Matriks. Pengertian. Lambang Matrik

Ukuran: px
Mulai penontonan dengan halaman:

Download "Matriks. Pengertian. Lambang Matrik"

Transkripsi

1 triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn huruf besr, sedngkn entri (elemen) dilmbngkn dengn huruf kecil. trik mempunyi ukurn yng disebut Ordo yng menytkn bnyk bris bnyk kolom mbng trik Secr umum sebuh mtrik dpt ditulis: n n A m m mn tu penulisn yng lebih singkt : A [ ij ] dengn i,,..., m dn j,,..., n. Indek pertm (i) menytkn bris ke-i dn indeks kedu (j) menytkn kolom ke-j.

2 Contoh triks A π B sin, ln e Dlm contoh di ts ordo(a) dn ordo(b) b tidk d b sin Persmn trik jik ordony sm dn entri yng seletk bernili sm, mtrik A dn B dlh sm ditulis AB Contoh: Jik A dn B b c dn AB, mk -, b, dn c. c b Jenis triks (/) trik Bujursngkr bnyk bris bnyk kolom A Digonl Utm trik Segitig Ats, mtrik bujursngkr yng semu entri di bwh digonl utm bernili nol n n O 9 nn

3 Jenis triks (/) trik Segitig Bwh, mtrik bujursngkr yng semu entri di ts digonl utm bernili nol trik Digonl, mtrik bujursngkr yng semu entri di lur digonl utm bernili nol nn n n O 9 nn O 9 Jenis triks (/) trik Stun, mtrik digonl yng entri pd digonl utm bernili stu, lmbng: I n, n menytkn ordo mtrik stun trik sklr, mtrik digonl yng semu entri pd digonl utm bernili sm, slkn tidk nol. tuc. Efek dri perklin sebrng mtrik dengn mtrik sklr dlh seperti menglikn mtrik sebrng tersebut dengn sklr c. I I I Jenis triks (/) trik Nol, mtrik yng semu entriny nol. Dengn lmbng: O jik ordo dipentingkn ditulis O untuk menytkn mtrik nol dengn ordo c c c O O c ci n O O

4 Jenis triks (/) trik Invers, mtrik bujursngkr A disebut mempunyi invers, jik terdpt mtrik B, sehingg memenuhi BAABI, lmbng: invers mtrik B bisny dinytkn oleh A - Untuk mtrik berordo, telh diberikn rumus pencrinny, yitu: c d c A, mk A - d bc b d b A, mk A -.. Jenis trik (/) Untuk mencri invers mtrik bujursngkr dengn ordo lebih dri, kn dibicrkn pd bgin berikutny. etode yng digunkn d du, yitu: menggunkn mtrik elementer (eliminsi Guss-Jordn) dn menggunkn determinn bersm dengn mtrik djoin. Nmun dsr untuk menghitungny tetp hrus memperhtikn eliminsi Guss dn definisi determinn. Contoh Apkh mtrik di bwh ini termsuk: mtriks segitig ts, segitig bwh, digonl, tukh sklr?

5 Jwb Termsuk mtrik segitig ts Termsuk mtrik segitig bwh Termsuk mtrik digonl Bukn mtrik sklr, kren entry pd digonl utm nol semu, wlupun sm semu Jenis triks (/) trik Simetri, yitu mtriks bujursngkr yng memenuhi sift A A T trik Skew-Simetri, mtrik bujur sngkr yng memenuhi syrt A T -A. Contoh Jik mtrik A di bwh ini termsuk mtrik skew-simetri, tentukn, b, dn c A Jwb: b c b AT -A c b c Sehingg didpt persmn-persmn: -, b, c -, -, -b, -c, berrti: -, b, dn c -

6 Opersi triks Penjumlhn trik Perklin trik dengn Sklr Trnspos trik Perklin Du trik Trse trik Penjumlhn mtrik Jik A[ ij ], dn B[b ij ] Jumlh mtrik A dn B ditulis: C A B Syrt: ordo A ordo B Aturn: c ij ij b ij {entri yng seletk dijumlhkn} Contoh A, B, C Hitung: AB, BC Jwb: ( ) AB ( ) AB BCtidk terdefinisi, kren ordo C ordo B bck

7 Perklin dengn Sklr A[ ij ] dn k sklr, mk: ka[k ij ]{semu entri diklikn dengn k} (-) ( ). ( ).( ) ( ). ( ). ( ). ( ).( ) Akibt: -A (-)A, sehingg A B A (-B) bck Trnspos mtrik A[ ij ], i,,..., n ; j,,..., m Jik BA T, dn B[b ji ], mk b ji ji {kolom mtrik A menjdi bris mtrik A T } A A T bck Perklin du trik A [ ij ], i,,..., n dn j,,..., m B[b jk ], k,,..., p {bnyk kolom Abnyk bris B} CAB m c ik i b k i b k im b mk ij b jk j r ki b r vektor bris ke-i dri mtrik A vektor kolom ke-k dri mtrik B entri mtrik C dlh: c ik r i b r k

8 Contoh Perklin trik (/ ) A, B, dn CAB c [ ] - c [ ] 9 c [ ] - Contoh Perklin trik (/) c [ ] -9-9 CAB 9 9 bck Trse mtrik A[ ij ], i,,..., n dn j,,..., n {hrus mtrik bujur sngkr} Trse(A) nn {penjumlhn dri seluruh entri pd digonl utm} A, trse(a)

9 Sift-sift Opersi trik (/) Terhdp opersi penjumlhn dn perklin dengn sklr. ABBA {sift komuttif}. (AB)CA(BC) {sift sositif}. AOOAA {sift mtrik nol, identits penjumlhn}. A(-A) -AAO {sift negtif mtrik}. k(ab)kakb {sift distributif terhdp sklr k}. (kl)akala {sift distributif terhdp sklr k dn l}. (kl)ak(la) {sift sositif terhdp perklin sklr}. AA {sift perklin dengn sklr (stu)} Kedelpn sift ini, nntiny kn dinytkn sebgi ksiom (kebenrn tnp perlu dibuktikn) sebgi syrt berlkuny Rung Vektor Sift-sift Opersi trik (/) 9. AB BA {tidk berlku komuttif perklin}. (AB)CA(BC) {sift sositif}. AIIAA {sift mtrik stun, identits perklin}. AOOAO {sift mtrik nol}. (AB) T A T B T {sift trnspos mtrik terhdp penjumlhn}. Jik ABO, tidk dijmin berlku: AO tu BO tu BAO. (ka)bk(ab)a(kb) Contoh AB BA AB BA Sehingg: AB BA 9

10 Contoh AB A B AB, berrti ABO BA Tetpi, berrti BA O Sift-sift Opersi trik (/). trse(ab) trse(a) trse(b). trse(a T ) trse(a). trse(ka) k trse(a) 9. trse(i nn ) n Sift-sift Opersi trik (/). (AB)CACBC. C(AB)CACB. (AB) T B T A T {urutn opersi diblik}. (ka) T ka T. A n AA A, jik n, dn I, jik n. A r A s A rs, jik r dn s bilngn sli. k n k k k d d d D Sebnyk n

11 Contoh Tmbhn (/) T T 9 Jik A, dn B (A B) T A T B T (AB) T A T B T B T A T Contoh Tmbhn (/) T (½B) T ½B T ½ A IA A, dn B Contoh Tmbhn (/) trse(a) trse(b) (-) trse(ab) trse( ) 9 A AA A A A A, dn B

12 Tntngn A. Jik Hitunglh:. BA, AB. E,E,E,. A A I,(AI),. (BC - D) T, C T B T D T,. C(BA), C(B)A, (CB)(A),. trse(a E) A B C D E Tntngn B. Tentukn persmn-persmn dlm vribelvribel, y, z, dn w, yng terbentuk, sehingg berlku persmn mtrik di bwh ini: z z y w w z y y - Tntngn C. Tentukn syrt gr berlku: (A B) A AB B, jik A dn B berordo D. Tentukn syrt gr berlku: A B (A - B)(A B), jik A dn B berordo E. Tentukn persmn-persmn dlm vribel-vribel, y, dn z, sehingg persmn memenuhi persmn mtrik berikut: z y z y y 9

13 Tntngn F. Tunjukkn bhw Sistem Persmn inier : y y dpt dinytkn sebgi persmn AXB [petunjuk: tentukn mtrik A, X dn B] G. Jik mtrik A, X, dn B hsil dri sol di ts tentukn invers A tu A - dn tentukn solusi persmn AXB, dengn mengingt sift I AA -. H. Tunjukkn bhw, jik A mtrik skew-simetri, mk trce(a) Tntngn I. Buktikn jik D mtrik digonl, mk D k dlh mtrik digonl yng entri-entriny dlh entri pd digonl utm D dipngktkn k. J. Tunjukkn bhw jik A mtrik bujursngkr, mk mtrik S ½(A A T ) dlh mtrik simetri. K. Tunjukkn bhw jik A mtrik bujursngkr, mk mtrik R ½(A -A T ) dlh mtrik skew-simetri.. Dri kedu mtrik pd du sol di ts, tunjukkn berlku hubungn A S R.. Jik A mtrik bujursngkr, tunjukkn bhw AA T berbentuk mtrik simetri.

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ tinprdj.mth@gmil.com DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu

Lebih terperinci

1. Pengertian Matriks

1. Pengertian Matriks BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik :

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik : MATRIKS Segi gmrn wl mengeni mteri mtriks mri kit ermti urin erikut ini. Dikethui dt hsil penjuln tiket penerngn tujun Medn dn Sury dri seuh gen tiket selm empt hri erturut-turut disjikn dlm tel erikut.

Lebih terperinci

1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut:

1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut: triks dn opersiny by yudiri ATRIKS DAN OPERASINYA. triks dn Jenisny Definisi: trik A berukurn x n ilh sutu susunn ngk dl persegi ept ukurn x n, sebgi berikut: A = n n n triks berukurn (ordo) x n. tu A

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

2.Matriks & Vektor (1)

2.Matriks & Vektor (1) .triks & Vektor () t Kulih: ljbr Liner dn triks Semester Pendek T. / S Teknik Informtik Dosen Pengmpu: Heri Sismoro,.Kom. STIK IKO YOGYKRT Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 7 88 Fx 7-888 Website:

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks MATRIKS A. Pengertin, Notsi dn Bgin Dlm Mtriks Dlm kehidupn sehri-hri kit sering menemui dt tu informsi dlm entuk tel, seperti tel pertndingn sepkol, tel sensi kels, tel hrg tiket keret pi dn seginy..

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

Matematika Lanjut 1. Onggo Wiryawan

Matematika Lanjut 1. Onggo Wiryawan Mtemtik Lnjut 1 Onggo Wirywn Setip mtriks persegi tu bujur sngkr memiliki nili determinn Nili determinn sklr Mtriks Singulr= Mtriks yng determinnny bernili 0 Determinn & Invers - Onggo Wr 2 Mislkn A sutu

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ BAB 4 VEKTOR Stndr Kompetensi: 3. Menggunkn konsep mtriks, vektor, dn trnsformsi Kompetensi Dsr: 3.4 Menggunkn sift-sift dn opersi ljbr vktor dlm pemechn mslh 3.5 Menggunkn sift-sift dn opersi perklin

Lebih terperinci

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin

Lebih terperinci

Sistem Persamaan Linier

Sistem Persamaan Linier b I Sistem Persmn Linier I Sistem Persmn Linier TUJUN PEMELJRN: Mhsisw memhmi konsep-konsep tentng sistem persmn linier, eksistensi dn keunikn sistem persmn linier, keunikn sistem persmn linier homogen,

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

Modul 1. Pendahuluan

Modul 1. Pendahuluan Modul Pendhulun.. Pengertin Mtriks Definisi. (Pengertin Mtriks) Mtriks didefinisikn sebgi sutu susunn bilngn berbentuk segiempt. Bilngnbilngn yng terdpt dlm susunn itu disebut elemen mtriks tersebut. Secr

