RELASI EKUIVALENSI (Minggu ke-12 dan 13)
|
|
|
- Lanny Atmadjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 ELASI EKUIVALENSI (Minggu ke-1 dn 13)
2 1. elsi Ekuivlensi. Definisi 1. Dikethui A himpunn tidk kosong. elsi pd A (dri A ke A) diseut refleksif jik untuk setip nggot dri semestny erlku refleksif ( A).. Contoh: 1. elsi mencinti ntr orng-orng dlh relsi yng refleksif. elsi kesejjrn ntr gris-gris lurus dlh refleksif se sejjr dengn sendiri untuk setip gris. 3. elsi pd dengn 4. elsi F pd Z dengn definisi F jik ersift refleksif jik 7 merupkn relsi refleksif
3 Definisi. Dikethui relsi : S S. 1. elsi diseut non-refleksif : S. elsi diseut non-refleksif : S Contoh 1. elsi leih tinggi ntr orng-orng merupkn irrefleksif (non refleksif). Dikethui A = { } dn relsi pd S dengn dn. elsi nonrefleksif (tidk irrefleksif) 3. elsi F pd Z dengn definisi F 7 n merupkn relsi irrefleksif untuk 4 jik terdpt n N sehingg Teorem 1. Jik irrefleksif mk non refleksif
4 Definisi 3. elsi pd A diseut simetris jik untuk setip dri semestny erlku:. Notsi mtemtisny simetris ( A).. Contoh 1. elsi kesejjrn ntr gris-gris lurus.. elsi pd dengn jik 3. Dikethui n ilngn ult positif. elsi F pd Z dengn definisi F jik p Definisi 4. Dikethui relsi pd S. 1. non simetris : S. simetris : S 3. ntisimetris : S
5 Contoh 1. elsi pd himpunn kus P X dengn X merupkn relsi simetris.. elsi mencinti pd mnusi non simetris tpi tidk simetris 3. elsi pd Z dn N merupkn ntisimetris Teorem 3. simetris non simetris Definisi 5. elsi pd A diktkn trnsitif jik untuk setip tripel c di A erlku pil dn c mk c. Notsi mtemtisny Contoh 1. elsi pd Z dn N trnsitif ( cs). c c.. elsi pd himpunn kus P X dengn X
6 Definisi 6. Dikethui relsi pd himpunn S. 1. diktkn non-trnsitif : ( cs).( ) ( c) ( c). diktkn intrnsitif : ( cs).( ) ( c) ( c) Contoh: 1. Pd himpunn semu gris di 3 relsi tegk lurus ntr gris ersift non trnsitif tpi tidk intrnsitif. Pd himpunn semu gris di relsi tegk lurus ntr gris ersift intrnsitif Teorem 4. Semu relsi intrnsitif psti non trnsitif. Selikny jik non trnsitif mk elum tentu intrnsitif. Contoh: Pd himpunn semu gris di 3 relsi tegk lurus ntr gris ersift non trnsitif tpi tidk intrnsitif
7 Definisi 7. Sutu relsi yng sekligus memiliki sift refleksif simetris dn trnsitif diseut relsi ekuivlensi. Contoh : 1. elsi kesejjrn ntr gris gris lurus pd idng dtr.. elsi pd dengn jik 3. elsi kesengunn ntr segitig-segitg dlm idng dtr. 4. elsi pd himpunn kus P X dengn X 5. Dimil serng ilngn ult positif m > 1 dn relsi (kongruensi modulo) ntr ilngn-ilngn ult Z erikut ini: Didefinisikn relsi modulo m disingkt mod m didefinisikn segi erikut: (mod m) ( kz). = km
8 Keterngn: 1. Sift refleksif : - = 0.m sehingg (mod m).. Sift simetris : Jik = k.m mk = (-k)m (mod m) (mod m). 3. Sift trnsitif : Jik (mod m) dn c(mod m) mk = km dn c = lm k l Z Sehingg c = (k + l)m Jdi c(mod m). elsi modulo m diseut relsi kongruensi kren memenuhi: 1. (mod m) dn c d(mod m) + c + d(mod m). (mod m) dn c d(mod m) c d(mod m)
9 Definisi 8. Dikethui A himpunn tk kosong dn K = { H i i I } koleksi suhimpunn A. Koleksi K diseut prtisi A jik I H i A i dn i jh i H i I H i j Contoh 1. Mislkn A 1. Koleksi K = { (n n + 1 nn} merupkn prtisi A. Pd himpunn B = { c d g m} koleksi H = g c d m prtisi B Teorem 6. Serng relsi ekuivlensi ntr nggot-nggot himpunn A mengkitkn dny prtisi (penggolongn) di dlm A. Akit 7. Himpunn A tergi ts himpunn-himpunn gin (kels-kels) x A x A tidk kosong dn sling sing sehingg x A!. x A
10 Contoh Dimil relsi kongruensi modulo m ntr ilngn-ilngn ult. Untuk yitu : x x 0mod m x x mod m m m 0 m 0 m x x 1mod m m 1 m 11 m 1 m 1 1 Z x x m 1mod m m m 1 m m 1 m 1 m m 1 m 1 m 1 1 m 1 m 1 Kels-kels terseut : K 0 1 m 1
Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan
III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f
didefinisikan sebagai bilangan yang dapat ditulis dengan b
1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,
BAB VI RELASI DAN FUNGSI
BB VI ELSI DN FUNGSI 6.. Pendhulun Mteri pd ini teri menjdi du in yitu relsi dn unsi. Topik tentn relsi dihs pd Minu ke- meliputi penertin relsi jenis-jenis relsi dn relsi ekuivlensi yn memunulkn prtisi
TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN
Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri
TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN
Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri
BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN
DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom
A x = b apakah solusi x
MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.
ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum
LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.
RUANG VEKTOR (lanjut..)
RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field
Latihan 2. Ruang Vektor. Bagian 1
Ltihn. Rung Vektor Bgin. Andikn H = {,,,,, }. Opersi penjumlhn pd H dlh opersi penjumlhn modulo. Apkh H merupkh grup? Grup elin?. Dengn opersi penjumlhn modulo 8, selidiki pkh himpunn G merupkn Grup? Grup
Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )
A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu
LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan
LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn
Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,
INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:
INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh
CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga
ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik
INTEGRAL TAK TENTU. x x x
INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh
Graf Berarah (Digraf)
Grf Berrh (Digrf) Di dlm situsi yng dinmis, seperti pd komputer digitl tupun pd sistem lirn (flow system), konsep grf errh leih sering digunkn dindingkn dengn konsep grf tk errh. Apil rus sutu grf errh
ELIPS. A. Pengertian Elips
ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi
Integral Tak Tentu dan Integral Tertentu
Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi
selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik
Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk
Materi IX A. Pendahuluan
Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn
LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.
DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut
SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan
SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi
RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :
RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI
3. LIMIT DAN KEKONTINUAN
3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp
matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn
7. APLIKASI INTEGRAL
7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus
FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi
FUNGSI TRANSENDEN I. Pendhulun. Pokok Bhsn Logritm Fungsi Eksponen.2 Tujun Mengethui entuk fungsi trnsenden dlm klkulus. Mengethui dn memhmi entuk fungsi trnseden itu logritm dn fungsi eksponen sert dlm
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
Relasi Ekuivalensi dan Automata Minimal
Relsi Ekuivlensi dn Automt Miniml Teori Bhs dn Automt Semester Gnjil 01 Jum t, 1.11.01 Dosen pengsuh: Kurni Sputr ST, M.Sc Emil: [email protected] Jurusn Informtik Fkults Mtemtik dn Ilmu Pengethun Alm
Tiara Ariqoh Bawindaputri TIP / kelas L
Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk
1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.
1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut
VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.
-1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor
IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier
8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh
SIMAK UI DIMENSI TIGA
IMK I IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 0... 00 0 cos 0 cos cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk cm. itik M
DIMENSI TIGA 1. SIMAK UI
IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = 8 cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 8 8 80.. 8. 8 00 0 8 cos 8 0 8 cos 8 8 cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk
3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi
BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi
Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah
VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B
5. RELASI DAN FUNGSI. Gambar 5.1
5. RELSI DN FUNGSI 5. Relsi tu Pemetn Cr memsngkn nggot ke nggot Gmr 5. Hsil Kli Krtesin Mislkn n lh himpunn-himpunn. Hsil kli Krtesin engn (simol x ) lh himpunn semu psngn erurutn (, ) engn n. x {(, ),
BENTUK PANGKAT, AKAR DAN LOGARITMA
BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn
Integral Kompleks (Bagian Kesatu)
Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:[email protected], [email protected] (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl
A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA
Mtemtik SMA Semester B : Bentuk Pngkt,Akr & Logritm Mteri Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Kometensi Dsr : Menggunkn sift dn turn tentng ngkt, kr dn logritm dlm emechn mslh Kometensi Dsr : Melkukn
GEOMETRI BIDANG DATAR
GEOMETRI ING TR. Unsur-Unsur idng tr idng dtr merupkn jek yng sering kit jumpi di lingkungn sekitr, is lingkungn rumh, seklh, tmn, keun dn lin-lin. i dlm lingkungn terseut terdpt ermm-mm end/jek dengn
SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real
SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri
DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.
DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn
Jarak Titik, Garis dan Bidang dalam Ruang
Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.
MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL
MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut
Bab 3 M M 3.1 PENDAHULUAN
B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model
STATIKA (Reaksi Perletakan)
STTIK (Reksi erletkn) Meknik Rekys I Norm uspit, ST.MT. Tumpun Tumpun merupkn tempt perletkn konstruksi tu dukungn bgi konstruksi dlm meneruskn gy gyyng bekerj ke pondsi Dlm ilmu Meknik Rekys dikenl 3
PEMANTAPAN BELAJAR SMA BBS INTEGRAL
BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()
LIMIT FUNGSI DAN KEKONTINUAN
LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:
a 2 b 2 (a + b)(a b) Bentuk aljabar selisih dua kuadrat
SKL Nomor : Memhmi opersi entuk ljr, konsep persmn n pertiksmn liner, persmn gris, himpunn, relsi, fungsi, sistem persmn liner, sert menggunknny lm pemehn mslh.. Menglikn entuk ljr. * = * = * = (*)*(**)
IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2
GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.
Latihan 2 : Ruang Vektor dan Ruang Vektor Bagian
udi murtis, ums, ltihn rung vektor dn rung gin Pge Ltihn : Rung Vektor dn Rung Vektor Bgin Andikn V {, R} dengn opersi penjumlhn pd himpunn V di definisikn : dn opersi perklin pd V didefinisikn: k k k
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS
PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn
BAB III TRANSFORMASI LINEAR
Diktt ljr Liner II BB III RNSFORMSI LINER DEFINISI RNSFORMSI LINER Jik V W msing msing lh rung vektor mk V W msing msing merupkn himpunn Dengn emikin pt iut sutu fungsi ntr V n W erkit engn struktur ri
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik
MATERI I : VEKTOR. Pertemuan-01
MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn
INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu
INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C
3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar
. LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn
MATEMATIKA DIMENSI TIGA & RUANG
SOL N MSN SOL ilengkpi kunci jwbn dn embhsn setip nomor sol MMIK IMNSI I & RUN Untuk SM, SMK ersipn Ujin Nsionl opyright sol-uns.blogspot.com rtikel ini boleh dicopy, dikutip, di cetk dlm medi kerts tu
Soal Latihan dan Pembahasan Dimensi Tiga
Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di
RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:
INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi
LIMIT DAN KONTINUITAS
LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
3. LIMIT DAN KEKONTINUAN
. LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
VEKTOR. seperti AB, AB, a r, a, atau a.
VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
FUNGSI SMTS 1101 / 3SKS
FUNGSI SMTS 0 / SKS LOGIK MTEMTIK Disusun Oleh : Dr. Noerynti, M.Si 6 DFTR ISI Cover pokok hsn... 6 Dftr isi... 6 Judul Pokok hsn... 64 6.. Pengntr... 64 6.. Kompetensi... 64 6.. Urin Mteri... 64 6.. Definisi
Vektor di R 2 dan R 3
Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl
IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits
PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1
PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =
12. LUAS DAERAH DAN INTEGRAL
12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)
Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd
matematika WAJIB Kelas X FUNGSI K-13 A. Definisi Fungsi
K- Kels X mtemtik WAJIB FUNGSI TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu ihrpkn memiliki kemmpun erikut.. Memhmi iefinisi fungsi.. Memhmi omin n rnge fungsi liner.. Memhmi omin n rnge fungsi
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.
BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN
BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x
Suku banyak. Akar-akar rasional dari
Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd
MODUL 3: FINITE AUTOMATA
Diktt Kulih: Finite utomt uthor: Suryn Setiwn, MSc., Fk. Ilmu Komputer UI MODUL 3: FINITE UTOMT DEFINISI F Sutu Finite utomton (F) tu kdng-kdng diseut Finite Stte utomton (FS) dlh mesin yng dpt mengeni
VEKTOR. Adri Priadana. ilkomadri.com
VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti
BAB V INTEGRAL DARBOUX
Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower
3 PANGKAT, AKAR, DAN LOGARITMA
PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt
RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R.
REASI DAN FUNGSI A. REASI Adlh hubungn ntr elemen himpunn dengn elemen himpunn yng lin. Cr pling mudh untuk menytkn hubungn ntr elemen himpunn dlh dengn himpunn psngn terurut. Himpunn psngn terurut diperoleh
Bab. Fungsi. A. Relasi B. Fungsi atau Pemetaan C. Menghitung Nilai Fungsi
Sumer: Dokumentsi Penulis Fungsi Thukh kmu p yng dimksud dengn fungsi? Konsep fungsi merupkn slh stu konsep yng penting dlm mtemtik. nyk permslhn sehri-hri yng tnp disdri menggunkn konsep ini. Mislny,
F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49
11/9/01 Pet Konsep Jurnl Mteri Umum Pet Konsep Pngkt Rsionl Dftr Hdir Mteri F EKSPONEN DAN LOGARITMA Kels X, Semester 1 F. ritm Pngkt Bult Positif Pngkt Nol Pngkt Bult Negtif Bentuk Akr Pngkt Pechn SolLtihn
PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed
Prosiding Seminr Nsionl Thunn Mtemtik, Sins dn Teknologi 0 Universits Teruk Convention Center, 1 Oktoer 0 PERSAMAAN DIOPHANTINE NON LINEAR z Agus Sugndh 1, Agustini Tripen Surkti, Agung Prowo 3 1,,3) Stf
E-LEARNING MATEMATIKA
MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli
, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional
Diktt Kulih TK Mtemtik BAB PENDAHULUAN. Sistem Bilngn Rel Terdpt eerp sistem ilngn itu: ilngn sli, ilngn ult, ilngn rsionl, ilngn irrsionl, dn ilngn rel. Msing-msing ilngn itu segi erikut. ) Bilngn sli
7. Ruang L 2 (a, b) f(x) 2 dx < }.
7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f
SEMI KUASA TITIK TERHADAP ELIPS
RISMTI - ISSN : - 66 THUN VOL NO. GUSTUS 5 SEMI US TITI TERHD ELIS rnidsri Mshdi rtini Mhsisw rogrm Studi Mgister Mtemtik Universits Riu Jl. HR Soernts M 5 mpus in Wid Simpng ru eknru Riu 89 Emil: [email protected]
PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO]
PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] Jenis FSA Deterministic Finite Automt (DFA) Dri sutu stte d tept stu stte erikutny untuk setip simol msukn yng diterim Non-deterministic Finite Automt (NFA) Dri
Hendra Gunawan. 30 Oktober 2013
MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr
MODUL 6. Materi Kuliah New_S1
MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn
2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat
. Dikethui segitig ABC dengn sudut B= dn CT gris tinggi dri titik C. Jik BC = dn AT = mk tentukn AC! C A T B AC ( CT CT ) ( ). A dn B titik-titik ujung seuh terowongn yng diliht dri C dengn sudut liht
MODUL 4 PEUBAH ACAK. Peubah acak adalah suatu fungsi yang memetakan setiap elemen dari ruang sampel ke bilangan Real. X : S R
MODUL 4 EUBAH ACAK engntr Sutu percon melempr mt ung yng setimng senyk kli. Rung smpel dri percon terseut dlh S= { AAA, AGG, AGA, AAG, GAG, GGA, GAA, GGG } Sutu kejdin A : dri ketig lemprn nykny gmr sejumlh
INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS
INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusn Mtemtik FMIPA UNS e-mil: [email protected] ABSTRAK: Pernytn fungsi f :[, terintegrl Riemnn pd [, jik dn hny jik f kontinu hmpir
