Latihan 2. Ruang Vektor. Bagian 1
|
|
|
- Ratna Kusuma
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Ltihn. Rung Vektor Bgin. Andikn H = {,,,,, }. Opersi penjumlhn pd H dlh opersi penjumlhn modulo. Apkh H merupkh grup? Grup elin?. Dengn opersi penjumlhn modulo 8, selidiki pkh himpunn G merupkn Grup? Grup Komutif?, jik G = {,,,,,,, }.. Dengn opersi penjumlhn modulo, selidiki pkh himpunn H merupkn Grup? Grup Komutif?, jik H = {,,,,,, }.. Andikn K = { B}, di mn B dlh himpunn ilngn ult. Selidiki pkh K merupkn Grup? Grup Komuttif, jik opersi pd K dlh : ) penjumlhn ) perklin. Dengn opersi perklin modulo 8, selidiki pkh himpunn N merupkn Grup? Grup Komutif?, jik N = {,,,,,, }.. Dengn opersi penjumlhn modulo, selidiki pkh himpunn P merupkn Grup? Grup Komutif?, jik P = {,,,,, }.. Andikn dikethui, Q, dengn dn nggot himpunn ilngn ult. Opersi * pd Q didefinisikn * = + +. Selidiki pkh (Q, *) merupkn grup? Grup komuttif?. 8. Andikn dikethui, ϵ R, dengn dn nggot himpunn ilngn ult. Opersi # pd R didefinisikn # = + +. Apkh (R, #) merupkn grup? Grup komuttif?. 9. Dengn opersi (i) penjumlhn, (ii) perklin; mnkh himpunn di wh ini ng merupkn grup? Grup elin?. Jelskn jw sudr! ) Himpunn ilngn sli ) Himpunn ilngn h ) Himpunn ilngn ult d) Himpunn ilngn rsionl e) Himpunn ilngn rel. Dikethui S = {semu mtriks erdimensi }. Dengn opersi penjumlhn mtriks, selidiki pkh (S, +) merupkn grup? Grup komuttif?. Dikethui T = {semu mtriks erdimensi }. Dengn opersi perklin mtriks, selidiki pkh (T, ) merupkn grup? Grup komuttif?. Dengn opersi penjumlhn modulo 8 dn perklin modulo 8, selidiki pkh himpunn F merupkn Field?, jik F = {,,,,,,, }.. Dengn opersi penjumlhn modulo dn perklin modulo, selidiki pkh himpunn W merupkn Field?, jik W = {,,,,,, }.. Dengn opersi penjumlhn dn perklin, selidiki himpunn ilngn mnkh ng merupkn field? ) Himpunn ilngn ult Budi Murtis,, Ltihn. Rung Vektor Pge
2 ) Himpunn ilngn rsionl ) Himpunn ilngn rel d) Himpunn ilngn kompleks. Andikn F = { ( + ), R} di mn R himpunn ilngn rel, dengn opersi penjumlhn dn perklin pkh merupkn field?. Andikn M = {, R, dengn tu }. Dengn opersi penjumlhn dn perklin, pkh M merupn field?. Dikethui, N dengn dn nggot himpunn ult. Opersi # pd N didefinisikn # = +, dn opersi * pd N didefinisikn segi * = + +. Selidiki pkh (N, #, *) merupkn field? 8. Dikethui E = { +, B}, B dlh himpunn ilngn ult. Dengn opersi penjumlhn dn perklin, selidiki pkh (E, +, ) merupkn field?. 9. Dikethui M = {semu mtriks erdimensi }. Dengn opersi penjumlhn mtriks dn perklin sklr terhdp mtriks, selidiki pkh (M, +, ) merupkn field?. Dikethui P dlh himpunn semu polinom erderjt du, di mn P = { + t + t,, R} dengn R dlh himpunn ilngn rel. Dengn opersi penjumlhn polinom dn perklin sklr terhdp polinom, pkh P merupkn field? Bgin. Andikn V = {, R}. Dengn opersi penjumlhn di ntr nggot V, sert opersi perklin ntr nggot field F dengn nggot V, selidiki pkh V merupkn rung vektor?. Andikn V = {,, R}. dengn opersi penjumlhn pd V di definisikn : k + = dn opersi perklin pd V didefinisikn : k = k. k Selidiki pkh V merupkn rung vektor? Budi Murtis,, Ltihn. Rung Vektor Pge
