Graph. Matematika Informatika 4. Onggo
|
|
|
- Widyawati Kusuma
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Matematika Informatika 4 Onggo
2 Definisi adalah struktur diskrit yang mengandung vertex dan edge yang menghubungkan vertex-vertex tersebut. vertex edge 2
3 Jenis-jenis Definisi 1: Suatu graph simple G(V,E) mengandung V, sebuah himpunan tak-kosong yang berisi vertexvertex, dan E, sebuah himpunan berisi pasangan berurut dari anggota V yang berbeda, disebut dengan edge. 3
4 Jenis-jenis Contoh: p q a e 1 b e 1 e 2 e 2 t e 3 r G c e 4 H s V = {a, b, c} V = {p, q, r, s, t} E = {e 1, e 2 } E = {e 1, e 2, e 3, e 4 } 4
5 Jenis-jenis Contoh: Multiple / parallel edges 6
6 Jenis-jenis Contoh : Loop 7
7 Istilah dalam Definisi 4: Dua vertex u dan v dalam suatu graph G disebut beradjacent (atau bertetangga) di G jika {u, v} adalah suatu edge pada G. Jika e = {u, v}, maka edge e disebut incident dengan vertex u dan v. Edge e juga disebut menghubungkan u dan v. Vertex u dan v disebut endpoints dari edge {u, v}. 8
8 Istilah dalam Definisi 5: Degree dari suatu vertex pada sebuah graph adalah banyaknya edge yang incident dengan vertex tersebut. Degree dari vertex v dinotasikan dengan deg(v). 9
9 Istilah dalam Contoh: b c d a deg(a) = 2 deg(b) = 4 deg(c) = 4 deg(d) = 1 deg(e) = 3 deg(f) = 4 f e g deg(g) = 0 10
10 Istilah dalam Teorema 1 (The Handshaking Theorem): Misalkan G = (V,E) adalah suatu graph dengan edge sebanyak e, maka 2e deg( v) v V Bukti: yaitu jumlah dari degree setiap vertex sama dengan dua kali banyaknya edge pada graph tersebut. Karena setiap edge menghubungkan 2 vertex. 11
11 Istilah dalam Contoh : Berapa banyak edge yang terdapat pada suatu graph dengan 10 vertex yang masing-masing berdegree 6? Jawab: karena jumlah dari degree vertex sebesar 6 10 = 60, artinya 2e = 60. e = 30. Sehingga, banyaknya edge pada graph tersebut adalah 30 edge. 12
12 Istilah dalam Teorema 2: Bukti: Suatu graph (tidak berarah) memiliki sejumlah genap vertex yang berdegree ganjil. dari teorema 1, 2e = v V deg (v) 2e = deg (v) + deg (v) v V 1 v V 2 genap = [ganjil+...+ganjil] + [genap+...+genap] agar persamaan ini berlaku, maka [ganjil+...+ganjil] harus ada sebanyak genap suku. 13
13 Beberapa Simple Khusus 1. Complete [K n ] adalah graph simple yang mengandung tepat satu edge untuk setiap pasang vertex yang berbeda.? K 1 K 2 K 3 K 4 K 5 14
14 Beberapa Simple Khusus 2. Cycles [C n, n 3] graph cycles C n, mengandung n vertex v 1, v 2,..., v n dan edge {v 1, v 2 }, {v 2, v 3 },..., {v n-1, v n }, {v n, v 1 }. C 3 C 4 15
15 Beberapa Simple Khusus 3. Wheels [W n, n 3] graph wheel W n, diperoleh dengan menambahkan sebuah vertex pada graph cycle C n lalu menghubungkan vertex baru ini ke setiap vertex yang ada pada C n, dengan menambahkan edge-edge baru. WC 3 WC 4 16
16 Beberapa Simple Khusus 4. Bipartite suatu graph simple G = (V,E) disebut bipartite jika himpunan vertex V dapat dipartisi menjadi dua himpunan takkosong yang saling lepas V 1 dan V 2 sedemikian hingga setiap edge pada graph menghubungkan sebuah vertex di V 1 dan sebuah vertex di V 2 (tapi tidak ada edge yang di G yang menghubungkan setiap pasang vertex di masingmasing V 1 atau di V 2 ). 17
17 Beberapa Simple Khusus Contoh Apakah C 6 bipartite? Ternyata, C 6 merupakan suatu graph bipartite. C 6 C 6 18
18 Beberapa Simple Khusus Exercise Are the graphs G and H bipartite? G H 19
19 Beberapa Simple Khusus 5. Complete Bipartite complete bipartite K m,n adalah graph yang himpunan semua vertexnya terpartisi ke dalam dua subset. Sehingga ada sebuah edge yang menghubungkan dua vertex jika dan hanya jika vertex pertama terdapat di suatu subset dan vertex kedua di subset lainnya. 20
20 Beberapa Simple Khusus Contoh Beberapa graph complete bipartite. K 2,3 K 3,3 21
21 Modifikasi Definisi 1: Suatu subgraph dari sebuah graph G = (V,E) adalah sebuah graph H = (W,F) dengan W V dan F E. Contoh: K 4 Sebuah subgraph dari K 4 22
22 Modifikasi Definisi 2: Gabungan dari dua graph simple G 1 = (V 1,E 1 ) dan G 2 = (V 2,E 2 ) merupakan suatu simple graph dengan himpunan vertex V 1 V 2 dan himpunan edge E 1 E 2. Gabungan dari graph G 1 dan G 2 dinotasikan dengan G 1 G 2 23
23 Modifikasi Contoh b c b c e a d a d G 1 b c e G 2 a G 1 G 2 d 24
24 Representasi dan Isomorfisma 25
25 Daftar Adjacency Contoh b c e Gunakan daftar adjacency untuk merepresentasikan simple graph G 1. a d Vertex Beradjacent dengan G 1 a b b a, c c b, d, e d c, e e c, d 26
26 Matriks Adjacency Definisi 1: Jika A = [a ij ] merupakan suatu matrix adjacency dari graph G, maka a ij = 1 jika {v i, v j } adalah suatu edge di G = 0 lainnya 27
27 Matriks Adjacency Contoh Gunakan matriks adjacency untuk merepresentasikan graph G 1. b c e a b c d e a b c d e a G 1 d 28
28 Matriks Incidence Definisi 2: Jika M = [m ij ] merupakan matriks incidence dari graph G, maka m ij = 1 jika edge e j berincident dengan vertex v i = 0 lainnya 29
29 Matriks Incidence Contoh Gunakan matriks incidence untuk merepresentasikan graph G 1. b e 1 e 2 e 3 c e 4 e 5 e a b c d e e 1 e 2 e 3 e 4 e a G 1 d 30
30 Path & Circuit Definisi 1 Sebuah path sepanjang n dari u ke v, pada suatu graph adalah suatu barisan edge e 1,, e n pada graph sedemikian hingga f(e 1 ) = {x 0,x 1 }, f(e 2 ) = {x 1,x 2 },, f(e n ) = {x n-1,x n }, dengan x 0 = u dan x n = v. 31
31 Path & Circuit Catatan Suatu path disebut sebagai circuit jika dimulai dan diakhiri pada vertex yang sama, yaitu jika u = v. Suatu path atau circuit disebut simple jika tidak mengandung edge yang sama lebih dari satu kali. Suatu path atau circuit disebut melewati or melintasi vertex-vertex x 1, x 2,, x n-1. 32
32 Path & Circuit Contoh a b c G d e f a, d, c, f, e merupakan suatu simple path dengan panjang 4 sebab {a, d}, {d, c}, {c, f}, dan {f, e} semuanya merupakan edge. d, e, c, a bukan suatu path, sebab {e, c} bukan edge. b, c, f, e, b merupakan suatu circuit dengan panjang 4 sebab {b, c}, {c, f}, {f, e}, dan {e, b} adalah edgenya. 33
33 Terhubung Definisi 2 Suatu graph disebut terhubung jika terdapat suatu path antara setiap pasang vertex yang berbeda pada graph tersebut. Teorema 1 Terdapat suatu simple path di antara setiap pasang vertex yang berbeda dari suatu graph yang terhubung. 34
34 Terhubung Catatan Penghapusan sebuah vertex yang disebut cut vertex (titik artikulasi) dari suatu graph terhubung akan menghasilkan sebuah subgraph dengan komponen terhubung yang lebih banyak dari graph aslinya. Penghapusan suatu edge yang disebut cut edge ( jembatan) dari suatu graph terhubung menghasilkan sebuah subgraph dengan komponen terhubung yang lebih banyak dari graph aslinya. 35
35 Terhubung Contoh: a d f g b G c e h Cut vertex dari graph G adalah b, c dan e. Cut edge dari graph G adalah {a,b} dan {c,e}. 36
36 Isomorfisme Definisi Simple graph G 1 = (V 1,E 1 ) dan G 2 = (V 2, E 2 ) disebut isomorfis jika terdapat suatu fungsi bijektif f dari V 1 ke V 2 dengan sifat bahwa a dan b beradjacent di G 1 jika dan hanya jika f(a) dan f(b) beradjacent di G 2, untuk setiap a dan b di V 1. Fungsi f yang seperti ini disebut suatu isomorfisma. 37
37 Isomorfisme Contoh Tunjukkan bahwa graph G(V, E) dan H(W,F) isomorfis. u 1 u 2 v 1 v 2 u 3 G u 4 v 3 H v 4 38
38 Isomorfisme Jawab Fungsi F dengan: f(u 1 ) = v 1, f(u 2 ) = v 4, f(u 3 ) = v 3, f(u 4 ) = v 2 adalah suatu pemetaan bijektif dari V ke W. u 1 u 2 v 1 v 2 u 3 G u 4 v 3 H v 4 39
39 Isomorfisme Contoh Tunjukkan bahwa graph G(V, E) dan H(W,F) tidak isomorfis. b b a c a c e G d e H d 40
40 Isomorfisme Jawab Perhatikan banyaknya edge & vertex. Perhatikan degree dari setiap vertex. b b a c a c e G d e H d 41
Representasi Graph Isomorfisme. sub-bab 8.3
Representasi Graph Isomorfisme sub-bab 8.3 Representasi graph:. Adjacency list. Adjacency matrix 3. Incidence matrix Contoh: undirected graph Adjacency list : tiap vertex v :, 3, di-link dengan 3:,, 5
Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika
Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis
Matematik tika Di Disk i r t it 2
Matematika tik Diskrit it 2 Teori Graph Teori Graph 1 Kelahiran Teori Graph Masalah Jembatan Konigsberg g : Mulai dan berakhir pada tempat yang sama, bagaimana caranya untuk melalui setiap jembatan tepat
Graf. Program Studi Teknik Informatika FTI-ITP
Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan
I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu
I. LANDASAN TEORI Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu matematika yang mempresentasikan suatu objek berupa vertex (titik) dan edge (garis), edge merupakan
BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel
BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex
Graf. Matematika Diskrit. Materi ke-5
Graf Materi ke-5 Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya
TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER TEORI GRAF ILHAM SAIFUDIN Selasa, 13 Desember 2016 Universitas Muhammadiyah Jember Pendahuluan 1 OUTLINE 2 Definisi Graf
GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}
GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices
BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang
BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya
MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun
MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi
TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi
II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan
BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang
BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.
LOGIKA DAN ALGORITMA
LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg
I. PENDAHULUAN. Teori graf merupakan salah satu bidang matematika yang memiliki banyak. terapan di berbagai bidang sampai saat ini.
1 I. PENDAHULUAN 1.1 Latar Belakang Teori graf merupakan salah satu bidang matematika yang memiliki banyak terapan di berbagai bidang sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek
SEKILAS TENTANG GRAPH. Oleh: Baso Intang Sappaile
Algoritma (Jurnal Matematika dan Pendidikan Matematika), Vol.2 No.2 Desember 27 hal. 9-3 ISSN: 97-7882 SEKILAS TENTAN RAPH Oleh: Baso Intang Sappaile Abstrak. Suatu raph terdiri dari suatu himpunan tak
7. PENGANTAR TEORI GRAF
Definisi : Secara umum merupakan kumpulan titik dan garis. Sebuah garf G terdiri dari: 1. Sebuah himpunan V=V(G) yang memiliki elemen2 yg dinamakan verteks/titik/node. 2. Sebuah kumpulan E=E(G) merupakan
Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga
TEORI GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan
BAB II LANDASAN TEORI
15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong
PENGETAHUAN DASAR TEORI GRAF
PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN. Latar Belakang Masalah Seiring perkembangan zaman, maka perkembangan ilmu pengetahuan berkembang pesat, begitu pula dengan ilmu matematika. Salah satu cabang ilmu matematika yang memiliki
BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf
BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan
Kode MK/ Matematika Diskrit
Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep
BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema
BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema sebagai landasan berfikir dalam melakukan penelitian ini dan akan mempermudah
LATIHAN ALGORITMA-INTEGER
LATIHAN ALGORITMA-INTEGER Nyatakan PBB(295,70) = 5 sebagai kombinasi lanjar 295 dan 70 Tentukan inversi dari 27(mod 7) Tentukan solusi kekongruenan lanjar dari 27.x kongruen 1(mod 7) dengan cara 1 ( cara
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA
BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.
BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar
LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.
6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan
Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah
BAB II KAJIAN TEORI II.1 Teori-teori Dasar Graf II.1.1 Definisi Graf Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah himpunan tak kosong dari titik graf G, dan E, himpunan sisi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan konsep dasar dalam teori graf dan pelabelan graf yang akan digunakan pada bab selanjutnya. 2.1 Definisi dan Istilah Dalam Teori Graf
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan
PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2
PENGERTIAN GRAPH 1. DEFINISI GRAPH Graph G adalah pasangan terurut dua himpunan (V(G), E(G)), V(G) himpunan berhingga dan tak kosong dari obyek-obyek yang disebut himpunan titik (vertex) dan E(G) himpunan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi
Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013
Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri
Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017
Graf dan Analisa Algoritma Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Who Am I? Stya Putra Pratama, CHFI, EDRP Pendidikan - Universitas Gunadarma S1-2007 Teknik Informatika S2-2012
v 3 e 2 e 4 e 6 e 3 v 4
5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan
II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan
5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi
TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi
II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi yang akan dihasilkan pada penelitian ini. 2.1 Beberapa Definisi dan Istilah 1. Graf (
DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company
DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Oleh : Yogi Sindy Prakoso (1206100015) JURUSAN MATEMATIKA Company FAKULTAS MATEMATIKA Click to DAN add ILMU subtitle PENGETAHUAN ALAM INSTITUT TEKNOLOGI
PENENTUAN BILANGAN DOMINASI SISI PADA GRAF HASIL OPERASI PRODUK TENSOR
TESIS - SM 142501 PENENTUAN BILANGAN DOMINASI SISI PADA GRAF HASIL OPERASI PRODUK TENSOR ROBIATUL ADAWIYAH NRP 1214 201 019 DOSEN PEMBIMBING Dr. Darmaji, S.Si., M.T. PROGRAM MAGISTER JURUSAN MATEMATIKA
Bab 2 LANDASAN TEORI
Bab LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan penelitian sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah
II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan
4 II. LANDASAN TEORI Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan Konisberg yang kemudian menghasilkan konsep graf Eulerian merupakan awal dari lahirnya teori graf. Euler mengilustrasikan
TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB
TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB STEVIE GIOVANNI NIM : 13506054 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jln, Ganesha 10, Bandung
Bagaimana merepresentasikan struktur berikut? A E
Bagaimana merepresentasikan struktur berikut? B D A E F C G Bagaimana merepresentasikan struktur berikut? Contoh-contoh aplikasi graf Peta (jaringan jalan dan hubungan antar kota) Jaringan komputer Jaringan
MAGIC STRENGTH PADA GRAF PATH, BISTAR, DAN CYCLE GANJIL DIMAS ENGGAR SATRIA
MAGIC STRENGTH PADA GRAF PATH, BISTAR, DAN CYCLE GANJIL DIMAS ENGGAR SATRIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN MENGENAI
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang
BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf
BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul
Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus
Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus Elmo Dery Alfared NIM: 00 Program Studi Teknik Informatika ITB, Institut Teknologi Bandung email: if0 @students.itb.ac.id Abstract Makalah
II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan
II. KONSEP DASAR GRAF DAN GRAF POHON 2.1 Konsep Dasar Graf Teori dasar mengenai graf yang akan digunakan dalam penelitian ini diambil dari Deo (1989). Graf G adalah himpunan terurut ( V(G), E(G)), dengan
Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.
GRAF PENDAHULUAN Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan
Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf
Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelaskelas graf, dan dimensi metrik pada
BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan
5 BAB II TINJAUAN PUSTAKA A. Teori Graf 1. Dasar-dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V, E) ditulis dengan notasi G = (V, E), dimana V adalah himpunan titik yang tidak kosong (vertex)
Struktur dan Organisasi Data 2 G R A P H
G R A P H Graf adalah : Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak urut dari simpul, anggotanya disebut ruas (rusuk
BAB III PELABELAN KOMBINASI
1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik
Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik
BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,
Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi
Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Ryan Yonata (13513074) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
Graph. Politeknik Elektronika Negeri Surabaya
Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar
Penerapan Pewarnaan Graf pada Permainan Real- Time Strategy
Penerapan Pewarnaan Graf pada Permainan Real- Time Strategy Kurniandha Sukma Yunastrian / 13516106 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan
BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan penelitian yang dilakukan. 2.1. Konsep Dasar Graf Graf G didefinisikan sebagai pasangan himpunan terurut
Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends
Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends Reinaldo Ignatius Wijaya 13515093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan
APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY
APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas
PELABELAN TOTAL SISI-AJAIB PADA GRAF PETERSEN IKHWAN AL AMIN
PELABELAN TOTAL SISI-AJAIB PADA GRAF PETERSEN IKHWAN AL AMIN DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 04 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan himpunan dan beberapa definisi yang berkaitan dengan himpunan, serta konsep dasar dan teori graf yang akan digunakan pada bab selanjutnya. 2.1 Himpunan
Graf dan Pengambilan Rencana Hidup
Graf dan Pengambilan Rencana Hidup M. Albadr Lutan Nasution - 13508011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung e-mail: [email protected]
PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog: 1.
MODUL I PENDAHULUAN 1. Sejarah Graph Teori Graph dilaterbelakangi oleh sebuah permasalahan yang disebut dengan masalah Jembatan Koningsberg. Jembatan Koningsberg berjumlah tujuh buah yang dibangun di atas
Pertemuan 12. Teori Graf
Pertemuan 2 Teori Graf Derajat Definisi Misalkan adalah titik dalam suatu Graf G. Derajat titik (simbol d()) adalah jumlah garis yang berhubungan dengan titik dan garis suatu loop dihitung dua kali. Derajat
G : ( σ, µ ) dengan himpunan titik S yaitu
SIFAT-SIFAT ISOMORFISMA RAF FUZZY PADA RAF FUZZY KUAT Anik Handayani Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto S H Tembalang Semarang Abstract: Fuzzy graph is a graph consists pairs
II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini
5 II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf, graf pohon dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 2.1 KONSEP DASAR GRAF Konsep
Pengaplikasian Graf dalam Pendewasaan Diri
Pengaplikasian Graf dalam Pendewasaan Diri Syafira Fitri Auliya 13510088 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan
BAB I PENDAHULUAN 1.1. Latar Belakang. Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan
KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf
II. KONSEP DASAR GRAF DAN GRAF POHON Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada bagian ini
Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio
Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang
Teori Graf. Matema(ka Komputasi - Teori Graf. Agi Putra Kharisma, ST., MT.
Teori Graf The whole of mathema,cs consists in the organiza,on of a series of aids to the imagina,on in the process of reasoning. Alfred North Whitehead 1 Struktur Graf Simpul (vertex // verbces) Sisi
Penerapan Graf pada Rasi Bintang dan Graf Bintang pada Navigasi Nelayan
Penerapan Graf pada Rasi Bintang dan Graf Bintang pada Navigasi Nelayan Aya Aurora Rimbamorani 13515098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
PERANGKAT PEMBELAJARAN
PERANGKAT PEMBELAJARAN MATA KULIAH : TEORI GRAPH KODE : MKK519515 DOSEN : EDY MULYONO, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA
BAB 2 BEBERAPA ISTILAH DARI GRAPH
BAB 2 BEBERAPA ISTILAH DARI GRAPH Pada bab ini akan dibahas beberapa konsep dan terminologi dalam graph yang akan dipergunakan sebagai landasan berpikir dalam melakukan penelitian ini. Juga akan dibahas
BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf
BAB 2 GRAF PRIMITIF Pada bagian ini akan dijelaskan mengenai definisi graf, istilah-istilah dalam graf, matriks ketetanggaan, graf terhubung, primitivitas graf, dan scrambling index. 2.1 Definisi Graf
PENENTUAN BANYAKNYA GRAF TERHUBUNG BERLABEL BERORDE LIMA TANPA GARIS PARALEL. (Skripsi) Oleh Eni Zuliana
PENENTUAN BANYAKNYA GRAF TERHUBUNG BERLABEL BERORDE LIMA TANPA GARIS PARALEL (Skripsi) Oleh Eni Zuliana FAKULTAS MATEMATIKA DAN ILMU PEGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 ABSTRAK PENENTUAN
GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V).
GRAF GRAF Suatu Graph mengandung 2 himpunan, yaitu : 1. Himpunan V yang elemennya disebut simpul (Vertex atau Point atau Node atau Titik) 2. Himpunan E yang merupakan pasangan tak urut dari simpul. Anggotanya
BILANGAN DOMINASI EKSENTRIK TERHUBUNG pada GRAF
BILANGAN DOMINASI EKSENTRIK TERHUBUNG pada GRAF Tito Sumarsono 1, R. Heri Soelistyo 2, Y.D. Sumanto 3 Departemen Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S. H. Tembalang Semarang [email protected]
PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN
PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN Eric Cahya Lesmana - 13508097 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesa
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab ini terdiri dari tiga subbab. Subbab pertama adalah tinjauan pustaka yang memuat hasil penelitian yang dilakukan oleh peneliti sebelumnya dalam bidang dimensi metrik. Subbab kedua
SUPER (a,d) EDGE ANTIMAGIC TOTAL LABELING PADA GRAF PETERSEN RAHMAT CHAIRULLOH
SUPER (a,d) EDGE ANTIMAGIC TOTAL LABELING PADA GRAF PETERSEN RAHMAT CHAIRULLOH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 014 PERNYATAAN MENGENAI
Aplikasi Graf pada Fitur Friend Suggestion di Media Sosial
Aplikasi Graf pada Fitur Friend Suggestion di Media Sosial Octavianus Marcel Harjono - 13513056 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
BAB II KAJIAN PUSTAKA
BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari
PENENTUAN BANYAKNYA GRAF TAK TERHUBUNG BERLABEL TITIK TANPA GARIS PARALEL DENGAN BANYAKNYA TITIK n = 6. DAN BANYAKNYA GARIS m 1.
PENENTUAN BANYAKNYA GRAF TAK TERHUBUNG BERLABEL TITIK TANPA GARIS PARALEL DENGAN BANYAKNYA TITIK n = 6 DAN BANYAKNYA GARIS m 1 (Skripsi) Oleh PRISKY PARADITTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
COURSE NOTE 1 : Definisi Graph By : Syaiful Hamzah Nasution
COURSE NOTE 1 : Definisi Graph By : Syaiful Hamzah Nasution Definisi Graph. Suatu graph G berisi himpunan tak kosong titik-titik yang dinotasikan dengan V(G), himpunan hingga sisi-sisi yang dinotasikan
merupakan himpunan sisi-sisi tidak berarah pada. (Yaoyuenyong et al. 2002)
dari elemen graf yang disebut verteks (node, point), sedangkan, atau biasa disebut (), adalah himpunan pasangan tak terurut yang menghubungkan dua elemen subset dari yang disebut sisi (edge, line). Setiap
2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik
2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan
PELABELAN GRACEFUL SISI BERARAH PADA GRAF GABUNGAN GRAF SIKEL DAN GRAF STAR. Putri Octafiani 1, R. Heri Soelistyo U 2
PELABELAN GRACEFUL SISI BERARAH PADA GRAF GABUNGAN GRAF SIKEL DAN GRAF STAR Putri Octafiani 1, R. Heri Soelistyo U 2 1,2 Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang
Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2
Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Michael - 13514108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut