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

Topik: Matriks Dan Sistem Persamaan Linier

Topik: Matriks Dan Sistem Persamaan Linier Mt Kulih: Mtemtik Kode: TKF Topik: Mtriks Dn Sistem Persmn Linier MAT Kompetensi : Dpt menerpkn konsep-konsep mtriks dn sistem persmn linier dlm mempeljri konsep-konsep keteknikn pd mt kulih mt kulih progrm

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

BAB I PENDAHULUAN. Sebuah sistem sebarang yang terdiri dari m persamaan linear dengan n M M M M M

BAB I PENDAHULUAN. Sebuah sistem sebarang yang terdiri dari m persamaan linear dengan n M M M M M BAB I PENDAHUUAN Sebuh sistem sebrng yng teriri ri m persmn liner engn n bilngn tk ikethui kn ituliskn sebgi : x + x +... + n x n = b x + x +... + n x n = b n x + n x +... + nn x n = b n imn x, x,...,

Lebih terperinci

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ).

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ). BAB I MATRIKS Aljbr mtriks merupkn slh stu cbng mtemtik yng dikembngkn oleh seorng mtemtikwn Inggris Arthur Cyley (8 89) Mtriks berkembng kren pernnny dlm cbng-cbng Mtemtik linny, mislny bidng ekonomi,

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 3

Aljabar Linier & Matriks. Tatap Muka 3 Aljbr Linier & Mtriks Ttp Muk Eliminsi Guss-Jordn Sistem persmn linier dengn n vribel dn m persmn secr umum dinytkn sbg: Sistem persmn linier tsb dpt dinytkn dlm bentuk mtriks sbb: A x X = b dengn A dlh

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

Matriks. Bab II. Motivasi. Tujuan Pembelajaran

Matriks. Bab II. Motivasi. Tujuan Pembelajaran Mtriks Bb II Mtriks Sumber: Ensiklopedi Peljr, 999 Motivsi Secr umum mtriks merupkn sutu dftr yng berisi ngkngk dn ditulis di dlm tnd kurung. Dftr-dftr yng dpt ditulis dlm bentuk mtriks, mislny perolehn

Lebih terperinci

MODUL 2 DETERMINAN DAN INVERS MATRIKS

MODUL 2 DETERMINAN DAN INVERS MATRIKS MODUL DETERMINN DN INVERS MTRIKS.. Determinn Definisi. (Determinn) Untuk setip mtriks berukurn n x n, yng dikitkn dengn sutu bilngn rel dengn sift tertentu dinmkn determinn, dengn notsi dri determinn mtriks

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

Hands Out Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd.

Hands Out Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd. Hnds Out Mt Kulih: Aljbr Mtriks ( SKS) Dosen: Dr. Hj Ade Rohyti, M. Pd. No. Indiktor Urin Mteri. menyebutkn definisi mtriks.. membut beberp contoh mtriks dengn menggunkn notsi yng tept.. menentukn ordo

Lebih terperinci

III. Bab. Matriks. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

III. Bab. Matriks. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bb III Mtriks 79 Tujun Pembeljrn Setelh mempeljri bb ini, dihrpkn klin dpt. menjelskn ciri sutu mtriks;. menuliskn informsi dlm bentuk mtriks;. melkukn opersi ljbr ts du mtriks; 4. menentukn determinn

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

Handout Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd.

Handout Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd. Hndout Mt Kulih: Aljbr Mtriks ( SKS) Dosen: Dr. Hj Ade Rohyti, M. Pd. No. Indiktor Urin Mteri. menyebutkn definisi mtriks.. membut beberp contoh mtriks dengn menggunkn notsi yng tept.. menentukn ordo dri

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

BAB II LANDASAN TEORI. himpunan bilangan bulat dan diberi simbol dengan hurup besar B. Anggota

BAB II LANDASAN TEORI. himpunan bilangan bulat dan diberi simbol dengan hurup besar B. Anggota BB II LNDSN EORI. Bilngn Bult Himpunn bilngn bilngn {..,-,-,-,,,,,..} disebut himpunn bilngn bult dn diberi simbol dengn hurup besr B. nggot nggot dri {-,-,-,..} disebut bilngn bilngn bult negtif. Definisi