3 Budi Murtis,, Ltihn. Rung Vektor Pge. Andikn V = {,, R}. dengn opersi penjumlhn pd V di definisikn : + = dn opersi perklin pd V didefinisikn : k = k k. Selidiki pkh V merupkn rung vektor?. Himpun semu polinom erderjt du P = { + t + t ; di mn,, R}. Opersi penjumlhn pd P dlh penjumlhn polinom, dn opersi perklin pd P dlh perklin sklr. Selidiki pkh P merupkn rung vektor?. Dikethui semrng field F dn X dlh himpunn ng tidk kosong. Pndnglh V seuh fungsi dri X into F. Jumlh du fungsi f, g V dlh seuh fungsi f + g V ng didefinisikn (f+g)() = f() + g(), dn Perklin sklr k F dengn fungsi f V dlh fungsi kf V g didefinisikn (kf)() = kf(). Selidiki pkh V merupkn rung vektor ts field F?. Selidiki pkh W merupkn supes dri V =, jik : () W = { + + = ;,, R} () W = { = ;,, R}. Andikn V =. Himpunn W merupkn himpunn gin dri V. Selidiki pkh himpunn W erikut ini merupkn suspe (rung vektor gin) dri V?. Jelskn jw sudr! () W = { = ;,, R}. () W = { 9 R}. 8. Andikn V =. Apkh W suspe dri V jik : () W = { + = ;,, R}
4 Budi Murtis,, Ltihn. Rung Vektor Pge () W = { + > ;,, R} () W = { = ;,, R} (d) W = { + = + ;,, R} 9. Andikn V =. Selidiki pkh W suspe dri V, jik: () W = { d d = + ;,,, d R}. () W = { d + + = + d;,,, d R}. Andikn V =. Jik himpunn U = { + = ;,, R} dn W = { + + =;,, R}, rilh U W. Tunjukkn jug hw: () U suspe V () W suspe V () U W suspe V Bgin. Andikn u =, w =, dn s =. Jik mungkin, ntkn s segi kominsi liner dri u, v, dn w!
5 Budi Murtis,, Ltihn. Rung Vektor Pge. Dikethui mtriks A =, dn himpunn vektor B = {B, B, B }, dengn B =, B =, dn B =. Jik mungkin, ntkn A segi kominsi liner dri vektor-vektor nggot B!.. Dikethui M =, A =, B =, dn C = 9. Jik mungkin, ntkn M segi kominsi liner dri A, B, dn C!. Dikethui V dlh rung vektor polinomil erderjt ts field ilngn rel R. Andikn u, v, w V di mn u = t + t t + t + t t +, dn w = t + 8t 8t +. Ntkn jik mungkin u, segi kominsi liner dri v dn w!. Andikn A =, B =, C =, dn M =. Jik mungkin, ntkn M segi kominsi liner dri A, B, dn C!. Dikethui himpunn P = {p, p, p } di mn polinom p = + t + t, p = + t + t, dn p = + t + t. Ntkn p = + t + t segi kominsi liner dri polinompolinom di dlm P.. Dikethui Q = {p, p, p } di mn polinom p = + t + t, p = + 8t t, dn p = + t. Ntkn p = - t + t segi kominsi liner dri polinom-polinom di dlm Q. 8. Selidiki pkh himpunn B = {,, } ini merupkn sistem pementuk gi, jik : () =, =, dn = () =, =, dn = 9. Selidiki pkh himpunn P = {p, p, p } ini merupkn sistem pementuk gi, jik : () p =, p =, dn p = () p =, p =, dn p =. Bgin. Untuk mtriks erikut ini, msing-msing rilh vektor-vektor ng memngun rung ris dn rung kolom.
6 Budi Murtis,, Ltihn. Rung Vektor Pge () A = () B =. Andikn u, v, w, dn s dlh vektor-vektor di. Dengn mtriks, jik mungkin ntkn vektor s segi kominsi liner dri vektor u, v, dn w, jik : () s =, dn w = () s =, dn w = 8. Andikn u, v, w, dn s dlh vektor-vektor di. Dengn mtriks, jik mungkin ntkn vektor s segi kominsi liner dri vektor u, v, dn w, jik : () s =, dn w = () s =, dn w =
Latihan 2 : Ruang Vektor dan Ruang Vektor Bagian
udi murtis, ums, ltihn rung vektor dn rung gin Pge Ltihn : Rung Vektor dn Rung Vektor Bgin Andikn V {, R} dengn opersi penjumlhn pd himpunn V di definisikn : dn opersi perklin pd V didefinisikn: k k k
RUANG VEKTOR (lanjut..)
RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field
PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS
PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn
ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum
LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.
BAB III TRANSFORMASI LINEAR
Diktt ljr Liner II BB III RNSFORMSI LINER DEFINISI RNSFORMSI LINER Jik V W msing msing lh rung vektor mk V W msing msing merupkn himpunn Dengn emikin pt iut sutu fungsi ntr V n W erkit engn struktur ri
BENTUK PANGKAT, AKAR DAN LOGARITMA
BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn
Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )
A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu
1. Pengertian Matriks
BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng
VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.
-1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor
RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :
RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI
didefinisikan sebagai bilangan yang dapat ditulis dengan b
1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,
A x = b apakah solusi x
MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.
Integral Tak Tentu dan Integral Tertentu
Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi
ALJABAR LINIER. Ruang Hasil Kali Dalam. Oleh : Kelompok VI / VB
ALJABAR LINIER Rung Hsil Kli Dlm Dosen Pengmpu : DARMADI, S.Si, M.Pd Oleh : Kelompok VI / VB 1. Agustin Syrswri ( 08411.060 ) 2. Chndr Andmri ( 08411.095 ) 3. Mei Citr D.A ( 08411.186 ) 4. Nur Alfin Lil
MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks
MATRIKS A. Pengertin, Notsi dn Bgin Dlm Mtriks Dlm kehidupn sehri-hri kit sering menemui dt tu informsi dlm entuk tel, seperti tel pertndingn sepkol, tel sensi kels, tel hrg tiket keret pi dn seginy..
MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.
MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn
Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :
TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut
SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan
SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi
A. PENGERTIAN B. DETERMINAN MATRIKS
ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom
BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN
DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom
Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan
III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f
MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...
MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik
IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits
Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah
VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B
selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik
Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk
Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik :
MATRIKS Segi gmrn wl mengeni mteri mtriks mri kit ermti urin erikut ini. Dikethui dt hsil penjuln tiket penerngn tujun Medn dn Sury dri seuh gen tiket selm empt hri erturut-turut disjikn dlm tel erikut.
Skew- Semifield dan Beberapa Sifatnya 1
Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: [email protected] Abstrk Sutu field ( lpngn ) F dlh struktur ljbr
RELASI EKUIVALENSI (Minggu ke-12 dan 13)
ELASI EKUIVALENSI (Minggu ke-1 dn 13) 1. elsi Ekuivlensi. Definisi 1. Dikethui A himpunn tidk kosong. elsi pd A (dri A ke A) diseut refleksif jik untuk setip nggot dri semestny erlku refleksif ( A).. Contoh:
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
RUANG VEKTOR REAL. Kania Evita Dewi
RUANG VEKTOR REAL Kni Eit Dewi Definisi Vektor dlh besrn yng mempnyi rh. Notsi: Notsi pnjng ektor: k j i ˆ ˆ ˆ Vektor stn Vektor dengn pnjng t norm sm dengn st Opersi ektor Penjmlhn ntr ektor Mislkn dn
MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ [email protected] DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
INTEGRAL TAK TENTU. x x x
INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh
M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.
M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil [email protected] JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng
VEKTOR. Adri Priadana. ilkomadri.com
VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti
, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional
Diktt Kulih TK Mtemtik BAB PENDAHULUAN. Sistem Bilngn Rel Terdpt eerp sistem ilngn itu: ilngn sli, ilngn ult, ilngn rsionl, ilngn irrsionl, dn ilngn rel. Msing-msing ilngn itu segi erikut. ) Bilngn sli
7. Ruang L 2 (a, b) f(x) 2 dx < }.
7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f
VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)
VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp
E-LEARNING MATEMATIKA
MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor
SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real
SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri
Materi IX A. Pendahuluan
Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn
Nuryanto,ST.,MT DIFERENSIAL FUNGSI MAJEMUK
Nurnto,ST,MT DIFERENSIAL FUNGSI MAJEMUK DIFERENSIASI ARSIAL dz q d p d o d q p o f dz z d d z f,,, Nurnto,ST,MT Nurnto,ST,MT = 4-6 z + z + z + 5 Diferensil prsil Diferensil totl Contoh z 8 18 6 z z 6z
3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi
BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i
LEMBAR KERJA SISWA. Pengurangan matriks A dengan B, dilakukan dengan menjumlahkan matriks A dengan matriks negatif (lawan) B.
LEMBAR KERJA SISWA Juul (Mteri Pokok) : Pengertin, Kesmn, Trnspos, Opersi n Sift Mtriks Mt Peljrn : Mtemtik Kels / Semester : XII / Wktu : menit Stnr Kompetensi : Menggunkn konsep mtriks, vektor n trnsformsi
Sudaryatno Sudirham. Matriks Dan Sistem Persamaan Linier
Sudrytno Sudirhm Mtriks Dn Sistem Persmn inier hn Kulih Teruk dlm formt pdf tersedi di www.uku-e.lipi.go.id dlm formt pps ernimsi tersedi di www.ee-cfe.org Mtrik dlh susunn tertur ilngn-ilngn dlm ris
Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.
Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu
3 PANGKAT, AKAR, DAN LOGARITMA
PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt
INTEGRAL. y dx. x dy. F(x)dx F(x)dx
Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl
UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/ IPA Hari/Tanggal :
UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER TAHUN PELAJARAN /9 Mt Peljrn : MATEMATIKA Kels/jurusn : XII/ IPA Hri/Tnggl : Wktu : menit. d... A. c B. c C. c D. c E. c. sin cos d... A. cos C B. cos C
MATERI I : VEKTOR. Pertemuan-01
MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn
Matriks. Pengertian. Lambang Matrik
triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn
Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)
Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh
Bab 3 M M 3.1 PENDAHULUAN
B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
02. OPERASI BILANGAN
0. OPERASI BILANGAN A. Mm-mm Bilngn Rel Dlm kehidupn sehri-hri dn dlm mtemtik ergi keterngn seringkli menggunkn ilngn yng is digunkn dlh ilngn sli. Bilngn dlh ungkpn dri penulisn stu tu eerp simol ilngn.
ELIPS. A. Pengertian Elips
ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi
CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS
CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...
FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi
FUNGSI TRANSENDEN I. Pendhulun. Pokok Bhsn Logritm Fungsi Eksponen.2 Tujun Mengethui entuk fungsi trnsenden dlm klkulus. Mengethui dn memhmi entuk fungsi trnseden itu logritm dn fungsi eksponen sert dlm
7. APLIKASI INTEGRAL
7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus
Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd
UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :
UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk
VEKTOR. seperti AB, AB, a r, a, atau a.
VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung
RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R.
REASI DAN FUNGSI A. REASI Adlh hubungn ntr elemen himpunn dengn elemen himpunn yng lin. Cr pling mudh untuk menytkn hubungn ntr elemen himpunn dlh dengn himpunn psngn terurut. Himpunn psngn terurut diperoleh
matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn
LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan
LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn
Vektor di R 2 dan R 3
Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl
Jika a dan b bilangan real serta n, p, q bilangan bulat positif, maka berlaku: a) a p a q = a p+q b) a p : a q = a p q
Modul : Pngkt dn Akr Pngkt ) Pngkt negtif dn nol Mislkn R dn 0, mk: ) n = ) 0 = tu n = n ) Sift Sift Pngkt n Jik dn ilngn rel sert n, p, q ilngn ult positif, mk erlku: ) p q = p+q ) p : q = p q p c) (
Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)
Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product
Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya.
2 Sumer: Dsr-Dsr Foto Jurnlistik, 2003 esrn yng memiliki esr dn rh diseut esrn vektor. Keceptn merupkn slh stu esrn vektor. Vektor Hsil yng hrus nd cpi: menerpkn konsep esrn Fisik dn pengukurnny. Setelh
Analisis Algoritma: Anany Levitin, Introduction to Design and Analysis of Algorithm, 3 rd Edition, Pearson Education, Inc.
Anlisis Algoritm: Anny Levitin, Introduction to Design nd Anlysis o Algorithm, 3 rd Edition, Person Eduction, Inc., Addison-Wesley Agend. B 4: Decrese-nd-Conquer Deinition Insertion Sort Topologicl Sort
Bilangan. Bilangan Nol. Bilangan Bulat (Z )
Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).
Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang
VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn
VEKTOR. Vektor vektor yang mempunyai panjang dan arah yang sama dinamakan ekuivalen.
VEKTOR Vektor dlh sesutu yng mempunyi esrn tu pnjng dn rh. Vektor dpt dinytkn ser geometris segi segmen segmen gris terrh tu pnh pnh di rung- tu rung- dengn rh pnh menentukn rh vektor dn pnjng pnh menytkn
LIMIT FUNGSI DAN KEKONTINUAN
LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:
INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018
Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep
Aljabar Linear Elementer
Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII rnsformsi Liner B VIII
Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri
Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn
BAB 1 PENDAHULUAN. f tidak semua bernilai nol dan a, b, disebut persamaan kuadrat di dalam variabel. atau disebut juga permukaan kuadrat;
PENDHULUN. Ltr elkng Dlm memhs permslhn-permslhn sttistik dn fisik sering dijumpi nlis-nlis mslh ng menngkut fungsi-fungsi non linier, misln mengeni entuk-entuk kudrt. entuk kudrt ng is digmrkn pd rung
Universitas Esa Unggul
ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin
Aljabar Linear Elementer
ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
BILANGAN BULAT. 1 Husein Tampomas, Rumus-rumus Dasar Matematika
BILANGAN BULAT. Oprersi Hitung pd Bilngn Bult Bilngn ult (integer) memut semu ilngn cch dn lwn (negtif) ilngn sli, yitu:,, 4,,, 1, 0, 1, 2, 3, 4,, Bilngn ult disjikn dlm gris ilngn segi erikut. Bilngn
DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.
DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.
2.Matriks & Vektor (1)
.triks & Vektor () t Kulih: ljbr Liner dn triks Semester Pendek T. / S Teknik Informtik Dosen Pengmpu: Heri Sismoro,.Kom. STIK IKO YOGYKRT Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 7 88 Fx 7-888 Website:
1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.
1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut
BAB 10. MATRIKS DAN DETERMINAN
Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut
Bab. Pangkat Tak Sebenarnya. A. Bilangan Berpangkat Bulat B. Bentuk Akar dan Pangkat Pecahan
B Sumer: www.h.dion.ne.jp Pngkt Tk Seenrny Di Kels VII, kmu telh mempeljri ilngn erpngkt positif. Pd ini, mteri terseut kn dihs leih dlm dn dikemngkn smpi dengn ilngn erpngkt negtif, nol, dn pehn. Dlm
TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN
Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri
INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:
INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh
Aljabar Linear Elementer
ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b
LEMBAR KERJA SISWA. Judul (Mteri Pokok) : Penggunn Integrl Tentu Untuk Menghitung Volume Bend Putr. Mt Peljrn : Mtemtik 3. Kels / Semester : II /. Wktu : 5 menit 5. Stndr Kompetensi :. Menggunkn konsep
Suku banyak. Akar-akar rasional dari
Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd
JURUSAN TEKNIK INFORMATIKA INSTITUT TEKNOLOGI ADHI TAMA SURABAYA (ITATS)
DIKTT LJBR LINIER Oleh: nit T. Kurniwti, MSi JURUSN TEKNIK INFORMTIK INSTITUT TEKNOLOGI DHI TM SURBY (ITTS) KT PENGNTR Diktt ini erisi sistem persmn linier (SPL), Determinn, invers, mtriks, vektor, rung
E-LEARNING MATEMATIKA
MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli
b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ
BAB 4 VEKTOR Stndr Kompetensi: 3. Menggunkn konsep mtriks, vektor, dn trnsformsi Kompetensi Dsr: 3.4 Menggunkn sift-sift dn opersi ljbr vktor dlm pemechn mslh 3.5 Menggunkn sift-sift dn opersi perklin
BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR
A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn
