RELASI EKUIVALENSI (Minggu ke-12 dan 13)

Ukuran: px
Mulai penontonan dengan halaman:

Download "RELASI EKUIVALENSI (Minggu ke-12 dan 13)"

Transkripsi

1 ELASI EKUIVALENSI (Minggu ke-1 dn 13)

2 1. elsi Ekuivlensi. Definisi 1. Dikethui A himpunn tidk kosong. elsi pd A (dri A ke A) diseut refleksif jik untuk setip nggot dri semestny erlku refleksif ( A).. Contoh: 1. elsi mencinti ntr orng-orng dlh relsi yng refleksif. elsi kesejjrn ntr gris-gris lurus dlh refleksif se sejjr dengn sendiri untuk setip gris. 3. elsi pd dengn 4. elsi F pd Z dengn definisi F jik ersift refleksif jik 7 merupkn relsi refleksif

3 Definisi. Dikethui relsi : S S. 1. elsi diseut non-refleksif : S. elsi diseut non-refleksif : S Contoh 1. elsi leih tinggi ntr orng-orng merupkn irrefleksif (non refleksif). Dikethui A = { } dn relsi pd S dengn dn. elsi nonrefleksif (tidk irrefleksif) 3. elsi F pd Z dengn definisi F 7 n merupkn relsi irrefleksif untuk 4 jik terdpt n N sehingg Teorem 1. Jik irrefleksif mk non refleksif

4 Definisi 3. elsi pd A diseut simetris jik untuk setip dri semestny erlku:. Notsi mtemtisny simetris ( A).. Contoh 1. elsi kesejjrn ntr gris-gris lurus.. elsi pd dengn jik 3. Dikethui n ilngn ult positif. elsi F pd Z dengn definisi F jik p Definisi 4. Dikethui relsi pd S. 1. non simetris : S. simetris : S 3. ntisimetris : S

5 Contoh 1. elsi pd himpunn kus P X dengn X merupkn relsi simetris.. elsi mencinti pd mnusi non simetris tpi tidk simetris 3. elsi pd Z dn N merupkn ntisimetris Teorem 3. simetris non simetris Definisi 5. elsi pd A diktkn trnsitif jik untuk setip tripel c di A erlku pil dn c mk c. Notsi mtemtisny Contoh 1. elsi pd Z dn N trnsitif ( cs). c c.. elsi pd himpunn kus P X dengn X

6 Definisi 6. Dikethui relsi pd himpunn S. 1. diktkn non-trnsitif : ( cs).( ) ( c) ( c). diktkn intrnsitif : ( cs).( ) ( c) ( c) Contoh: 1. Pd himpunn semu gris di 3 relsi tegk lurus ntr gris ersift non trnsitif tpi tidk intrnsitif. Pd himpunn semu gris di relsi tegk lurus ntr gris ersift intrnsitif Teorem 4. Semu relsi intrnsitif psti non trnsitif. Selikny jik non trnsitif mk elum tentu intrnsitif. Contoh: Pd himpunn semu gris di 3 relsi tegk lurus ntr gris ersift non trnsitif tpi tidk intrnsitif

7 Definisi 7. Sutu relsi yng sekligus memiliki sift refleksif simetris dn trnsitif diseut relsi ekuivlensi. Contoh : 1. elsi kesejjrn ntr gris gris lurus pd idng dtr.. elsi pd dengn jik 3. elsi kesengunn ntr segitig-segitg dlm idng dtr. 4. elsi pd himpunn kus P X dengn X 5. Dimil serng ilngn ult positif m > 1 dn relsi (kongruensi modulo) ntr ilngn-ilngn ult Z erikut ini: Didefinisikn relsi modulo m disingkt mod m didefinisikn segi erikut: (mod m) ( kz). = km

8 Keterngn: 1. Sift refleksif : - = 0.m sehingg (mod m).. Sift simetris : Jik = k.m mk = (-k)m (mod m) (mod m). 3. Sift trnsitif : Jik (mod m) dn c(mod m) mk = km dn c = lm k l Z Sehingg c = (k + l)m Jdi c(mod m). elsi modulo m diseut relsi kongruensi kren memenuhi: 1. (mod m) dn c d(mod m) + c + d(mod m). (mod m) dn c d(mod m) c d(mod m)

9 Definisi 8. Dikethui A himpunn tk kosong dn K = { H i i I } koleksi suhimpunn A. Koleksi K diseut prtisi A jik I H i A i dn i jh i H i I H i j Contoh 1. Mislkn A 1. Koleksi K = { (n n + 1 nn} merupkn prtisi A. Pd himpunn B = { c d g m} koleksi H = g c d m prtisi B Teorem 6. Serng relsi ekuivlensi ntr nggot-nggot himpunn A mengkitkn dny prtisi (penggolongn) di dlm A. Akit 7. Himpunn A tergi ts himpunn-himpunn gin (kels-kels) x A x A tidk kosong dn sling sing sehingg x A!. x A

10 Contoh Dimil relsi kongruensi modulo m ntr ilngn-ilngn ult. Untuk yitu : x x 0mod m x x mod m m m 0 m 0 m x x 1mod m m 1 m 11 m 1 m 1 1 Z x x m 1mod m m m 1 m m 1 m 1 m m 1 m 1 m 1 1 m 1 m 1 Kels-kels terseut : K 0 1 m 1

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

BAB VI RELASI DAN FUNGSI

BAB VI RELASI DAN FUNGSI BB VI ELSI DN FUNGSI 6.. Pendhulun Mteri pd ini teri menjdi du in yitu relsi dn unsi. Topik tentn relsi dihs pd Minu ke- meliputi penertin relsi jenis-jenis relsi dn relsi ekuivlensi yn memunulkn prtisi

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

Latihan 2. Ruang Vektor. Bagian 1

Latihan 2. Ruang Vektor. Bagian 1 Ltihn. Rung Vektor Bgin. Andikn H = {,,,,, }. Opersi penjumlhn pd H dlh opersi penjumlhn modulo. Apkh H merupkh grup? Grup elin?. Dengn opersi penjumlhn modulo 8, selidiki pkh himpunn G merupkn Grup? Grup

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

Graf Berarah (Digraf)

Graf Berarah (Digraf) Grf Berrh (Digrf) Di dlm situsi yng dinmis, seperti pd komputer digitl tupun pd sistem lirn (flow system), konsep grf errh leih sering digunkn dindingkn dengn konsep grf tk errh. Apil rus sutu grf errh

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi

Lebih terperinci

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh : RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi FUNGSI TRANSENDEN I. Pendhulun. Pokok Bhsn Logritm Fungsi Eksponen.2 Tujun Mengethui entuk fungsi trnsenden dlm klkulus. Mengethui dn memhmi entuk fungsi trnseden itu logritm dn fungsi eksponen sert dlm

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

Relasi Ekuivalensi dan Automata Minimal

Relasi Ekuivalensi dan Automata Minimal Relsi Ekuivlensi dn Automt Miniml Teori Bhs dn Automt Semester Gnjil 01 Jum t, 1.11.01 Dosen pengsuh: Kurni Sputr ST, M.Sc Emil: [email protected] Jurusn Informtik Fkults Mtemtik dn Ilmu Pengethun Alm

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

SIMAK UI DIMENSI TIGA

SIMAK UI DIMENSI TIGA IMK I IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 0... 00 0 cos 0 cos cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk cm. itik M

Lebih terperinci

DIMENSI TIGA 1. SIMAK UI

DIMENSI TIGA 1. SIMAK UI IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = 8 cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 8 8 80.. 8. 8 00 0 8 cos 8 0 8 cos 8 8 cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

5. RELASI DAN FUNGSI. Gambar 5.1

5. RELASI DAN FUNGSI. Gambar 5.1 5. RELSI DN FUNGSI 5. Relsi tu Pemetn Cr memsngkn nggot ke nggot Gmr 5. Hsil Kli Krtesin Mislkn n lh himpunn-himpunn. Hsil kli Krtesin engn (simol x ) lh himpunn semu psngn erurutn (, ) engn n. x {(, ),

Lebih terperinci

BENTUK PANGKAT, AKAR DAN LOGARITMA

BENTUK PANGKAT, AKAR DAN LOGARITMA BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:[email protected], [email protected] (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Mtemtik SMA Semester B : Bentuk Pngkt,Akr & Logritm Mteri Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Kometensi Dsr : Menggunkn sift dn turn tentng ngkt, kr dn logritm dlm emechn mslh Kometensi Dsr : Melkukn

Lebih terperinci

GEOMETRI BIDANG DATAR

GEOMETRI BIDANG DATAR GEOMETRI ING TR. Unsur-Unsur idng tr idng dtr merupkn jek yng sering kit jumpi di lingkungn sekitr, is lingkungn rumh, seklh, tmn, keun dn lin-lin. i dlm lingkungn terseut terdpt ermm-mm end/jek dengn

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

STATIKA (Reaksi Perletakan)

STATIKA (Reaksi Perletakan) STTIK (Reksi erletkn) Meknik Rekys I Norm uspit, ST.MT. Tumpun Tumpun merupkn tempt perletkn konstruksi tu dukungn bgi konstruksi dlm meneruskn gy gyyng bekerj ke pondsi Dlm ilmu Meknik Rekys dikenl 3

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

a 2 b 2 (a + b)(a b) Bentuk aljabar selisih dua kuadrat

a 2 b 2 (a + b)(a b) Bentuk aljabar selisih dua kuadrat SKL Nomor : Memhmi opersi entuk ljr, konsep persmn n pertiksmn liner, persmn gris, himpunn, relsi, fungsi, sistem persmn liner, sert menggunknny lm pemehn mslh.. Menglikn entuk ljr. * = * = * = (*)*(**)

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

Latihan 2 : Ruang Vektor dan Ruang Vektor Bagian

Latihan 2 : Ruang Vektor dan Ruang Vektor Bagian udi murtis, ums, ltihn rung vektor dn rung gin Pge Ltihn : Rung Vektor dn Rung Vektor Bgin Andikn V {, R} dengn opersi penjumlhn pd himpunn V di definisikn : dn opersi perklin pd V didefinisikn: k k k

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

BAB III TRANSFORMASI LINEAR

BAB III TRANSFORMASI LINEAR Diktt ljr Liner II BB III RNSFORMSI LINER DEFINISI RNSFORMSI LINER Jik V W msing msing lh rung vektor mk V W msing msing merupkn himpunn Dengn emikin pt iut sutu fungsi ntr V n W erkit engn struktur ri

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

MATEMATIKA DIMENSI TIGA & RUANG

MATEMATIKA DIMENSI TIGA & RUANG SOL N MSN SOL ilengkpi kunci jwbn dn embhsn setip nomor sol MMIK IMNSI I & RUN Untuk SM, SMK ersipn Ujin Nsionl opyright sol-uns.blogspot.com rtikel ini boleh dicopy, dikutip, di cetk dlm medi kerts tu

Lebih terperinci

Soal Latihan dan Pembahasan Dimensi Tiga

Soal Latihan dan Pembahasan Dimensi Tiga Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

FUNGSI SMTS 1101 / 3SKS

FUNGSI SMTS 1101 / 3SKS FUNGSI SMTS 0 / SKS LOGIK MTEMTIK Disusun Oleh : Dr. Noerynti, M.Si 6 DFTR ISI Cover pokok hsn... 6 Dftr isi... 6 Judul Pokok hsn... 64 6.. Pengntr... 64 6.. Kompetensi... 64 6.. Urin Mteri... 64 6.. Definisi

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

matematika WAJIB Kelas X FUNGSI K-13 A. Definisi Fungsi

matematika WAJIB Kelas X FUNGSI K-13 A. Definisi Fungsi K- Kels X mtemtik WAJIB FUNGSI TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu ihrpkn memiliki kemmpun erikut.. Memhmi iefinisi fungsi.. Memhmi omin n rnge fungsi liner.. Memhmi omin n rnge fungsi

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

MODUL 3: FINITE AUTOMATA

MODUL 3: FINITE AUTOMATA Diktt Kulih: Finite utomt uthor: Suryn Setiwn, MSc., Fk. Ilmu Komputer UI MODUL 3: FINITE UTOMT DEFINISI F Sutu Finite utomton (F) tu kdng-kdng diseut Finite Stte utomton (FS) dlh mesin yng dpt mengeni

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R.

RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R. REASI DAN FUNGSI A. REASI Adlh hubungn ntr elemen himpunn dengn elemen himpunn yng lin. Cr pling mudh untuk menytkn hubungn ntr elemen himpunn dlh dengn himpunn psngn terurut. Himpunn psngn terurut diperoleh

Lebih terperinci

Bab. Fungsi. A. Relasi B. Fungsi atau Pemetaan C. Menghitung Nilai Fungsi

Bab. Fungsi. A. Relasi B. Fungsi atau Pemetaan C. Menghitung Nilai Fungsi Sumer: Dokumentsi Penulis Fungsi Thukh kmu p yng dimksud dengn fungsi? Konsep fungsi merupkn slh stu konsep yng penting dlm mtemtik. nyk permslhn sehri-hri yng tnp disdri menggunkn konsep ini. Mislny,

Lebih terperinci

F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49

F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49 11/9/01 Pet Konsep Jurnl Mteri Umum Pet Konsep Pngkt Rsionl Dftr Hdir Mteri F EKSPONEN DAN LOGARITMA Kels X, Semester 1 F. ritm Pngkt Bult Positif Pngkt Nol Pngkt Bult Negtif Bentuk Akr Pngkt Pechn SolLtihn

Lebih terperinci

PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed

PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed Prosiding Seminr Nsionl Thunn Mtemtik, Sins dn Teknologi 0 Universits Teruk Convention Center, 1 Oktoer 0 PERSAMAAN DIOPHANTINE NON LINEAR z Agus Sugndh 1, Agustini Tripen Surkti, Agung Prowo 3 1,,3) Stf

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional Diktt Kulih TK Mtemtik BAB PENDAHULUAN. Sistem Bilngn Rel Terdpt eerp sistem ilngn itu: ilngn sli, ilngn ult, ilngn rsionl, ilngn irrsionl, dn ilngn rel. Msing-msing ilngn itu segi erikut. ) Bilngn sli

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

SEMI KUASA TITIK TERHADAP ELIPS

SEMI KUASA TITIK TERHADAP ELIPS RISMTI - ISSN : - 66 THUN VOL NO. GUSTUS 5 SEMI US TITI TERHD ELIS rnidsri Mshdi rtini Mhsisw rogrm Studi Mgister Mtemtik Universits Riu Jl. HR Soernts M 5 mpus in Wid Simpng ru eknru Riu 89 Emil: [email protected]

Lebih terperinci

PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO]

PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] Jenis FSA Deterministic Finite Automt (DFA) Dri sutu stte d tept stu stte erikutny untuk setip simol msukn yng diterim Non-deterministic Finite Automt (NFA) Dri

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

MODUL 6. Materi Kuliah New_S1

MODUL 6. Materi Kuliah New_S1 MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn

Lebih terperinci

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat . Dikethui segitig ABC dengn sudut B= dn CT gris tinggi dri titik C. Jik BC = dn AT = mk tentukn AC! C A T B AC ( CT CT ) ( ). A dn B titik-titik ujung seuh terowongn yng diliht dri C dengn sudut liht

Lebih terperinci

MODUL 4 PEUBAH ACAK. Peubah acak adalah suatu fungsi yang memetakan setiap elemen dari ruang sampel ke bilangan Real. X : S R

MODUL 4 PEUBAH ACAK. Peubah acak adalah suatu fungsi yang memetakan setiap elemen dari ruang sampel ke bilangan Real. X : S R MODUL 4 EUBAH ACAK engntr Sutu percon melempr mt ung yng setimng senyk kli. Rung smpel dri percon terseut dlh S= { AAA, AGG, AGA, AAG, GAG, GGA, GAA, GGG } Sutu kejdin A : dri ketig lemprn nykny gmr sejumlh

Lebih terperinci

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusn Mtemtik FMIPA UNS e-mil: [email protected] ABSTRAK: Pernytn fungsi f :[, terintegrl Riemnn pd [, jik dn hny jik f kontinu hmpir

Lebih terperinci