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

Sistem Persamaan Linear Bagian 1

Sistem Persamaan Linear Bagian 1 Sistem Persmn Liner Bgin. SISTEM PERSAMAAN LINEAR PENGANTAR Dlm bgin ini kn kit perkenlkn istilh dsr dn kit bhs sebuh metode untuk memechkn sistem-sistem persmn liner. Sebuh gris dlm bidng xy secr ljbr

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

Sistem Persamaan Linear

Sistem Persamaan Linear TE 67 Teknik Numerik Sistem Liner Sistem Persmn Liner Trihstuti Agustinh Bidng Studi Teknik Sistem Pengturn Jurusn Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS Mtriks A dn mtriks B diktkn sm (A = B), jik dn hny jik: 1. Ordo mtriks A sm dengn ordo mtriks B 2. Setip elemen yng seletk pd mtriks A

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

Sudaryatno Sudirham. Matriks Dan Sistem Persamaan Linier

Sudaryatno Sudirham. Matriks Dan Sistem Persamaan Linier Sudrytno Sudirhm Mtriks Dn Sistem Persmn inier hn Kulih Teruk dlm formt pdf tersedi di www.uku-e.lipi.go.id dlm formt pps ernimsi tersedi di www.ee-cfe.org Mtrik dlh susunn tertur ilngn-ilngn dlm ris

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi

Lebih terperinci

1. Introduction. Aljabar Linear dan Matriks Semester Pendek TA 2009/2010 S1 Teknik Informatika. Mata Kuliah: Dosen Pengampu: Heri Sismoro, M.Kom.

1. Introduction. Aljabar Linear dan Matriks Semester Pendek TA 2009/2010 S1 Teknik Informatika. Mata Kuliah: Dosen Pengampu: Heri Sismoro, M.Kom. 1. Introduction Mt Kulih: Aljbr Liner dn Mtriks Semester Pendek TA 9/1 S1 Teknik Informtik Dosen Pengmpu: Heri Sismoro, M.Kom. STMIK AMIKOM YOGYAKARTA Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 74 8841

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

DAFTAR ISI. DAFTAR ISI... iii

DAFTAR ISI. DAFTAR ISI... iii DAFTAR ISI DAFTAR ISI... iii BAB I MATRIKS DAN OPERASINYA.... Konsepsi Mtriks.... Opersi Aljbr Mtriks.... Trnspose dri Sutu Mtriks... 5. Beberp Jenis Mtriks Khusus... 5.5 Trnsformsi Elementer... 8.6 Rnk

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

GEOMETRI PADA BIDANG: VEKTOR

GEOMETRI PADA BIDANG: VEKTOR GEOMETRI PADA BIDANG: VEKTOR A. Kurv Bidng: Representsi Prmetrik Sutu kurv bidng ditentukn oleh sepsng persmn prmetrik: x f () t, y f () t t dlm intervl I dengn f dn g kontinu pd intervl I. Secr umum,

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

BILANGAN BULAT. 1 Husein Tampomas, Rumus-rumus Dasar Matematika

BILANGAN BULAT. 1 Husein Tampomas, Rumus-rumus Dasar Matematika BILANGAN BULAT. Oprersi Hitung pd Bilngn Bult Bilngn ult (integer) memut semu ilngn cch dn lwn (negtif) ilngn sli, yitu:,, 4,,, 1, 0, 1, 2, 3, 4,, Bilngn ult disjikn dlm gris ilngn segi erikut. Bilngn

Lebih terperinci

A. Kompetensi Dasar : Menyelesaikan sistem persamaan linear. B. Materi : 1. Sistem Persamaan Linear dan Matriks 2. Determinan

A. Kompetensi Dasar : Menyelesaikan sistem persamaan linear. B. Materi : 1. Sistem Persamaan Linear dan Matriks 2. Determinan (Oleh: Winit Sulndri, M.Si) A. Kompetensi Dsr : Menyelesikn sistem persmn liner B. Mteri :. Sistem Persmn Liner dn Mtriks. Determinn C. Indiktor :. Mendefinisikn persmn liner dn sistem persmn liner. Mengenl

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci