Edition, California,

Lebih terperinci

Organisasi & Arsitektur Komputer

Organisasi & Arsitektur Komputer Organisasi & Arsitektur Komputer 1 Logika Digital Eko Budi Setiawan, S.Kom., M.T. Eko Budi Setiawan [email protected] www.ekobudisetiawan.com Teknik Informatika - UNIKOM 2013 Pendahuluan Gerbang

Lebih terperinci

BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN

BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN A III GERANG LOGIKA DAN ALJAAR OOLEAN 3. Pendahuluan Komputer, kalkulator, dan peralatan digital lainnya kadang-kadang dianggap oleh orang awam sebagai sesuatu yang ajaib. Sebenarnya peralatan elektronika

Lebih terperinci

09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean.

09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. Prio Handoko, S. Kom., M.T.I. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. George Boole (ahli matematika asal Inggris) Aljabar yang

Lebih terperinci

MATERI 2 COMBINATIONAL LOGIC

MATERI 2 COMBINATIONAL LOGIC Pengantar : :. MATERI 2 COMBINATIONAL LOGIC Rangkaian digital adalah mrp komponen perangkat keras (hardware) yang memanipulasi informasi biner. Rangkaian diimplementasikan dengan menggunakan transistor-transistor

Lebih terperinci

Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto

Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean Yusron Sugiarto Materi Kuliah Rangkaian Logika Ada beberapa operasi-operasi dasar pada suatu rangkaian logika dan untuk

Lebih terperinci

Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C )

Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C ) 5. RANGKAIAN KOMBINASIONAL Pada dasarnya rangkaian logika (digital) yang dibentuk dari beberapa gabungan komponen elektronik yang terdiri dari bermacam-macam Gate dan rangkaian-rangkaian lainnya, sehingga

Lebih terperinci

4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar. Gambar 4.1 Rangkaian logika dengan ekspresi Booleannya

4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar. Gambar 4.1 Rangkaian logika dengan ekspresi Booleannya BAB IV ALJABAR BOOLEAN 4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar Setiap rangkaian logika, bagaimanapun kompleksnya, dapat diuraikan secara lengkap dengan menggunakan operasi-operasi Boolean

Lebih terperinci

ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya

ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya Disusun Oleh : Indra Gustiaji Wibowo (233) Kelas B Dosen Hidayatulah Himawan,ST.,M.M.,M.Eng JURUSAN TEKNIK INFORMATIKA

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean 1 UNTUK DOWNLOAD LEBIH BANYAK EBOOKS TENTANG KOMPUTER KUNJUNGI http://wirednotes.blogspot.com Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner: - B : himpunan

Lebih terperinci

TEORI DASAR DIGITAL (GERBANG LOGIKA)

TEORI DASAR DIGITAL (GERBANG LOGIKA) #14 TEORI DSR DIGITL (GERNG LOGIK) Gerbang logika dapat didefinisikan sebagai peralatan yang dapat menghasilkan suatu output hanya bila telah ditentukan sebelumnya kondisi input yang ada. Dalam hal ini

Lebih terperinci

TEORI DASAR DIGITAL (GERBANG LOGIKA)

TEORI DASAR DIGITAL (GERBANG LOGIKA) #14 TEORI DSR DIGITL (GERNG LOGIK) Gerbang logika dapat didefinisikan sebagai peralatan yang dapat menghasilkan suatu output hanya bila telah ditentukan sebelumnya kondisi input yang ada. Dalam hal ini

Lebih terperinci

BAB III RANGKAIAN LOGIKA

BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya.

2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya. Tugas! (Materi Aljabar Boolean). Gambarkan jaringan switching yang dinyatakan dengan polinominal Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya, kapan jaringan tsb on atau off.

Lebih terperinci

Rangkaian Logika. Kuliah#2 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto. Teknik Sistem Komputer - Universitas Diponegoro.

Rangkaian Logika. Kuliah#2 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto. Teknik Sistem Komputer - Universitas Diponegoro. Kuliah#2 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Tentang Kuliah Sebelumnya dibahas tentang: Deskripsi, tujuan, sasaran dan materi kuliah TSK205 Sistem

Lebih terperinci

Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012

Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012 Bahan Kuliah LOGIKA Aljabar MATEMATIKA- Boolean Priode UTS-UAS DADANG MULYANA dadang mulana 22 ALJABAR BOOLEAN dadang mulana 22 Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan -

Lebih terperinci

Gerbang dan Rangkaian Logika

Gerbang dan Rangkaian Logika Gerbang dan Rangkaian Logika Teknik Digital (TKE 071207) Iwan Setiawan stwn at unsoed.ac.id Pemutakhiran terakhir: 24/04/11 20:51 rangkaian digital beroperasi dalam mode biner. (masukan tegangan bernilai

Lebih terperinci

Gerbang gerbang Logika -5-

Gerbang gerbang Logika -5- Sistem Digital Gerbang gerbang Logika -5- Missa Lamsani Hal 1 Gerbang Logika 3 gerbang dasar adalah : AND OR NOT 4 gerbang turunan adalah : NAND NOR XOR XNOR Missa Lamsani Hal 2 Gerbang NAND (Not-AND)

Lebih terperinci

PENDAHULUAN SISTEM DIGITAL

PENDAHULUAN SISTEM DIGITAL PENDAHULUAN SISTEM DIGITAL a. Representation of Logic Function Sejarah sampai terbentuknya Logic function Pada awalnya saat ingin membuat suatu rangkaian, komponen-komponen yang ada harus dirangkai, kemudian

Lebih terperinci

RANGKAIAN KOMBINASIONAL

RANGKAIAN KOMBINASIONAL RANGKAIAN KOMBINASIONAL LUH KESUMA WARDHANI JurusanTIF UIN SUSKA Riau LOGIKA KOMBINASI Merupakan jenis rangkaian logika yang keadaan outputnya hanya tergantung dari kombinasi input nya saja. Aljabar Boolean

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda

Lebih terperinci

Sistem Digital. Dasar Digital -4- Sistem Digital. Missa Lamsani Hal 1

Sistem Digital. Dasar Digital -4- Sistem Digital. Missa Lamsani Hal 1 Sistem Digital Dasar Digital -4- Missa Lamsani Hal 1 Materi SAP Gerbang-gerbang sistem digital sistem logika pada gerbang : Inverter Buffer AND NAND OR NOR EXNOR Rangkaian integrasi digital dan aplikasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi komputer telah membuat ruang batas perangkat lunak dan perangkat keras semakin sempit. Komputer sebagai sistem tidak dapat dipahami tanpa memahami

Lebih terperinci

ALJABAR BOLEAN. Hukum hukum ALjabar Boolean. 1. Hukum Komutatif

ALJABAR BOLEAN. Hukum hukum ALjabar Boolean. 1. Hukum Komutatif LJBR BOLEN Diktat Elektronika Digital ljabar Boolean Dalam matematika dan ilmu komputer, ljabar Boolean adalah struktur aljabar yang "mencakup intisari" operasi logika DN, TU dan TIDK dan juga teori himpunan

Lebih terperinci

BAB IV : RANGKAIAN LOGIKA

BAB IV : RANGKAIAN LOGIKA BAB IV : RANGKAIAN LOGIKA 1. Gerbang AND, OR dan NOT Gerbang Logika adalah rangkaian dengan satu atau lebih dari satu sinyal masukan tetapi hanya menghasilkan satu sinyal berupa tegangan tinggi atau tegangan

Lebih terperinci

MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA

MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA YAYASAN SANDHYKARA PUTRA TELKOM SMK TELKOM SANDHY PUTRA MALANG 28 MODUL III GERBANG LOGIKA & RANGKAIAN KOMBINASIONAL Mata Pelajaran : Teknik Digital Kelas

Lebih terperinci

BAB V GERBANG LOGIKA DAN ALJABAR BOOLE

BAB V GERBANG LOGIKA DAN ALJABAR BOOLE V GERNG LOGIK DN LJR OOLE Pendahuluan Gerbang logika atau logic gate merupakan dasar pembentukan system digital. Gerbang ini tidak perlu kita bangun dengan pengkawatan sebab sudah tersedia dalam bentuk

Lebih terperinci

GERBANG GERBANG LOGIKA

GERBANG GERBANG LOGIKA GERBANG GERBANG LOGIKA Gerbang-gerbang logika atau dapat juga dinamai rangkaian pintu (gate circuits). Gerbang-gerbang logika ini banyak sekali penerapannya di dunia industri terutama yang digunakan dalam

Lebih terperinci

BAB III RANGKAIAN LOGIKA

BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau 1 (rendah atau tinggi).

Lebih terperinci

Aljabar Boolean. Bahan Kuliah Matematika Diskrit

Aljabar Boolean. Bahan Kuliah Matematika Diskrit Aljabar Boolean Bahan Kuliah Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN

FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product

Lebih terperinci

GERBANG UNIVERSAL. I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran

GERBANG UNIVERSAL. I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran GERBANG UNIVERSAL I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran II. PENDAHULUAN Gerbang universal adalah salah satu gerbang dasar yang dirangkai sehingga menghasilkan

Lebih terperinci

BAHAN AJAR SISTEM DIGITAL

BAHAN AJAR SISTEM DIGITAL BAHAN AJAR SISTEM DIGITAL JURUSAN TEKNOLOGI KIMIA INDUSTRI PENDIDIKAN TEKNOLOGI KIMIA INDUSTRI MEDAN Disusun oleh : Golfrid Gultom, ST Untuk kalangan sendiri 1 DASAR TEKNOLOGI DIGITAL Deskripsi Singkat

Lebih terperinci

Matematika Logika Aljabar Boolean

Matematika Logika Aljabar Boolean Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu

Lebih terperinci

Definisi Gerbang Logika

Definisi Gerbang Logika SISTEM DIGITAL 1 Pendahuluan Seperti kita ketahui, mesin-mesin digital hanya mampu mengenali dan mengolah data yang berbentuk biner. Dalam sistem biner hanya di ijinkan dua keadaan yang tegas berbeda.

Lebih terperinci

Sistem Digital. Sistem Angka dan konversinya

Sistem Digital. Sistem Angka dan konversinya Sistem Digital Sistem Angka dan konversinya Sistem angka yang biasa kita kenal adalah system decimal yaitu system bilangan berbasis 10, tetapi system yang dipakai dalam computer adalah biner. Sistem Biner

Lebih terperinci

Bentuk Standar Ungkapan Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Bentuk Standar Ungkapan Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Bentuk Standar Ungkapan Boolean Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Bentuk Standar Ungkapan Boolean Sum-of-Product (SOP) Diturunkan dari tabel kebenaran untuk fungsi dengan mempertimbangkan baris

Lebih terperinci

TI 2013 IE-204 Elektronika Industri & Otomasi UKM

TI 2013 IE-204 Elektronika Industri & Otomasi UKM TI 23 IE-24 Elektronika Industri & Otomasi UKM Lampiran C Aljabar Boolean Tupel Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan ang didefinisikan pada operaror +,,

Lebih terperinci

Gerbang logika dasar: AND, OR, NOT, NAND dan NOR

Gerbang logika dasar: AND, OR, NOT, NAND dan NOR K O N S E P R A N G K A I A N L O G I K A 1 Sistem digital dapat dimodelkan ke dalam rangkaian logika. Rangkaian logika ini mempunyai satu atau lebih masukan dan satu atau/lebih keluaran. Rangkaian logika

Lebih terperinci

Aljabar Boolean. Matematika Diskrit

Aljabar Boolean. Matematika Diskrit Aljabar Boolean Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua

Lebih terperinci

Gerbang Logika. Input (A) Output (Y) 0 (Rendah) 1 (Tinggi) Tinggi (1) Rendah (0) Tabel Kebenaran/Logika Inverter

Gerbang Logika. Input (A) Output (Y) 0 (Rendah) 1 (Tinggi) Tinggi (1) Rendah (0) Tabel Kebenaran/Logika Inverter Gerbang Logika Apa itu gerbang logika? Gerbang Logika adalah rangkaian dengan satu atau lebih dari satu sinyal masukan tetapi hanya menghasilkan satu sinyal berupa tegangan tinggi atau tegangan rendah.

Lebih terperinci

Mengenal Gerbang Logika (Logic Gate)

Mengenal Gerbang Logika (Logic Gate) Mengenal Gerbang Logika (Logic Gate) Anjar Syafari [email protected] http://ansitea.blogspot.com Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

Logika Matematika Aljabar Boolean

Logika Matematika Aljabar Boolean Pertemuan ke-5 Logika Matematika Aljabar Boolean Oleh : Mellia Liyanthy 1 TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Bentuk Kanonik dan Bentuk baku atau standar Fungsi boolean yang

Lebih terperinci

RANGKAIAN LOGIKA DISKRIT

RANGKAIAN LOGIKA DISKRIT RANGKAIAN LOGIKA DISKRIT Materi 1. Gerbang Logika Dasar 2. Tabel Kebenaran 3. Analisa Pewaktuan GERBANG LOGIKA DASAR Gerbang Logika blok dasar untuk membentuk rangkaian elektronika digital Sebuah gerbang

Lebih terperinci

Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1

Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1 Aljabar Boolean Rinaldi Munir/IF25 Mat. Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -

Lebih terperinci

Perancangan Sistem Digital. Yohanes Suyanto

Perancangan Sistem Digital. Yohanes Suyanto Perancangan Sistem Digital 2009 Daftar Isi 1 SISTEM BILANGAN 1 1.1 Pendahuluan........................... 1 1.2 Nilai Basis............................. 2 1.2.1 Desimal.......................... 2 1.2.2

Lebih terperinci

ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013

ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013 Penyusun :. Imam Purwanto, S.Kom, MMSI 2. Ega Hegarini, S.Kom., MM 3. Rifki Amalia, S.Kom., MMSI 4. Arie Kusumawati, S.Kom ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma

Lebih terperinci

Hanif Fakhrurroja, MT

Hanif Fakhrurroja, MT Pertemuan 3 Organisasi Komputer Logika Digital Hanif Fakhrurroja, MT PIKSI GNESH, 2013 Hanif Fakhrurroja @hanifoza [email protected] http://hanifoza.wordpress.com Pendahuluan Hanif Fakhrurroja, 2013 http://hanifoza.wordpress.com

Lebih terperinci

Pertemuan ke-4 ALJABAR BOOLEAN I

Pertemuan ke-4 ALJABAR BOOLEAN I Pertemuan ke-4 ALJABAR BOOLEAN I Materi Perkuliahan a. Pengertian Aljabar Boolean b. Ekspresi Boolean c Prinsip Dualitas Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami

Lebih terperinci

Matematika informatika 1 ALJABAR BOOLEAN

Matematika informatika 1 ALJABAR BOOLEAN Matematika informatika 1 ALJABAR BOOLEAN ALJABAR BOOLEAN Matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II No. LST/EKO/DEL 214/02 Revisi : 04 Tgl : 1 Februari 2012 Hal 1 dari 8. Kompetensi Memahami hukum aljabar oolean termasuk hukum De Morgan, dan prinsip Sum of Product. Sub Kompetensi 1. Memahami penerapan

Lebih terperinci

ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL

ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL Oleh : Kelompok 3 I Gede Nuharta Negara (1005021101) Kadek Dwipayana (1005021106) I Ketut Hadi Putra Santosa (1005021122) Sang Nyoman Suka Wardana (1005021114) I

Lebih terperinci

Aljabar Boolean dan Peta Karnough

Aljabar Boolean dan Peta Karnough Aljabar Boolean dan Peta Karnough a. Logic Function minimization Pada rangkaian yang cukup rumit, kombinasi variable di logic function yang diperoleh dari hasil table kebenaran biasanya pun cukup banyak.

Lebih terperinci

Rangkaian Logika. Kuliah#2 TKC205 Sistem Digital - TA 2013/2014. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro

Rangkaian Logika. Kuliah#2 TKC205 Sistem Digital - TA 2013/2014. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro Kuliah#2 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro http://didik.blog.undip.ac.id 1 Tentang Kuliah Sebelumnya dibahas tentang: Deskripsi, tujuan, sasaran dan

Lebih terperinci

MODUL I GERBANG LOGIKA

MODUL I GERBANG LOGIKA MODUL PRAKTIKUM ELEKTRONIKA DIGITAL 1 MODUL I GERBANG LOGIKA Dalam elektronika digital sering kita lihat gerbang-gerbang logika. Gerbang tersebut merupakan rangkaian dengan satu atau lebih dari satu sinyal

Lebih terperinci

MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL

MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL YAYASAN SANDHYKARA PUTRA TELKOM SMK TELKOM SANDHY PUTRA MALANG 2008 RENCANA PELAKSANAAN PEMBELAJARAN MODUL IV ALJABAR BOOLE & RANGKAIAN

Lebih terperinci

BAB V RANGKAIAN ARIMATIKA

BAB V RANGKAIAN ARIMATIKA BAB V RANGKAIAN ARIMATIKA 5.1 REPRESENTASI BILANGAN NEGATIF Terdapat dua cara dalam merepresentasikan bilangan biner negatif, yaitu : 1. Representasi dengan Tanda dan Nilai (Sign-Magnitude) 2. Representasi

Lebih terperinci

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2012/2013 STMIK Dumai -- Materi This presentation is revised by HA

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2012/2013 STMIK Dumai -- Materi This presentation is revised by HA Mata Kuliah rsitektur Komputer Program Studi Sistem Informasi 2012/2013 STMIK Dumai -- Materi 10 -- This presentation is revised by H Digital Principles and pplications, Leach- Malvino, McGraw-Hill dhi

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PERANGKAT PEMBELAJARAN ELEKTRONIKA DIGITAL Yohandri, Ph.D JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSTAS NEGERI PADANG 23 BAHAN AJAR (Hand Out) Bahan Kajian : Elektronika Digital

Lebih terperinci

DASAR-DASAR RANGKAIAN SEKUENSIAL 2

DASAR-DASAR RANGKAIAN SEKUENSIAL 2 PERCOBAAN 2. DASAR-DASAR RANGKAIAN SEKUENSIAL 2 2.1. TUJUAN : Setelah melaksanakan percobaan ini mahasiswa diharapkan mampu : Membuat SR Flip-flop dari gerbang NOR Membuat SR Flip-flop dari gerbang NAND

Lebih terperinci

Aljabar Boolean dan Sintesis Fungsi. Logika

Aljabar Boolean dan Sintesis Fungsi. Logika dan Sintesis Fungsi dan Sintesis Fungsi Kuliah#3 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro http://didik.blog.undip.ac.id 1 Pengantar dan Sintesis Fungsi Dalam

Lebih terperinci

Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit

Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit Aljabar Boolean IF22 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF22 Matematika Diskrit Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun

Lebih terperinci

Rangkaian Logika. Eko Didik Widianto. Sistem Komputer - Universitas eko didik widianto - siskom undip SK205 Sistem Digital 1 / 32

Rangkaian Logika. Eko Didik Widianto. Sistem Komputer - Universitas eko didik widianto - siskom undip SK205 Sistem Digital 1 / 32 Rangkaian Eko Didik Widianto Sistem Komputer - Universitas Diponegoro @2011 eko didik widianto - siskom undip SK205 Sistem Digital 1 / 32 Bahasan Representasi Biner Konsep Dasar Elemen Biner Fungsi AND

Lebih terperinci

MAKALAH SISTEM DIGITAL

MAKALAH SISTEM DIGITAL MAKALAH SISTEM DIGITAL Konsep Dasar Teorema Boole & De Morgan Disusun Oleh : Anin Rodahad (12131307) Abdurrahman Ar-Rohim (12131299) Bayu Ari Utomo () TEKNIK INFORMATIKA STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja

Lebih terperinci

Aljabar Boolean. Adri Priadana

Aljabar Boolean. Adri Priadana Aljabar Boolean Adri Priadana Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun 854. Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (kemiripan hukum-hukum

Lebih terperinci

Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed

Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Brown, Vranesic (2005) Tocci, Widmer, Moss (2007)

Lebih terperinci

Sistem Bilangan. Rudi Susanto

Sistem Bilangan. Rudi Susanto Sistem Bilangan Rudi Susanto 1 Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Sistem bilangan

Lebih terperinci

MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F ANISA PRATIWI / F JUPRI SALINDING / F

MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F ANISA PRATIWI / F JUPRI SALINDING / F MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F 551 12 062 ANISA PRATIWI / F 551 12 075 JUPRI SALINDING / F 551 12 077 WIDYA / F 551 12 059 TEKNIK INFORMATIKA (S1) TEKNIK ELEKTRO

Lebih terperinci

Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan:

Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan: Peta Karnaugh Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan: Tabel kebenaran yang menggambarkan bagaimana sebuah sistem digital harus bekarja Perancangan sistem

Lebih terperinci

SISTEM DIGITAL 1. PENDAHULUAN

SISTEM DIGITAL 1. PENDAHULUAN SISTEM DIGITAL Perkembangan teknologi dalam bidang elektronika sangat pesat, kalau beberapa tahun lalu rangkaian elektronika menggunakan komponen tabung hampa, komponen diskrit, seperti dioda, transistor,

Lebih terperinci

Kuliah#3 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto

Kuliah#3 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto ,, Kuliah#3 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro , Sebelumnya dibahas tentang konsep rangkaian logika: Representasi biner dan saklar sebagai elemen

Lebih terperinci

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. STRUKTUR ALJABAR SEMIGRUP Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. Contoh 1 (Z, +) merupakan sebuah semigrup. Contoh 2 Misalkan

Lebih terperinci

SISTEM BILANGAN BULAT

SISTEM BILANGAN BULAT SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil

Lebih terperinci

GERBANG LOGIKA. A. Tujuan Praktikum. B. Dasar Teori

GERBANG LOGIKA. A. Tujuan Praktikum. B. Dasar Teori GERBANG LOGIKA Tugas Pra Praktikum 1. Apa yang dimaksud dengan gerbang logika? Jelaskan! 2. Ada berapa jenis gerbang logika dasar? Sebutkan dan jelaskan! 3. Sebutkan macam-macam gerbang logika jika ditinjau

Lebih terperinci