Skew- Semifield dan Beberapa Sifatnya 1
|
|
|
- Siska Budiman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: [email protected] Abstrk Sutu field ( lpngn ) F dlh struktur ljbr yng melibtkn du opersi biner yng disebut penjumlhn ( dinotsikn dengn + ) dn perklin (yng dinotsikn dengn. ) sedemikin sehingg (F, ) dn (F,.) msing msing membentuk grup belin dn memenuhi ksiom distributive. Dengn menghilngkn beberp ksiom pd field, mk diperoleh struktur-struktur bru yng merupkn generlissi dri field. Pd tulisn ini kn dibhs slh stu generlissi dri field yng disebut dengn skew-semifield dn beberp siftny. Skew-semifield S dlh semiring komuttif terhdp jumlh dengn elemen nol sedemikin sehingg S \,. merupkn grup. Dri hsil kjin diperoleh hsil bhw: Jik S skew semifield yng memut elemen tk nol yng mempunyi invers jumlh mk S dlh skew semifield. Hsil lin diperoleh bhw: Skew semifield S memut pling bnyk stu elemen sedemikin sehingg dn. Lebih lnjut jik S mempunyi sift demikin, mk untuk setip di S. Kt Kunci: Semiring, semifield, skew-field, skew-semifield A. Pendhulun Dlm kjin struktur ljbr, seringkli dikji sift-sift yng msih berlku mupun sift-sift bru yng muncul pd sutu struktur bru yng diperoleh dengn menghilngkn beberp iom ( generlissi ) tu dengn menmbh beberp ksiom pd struktur ljbr sebelumny. Mislkn ring ( gelnggng ) R dlh himpunn tk kosong R bersm du opersi biner + ( penjumlhn ) dn opersi biner. ( perklin ) sedemikin sehingg (R, ) membentuk grup belin, (R,.) membentuk semigrup dn berlku sift distributif knn mupun kiri ( Adkin & Weintrub: p. 49 ). Ring (R,,.) diktkn mempunyi elemen identits jik terdpt R sedemikin sehingg Dismpikn pd Seminr Nsionl Penelitin, Pendidikn & Penerpn MIPA, Hotel Shid Yogykrt, 8 Februri 5
2 berlku.. untuk setip R. Division ring ( skew-field ) dlh sutu ring dengn elemen identits sedemikin sehingg setip elemen yng bukn elemen nol mempunyi invers perklin. Sedngkn field ( lpngn ) dlh skew field yng komuttif terhdp opersi perklin ( Adkin & Weintrub: p. 5 ). Dengn demikin, bik ring mupun skew-field msing-msing dlh generlissi dri field, tu dpt diktkn bhw skew-field mupun field dlh bentuk khusus dri ring. Sehingg semu sift yng berlku pd ring psti berlku pd skew-field mupun field, tetpi tidk seblikny. Sehingg d sift dlm skew-field mupun field yng tidk berlku pd ring. Dlm tulisn Kemprsit & Triphop disebutkn bhw semiring (S,,.) dlh struktur ljbr dimn (S, ) dn (S,.) msing msing membentuk struktur semigrup dn berlku sift distributif knn mupun kiri. Elemen pd semiring (S,,.) disebut elemen nol ( zero ) jik dn.. untuk semu b S. Sebgi contoh : M, b, c, d Z, dengn Z himpunn bult c d positif. Terhdp opersi penjumlhn dn perklin mtriks, mk ( M,,.) membentuk semiring. Semifield dlh semiring (S,,.) sedemikin sehingg (S, ) membentuk semigrup komuttif dn (S,.) grup komuttif dengn elemen nol (zero) dlh, yng merupkn elemen identits terhdp penjumlhn ( Mitchell & Sinutoke dlm Kemprsit & Triphop). Struktur semifield ini merupkn generlissi dri field dn merupkn bentuk khusus dri semiring. Sebgi contoh dlh semiring R {},,. dlh semifield terhdp opersi penjumlhn dn perklin bis pd bilngn rel. Struktur semifield ini dpt digenerlissi dengn menghilngkn sift komuttif terhdp perklin, yng disebut dengn skew-semifield. Dengn demikin, skew-semifield dlh semiring (S,,.) sedemikin sehingg (S, ) membentuk semigrup komuttif dn (S,.) grup komuttif dengn elemen nol (zero) dlh, yng merupkn elemen identits terhdp penjumlhn (Kemprsit &
3 Triphop ). Dengn kt lin skew-semifield dlh semiring komuttif dengn elemen nol (zero) dlh sedemikin sehingg S \ { },. dlh sutu grup dn semifield dlh skew-semifield komuttif terhdp perklin. Dlm kenytnny, skewsemifield dlh generlissi dri semifield dn skew-field. Sebgi contoh dlh: mislkn n dlh bilngn integer positif yng lebih besr dri dn S dlh himpunn semu mtriks ukurn sebgi berikut: n n ts bilngn rel dengn bentuk elemen dengn i untuk semu i. n Terhdp opersi jumlh dn perklin mtriks, S merupkn skew-semifield yng bukn merupkn semifield mupun skew-field. Dengn invers perklinny dlm bentuk sebgi berikut: n n Dlm kjin st ini kn diselidiki beberp sift yng berlku pd skewsemifield. B. Pembhsn Dlm bgin ini, beberp sift skew-semifield dibuktikn. Sepnjng dlm tulisn ini, untuk skew-semifield (S,,.), menotsikn elemen identits dri grup S \ { },.. Sift berikut memberikn syrt cukup gr sutu skew-semifield membentuk sutu skew - field: 3
4 Teorem ( Kemprsit & Triphop ). Jik sutu skew-semifield (S,,.) memut elemen tk nol yng mempunyi invers jumlh, mk (S,,.) dlh skew-field Bukti: Dlm hl ini dikethui bhw (S,,.) skew-semifield dn sutu elemen S \ { } mempunyi invers jumlh. Selnjutny dibuktikn bhw (S,,.) skew-field. Dengn demikin tinggl dibuktikn bhw setip elemen di (S,,.) mempunyi invers jumlh. Bukti selengkpny diberikn sebgi berikut: Dikethui S \ { } mempunyi invers jumlh, mislkn invers tersebut dlh b S, mk dipenuhi b. Di lin pihk, S \ { },. dlh sutu grup sehingg S \ { } mempunyi invers perklin yng dinotsikn dengn yng jug di dlm S \ { }. Selnjutny, mbil sebrng elemen S, mk diperoleh: b b (, S skew-semifield ) ( b) ( S bersift distributif ) ( b invers jumlh dri ) = Hl ini berlku untuk setip sedemikin sehingg S dn untuk setip S dpt ditemukn b S b, mk dpt disimpulkn bhw setip elemen pd skew-semifield S mempunyi invers jumlh. Dengn demikin terbukti bhw (S,,.) skew-field. Berikutny kn diberikn sift lin dri struktur skew semifield. Sift ini menjmin bhw sutu skew semifield hny memiliki pling bnyk stu elemen yng mempunyi sift dn untuk sutu elemen S. Teorem berikut jug seklugus memberikn kibt dri sutu elemen skew-semifield yng mempunyi sift demikin, yng selengkpny diberikn pd teorem sebgi berikut: 4
5 Teorem. ( Kemprsit & Triphop ). Sutu skew-semifield S memut pling bnyk stu elemen yng mempunyi sift dn. Lebih lnjut, jik S mempunyi sift demikin, mk Bukti: untuk setip S. Untuk pembuktin pd bgin pertm, dimbil elemen mempunyi sift b dn b. Selnjutny dibuktikn bhw b. Untuk S, dengn sift dn, mk diperoleh: b S yng jug ( ) Dikethui S \ { },. dlh grup, mk. Akibtny, pd persmn di ts hny dipenuhi untuk. Akn tetpi dikethui bhw sehingg. Dri sini diperoleh bhw dlh invers jumlh dri. Dengn demikin dimiliki kondisi bhw S dlh skew-semifield yng memut elemen tk nol yng mempunyi invers jumlh. Menurut Teorem, kondisi ini berkibt S dlh skew-field. Jik b S yng jug mempunyi sift b dn, secr sm kn diperoleh bhw b. Dengn demikin diperoleh persmn b, dn diperoleh b. Selnjutny dibuktikn bhw jik elemen b S, dengn sift dn, mk berlku, untuk setip S. Untuk membuktikn hl ini, mbil sebrng elemen S, mk : ( )..( ) Dri persmn tersebut diperoleh bhw yng berlku untuk setip S. C. Kesimpuln Dri pembhsn di ts dpt disimpulkn bhw d sift dri sutu skew - semifield yitu:. Jik sutu skew-semifield (S,,.) memut elemen tk nol yng mempunyi invers jumlh, mk (S,,.) dlh skew-field. 5
6 . Sutu skew-semifield S memut pling bnyk stu elemen yng mempunyi sift dn. Lebih lnjut, jik S mempunyi sift demikin, mk untuk setip S. D. Dftr Pustk: Adkins, W.A nd Weintrub,S.H. 99. Algebr: An Approch vi Module Theory. Springer Verlg,New York. Kemprsit, Y nd Triphop, N.. Some Mtri Groups Admitting Skew-Semifield Structure. Est-West Journl of Mthemtics: Vol 3 No. () pp.- 6
SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real
SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri
BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V, W,
BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V,,, K r y t i Jurusn Pendidin Mtemti Fults Mtemti dn Ilmu Pengethun Alm Uniersits Negeri Yogyrt e-mil : [email protected] Abstr Misln R dlh
LIMIT FUNGSI DAN KEKONTINUAN
LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:
RUANG VEKTOR (lanjut..)
RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis
PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS
PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn
Teorema Dasar Integral Garis
ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR [email protected] Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu
Bilangan. Bilangan Nol. Bilangan Bulat (Z )
Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).
DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.
DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn
DETERMINAN DAN INVERS MATRIKS BLOK 2 2
Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok
Skew- Semifield dan Beberapa Sifatnya
Kode Makalah M-1 Skew- Semifield dan Beberapa Sifatnya K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta E-mail: [email protected]
Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri
Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn
didefinisikan sebagai bilangan yang dapat ditulis dengan b
1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,
M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.
M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil [email protected] JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng
Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.
Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu
BAB 10. MATRIKS DAN DETERMINAN
Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi
BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i
Matriks. Pengertian. Lambang Matrik
triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn
r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.
Husn Arifh,M.Sc : Persmn Legendre Emil : [email protected] Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi
Universitas Esa Unggul
ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin
MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ [email protected] DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks
7. Ruang L 2 (a, b) f(x) 2 dx < }.
7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f
Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII
Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl
MODUL 6. Materi Kuliah New_S1
MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn
Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)
Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny
15. INTEGRAL SEBAGAI LIMIT
15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini
CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS
CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...
MA3231 Analisis Real
MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)
Vektor di R 2 dan R 3
Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl
MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.
MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt
Aljabar Linear Elementer
ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)
BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng
INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.
INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl
3. LIMIT DAN KEKONTINUAN
3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp
STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT
Jurnl Vol II. No., Mret 08, hlm. 9-95 vilble online t www.jurnl.un.c.id/indeks/jmp STRTEGI PENGJRN MTEMTIK UNTUK MENENTUKN KR-KR PERSMN KUDRT Indh Purnm Putri, Symsudhuh, Ihd Hsbiyti 3 Progrm Studi Mgister
Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)
Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn
Aljabar Linear Elementer
ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar
. LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn
LIMIT DAN KONTINUITAS
LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
3. LIMIT DAN KEKONTINUAN
. LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
Integral Kompleks (Bagian Kesatu)
Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:[email protected], [email protected] (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl
ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum
LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.
BAB III MATRIKS
BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn
PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA
K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt
2.Matriks & Vektor (1)
.triks & Vektor () t Kulih: ljbr Liner dn triks Semester Pendek T. / S Teknik Informtik Dosen Pengmpu: Heri Sismoro,.Kom. STIK IKO YOGYKRT Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 7 88 Fx 7-888 Website:
MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika
MATEMATIKA DASAR Modul ke: 0Fkults FASILKOM Progrm Studi Teknik Informtik Bb Bilngn Irsionl dn Logritm Drs. Sumrdi Hs., M.Sc. Bgin Isi Bilngn Irsionl - Berbgi bentuk kr dn opersiny Logritm - Sift-sift
(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X])
DADU SICHERMAN (Sutu Apliksi dri Fktorissi Tunggl Pd Z[X]) Elh Nurlelh Jurusn Pendidikn Mtemtik Fkults Pendidikn Mtemtik dn Ilmu Pengethun Alm Universits Pendidikn Indonesi *) ABSTRACT An interesting ppliction
BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO
. Jwbn : C 8 3 8 6 3 3 3 6 BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO. Jwbn : C Tig bilngn prim pertm yng lebih besr dri 0 dlh 3, 9, dn 6. Mk 3 + 9 + 6 = 73. Jdi, jumlh tig bilngn
PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.
PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan
2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,
A x = b apakah solusi x
MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.
BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN
DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom
RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :
RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI
MODEL POTENSIAL 1 DIMENSI
MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,
Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah
VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B
BAB 7. LIMIT DAN LAJU PERUBAHAN
BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?
12. LUAS DAERAH DAN INTEGRAL
12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)
BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu
III. LIMIT DAN KEKONTINUAN
KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi
VEKTOR. Adri Priadana. ilkomadri.com
VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn
Sistem Persamaan Linear Bagian 1
Sistem Persmn Liner Bgin. SISTEM PERSAMAAN LINEAR PENGANTAR Dlm bgin ini kn kit perkenlkn istilh dsr dn kit bhs sebuh metode untuk memechkn sistem-sistem persmn liner. Sebuh gris dlm bidng xy secr ljbr
MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...
MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris
AUTOMATA SEBAGAI MODEL PENGENAL BAHASA
JMP : Volume Nomor Oktober 9 AUTOMATA SEBAGAI MODEL PENGENAL BAHASA Eddy Mrynto Fkults Sins dn Teknik Universits Jenderl Soedirmn Purwokerto Indonesi emil: [email protected] Abstrct. A deterministic
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi
4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu
Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin
KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya
KALKULUS I Dr. Wurnsri Muhrini Kusumwinhu Progrm Srjn Mtemtik Universits Brwij Deinisi: Mislkn A dn B dlh himpunn tk kosong. Fungsi dri A ke B dlh sutu ATURAN ng MEMADANKAN SETIAP ELEMEN di A dengn tept
METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3
METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3 Glng Ismu Hndoko 1, M Ntsir 2, Sigit Sugirto 2 1 Mhsisw Progrm S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm
POSET ( Partially Ordered Set ) Himpunan Terurut Parsial
POSET ( Prtilly Ordered Set ) Himpunn Terurut Prsil Definisi Sutu relsi biner dinmkn sebgi sutu relsi pengurutn tk lengkp tu relsi pengurutn prsil ( prtil ordering reltion ) jik i bersift reflexive, ntisymmetric,
matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma
K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn
LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.
DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)
RUANG VEKTOR REAL. Kania Evita Dewi
RUANG VEKTOR REAL Kni Eit Dewi Definisi Vektor dlh besrn yng mempnyi rh. Notsi: Notsi pnjng ektor: k j i ˆ ˆ ˆ Vektor stn Vektor dengn pnjng t norm sm dengn st Opersi ektor Penjmlhn ntr ektor Mislkn dn
Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan
III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f
Minggu ke 3 : Lanjutan Matriks
inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.
RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R.
REASI DAN FUNGSI A. REASI Adlh hubungn ntr elemen himpunn dengn elemen himpunn yng lin. Cr pling mudh untuk menytkn hubungn ntr elemen himpunn dlh dengn himpunn psngn terurut. Himpunn psngn terurut diperoleh
SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan
SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi
BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS
BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS Mtriks A dn mtriks B diktkn sm (A = B), jik dn hny jik: 1. Ordo mtriks A sm dengn ordo mtriks B 2. Setip elemen yng seletk pd mtriks A
1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai
Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritm Pembgin.............................. 3 1.2 Pembgi persekutun terbesr.......................... 6 1.3 Algoritm Euclid................................. 10 1.4
Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka :
Minggu ke 6 Modul Mtemtik LIMIT FUNGSI LIMITS OF FINCTIONS). BRISN SEQUENCES) VS. LIMIT FUNGSI LIMITS OF FUNCTIONS) Contoh : Sequence : fn) = + / n,,,,,,,,, + / n mk : Limit dri fungsi f) =, dimn vribel
,, % ,, % -0: 0 -0: 0! 2 % 26, &
PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh
1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut:
triks dn opersiny by yudiri ATRIKS DAN OPERASINYA. triks dn Jenisny Definisi: trik A berukurn x n ilh sutu susunn ngk dl persegi ept ukurn x n, sebgi berikut: A = n n n triks berukurn (ordo) x n. tu A
BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ).
BAB I MATRIKS Aljbr mtriks merupkn slh stu cbng mtemtik yng dikembngkn oleh seorng mtemtikwn Inggris Arthur Cyley (8 89) Mtriks berkembng kren pernnny dlm cbng-cbng Mtemtik linny, mislny bidng ekonomi,
PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN
www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn
1. Pengertian Matriks
BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng
ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear
ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi
Modul 1. Pendahuluan
Modul Pendhulun.. Pengertin Mtriks Definisi. (Pengertin Mtriks) Mtriks didefinisikn sebgi sutu susunn bilngn berbentuk segiempt. Bilngnbilngn yng terdpt dlm susunn itu disebut elemen mtriks tersebut. Secr
1. Introduction. Aljabar Linear dan Matriks Semester Pendek TA 2009/2010 S1 Teknik Informatika. Mata Kuliah: Dosen Pengampu: Heri Sismoro, M.Kom.
1. Introduction Mt Kulih: Aljbr Liner dn Mtriks Semester Pendek TA 9/1 S1 Teknik Informtik Dosen Pengmpu: Heri Sismoro, M.Kom. STMIK AMIKOM YOGYAKARTA Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 74 8841
INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45
INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6
F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49
11/9/01 Pet Konsep Jurnl Mteri Umum Pet Konsep Pngkt Rsionl Dftr Hdir Mteri F EKSPONEN DAN LOGARITMA Kels X, Semester 1 F. ritm Pngkt Bult Positif Pngkt Nol Pngkt Bult Negtif Bentuk Akr Pngkt Pechn SolLtihn
MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.
MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn
det DEFINISI Jika A 0 disebut matriks non singular
DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:
Latihan 2. Ruang Vektor. Bagian 1
Ltihn. Rung Vektor Bgin. Andikn H = {,,,,, }. Opersi penjumlhn pd H dlh opersi penjumlhn modulo. Apkh H merupkh grup? Grup elin?. Dengn opersi penjumlhn modulo 8, selidiki pkh himpunn G merupkn Grup? Grup
