Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan"

Transkripsi

1 III FUNGSI Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f : rtiny, f memetkn ke Nm lin dri fungsi dlh pemetn. Himpunn diseut derh sl (domin) sedngkn himpunn diseut derh hsil (codomin). Jik f() =, mk dinmkn yngn dri dn dinmkn pr yngn dri. f. = *1,2,3+ dn = *u,v,w+ dn f = *(1,u),(2,v),(3,w)+. pkh f :? Y, kren semu elemen dipetkn ke. = *1,2,3+ dn = *u,v,w+ dn f = *(1,u),(2,u),(3,v)+. pkh f :? Y, kren semu elemen dipetkn ke meskipun u merupkn yngn dri 1 dn 2 c. = *1,2,3,4+ dn = *u,v,w+ dn f = *(1,u),(2,v),(3,w)+. pkh f :? Tidk, kren tidk semu elemen dipetkn ke Definisi 2 Fungsi f diktkn stu ke stu ( one to one) tu injektif jik tidk d du elemen himpunn yng memiliki yngn sm c d

2 16 Fungsi f diktkn pd / onto / surjektif jik setip elemen himpunn merupkn Definisi 3 yngn dri stu tu leih elemen himpunn. c d Definisi 4 Fungsi f diktkn erkorespondensi stu stu tu ijektif jik i fungsi stu ke stu dn jug fungsi pd.. pkh fungsi di wh ini merupkn fungsi stu ke stu? i. ( ) pd f : Z Z ukn fungsi stu ke stu, kren untuk du x yng ernili mutlk sm tpi tndny ered nili fungsiny sm. Mislkn untuk x = 2, mk f (2) = 5 sedngkn untuk f (-2) = 5, jdi f (2) = f (-2) pdhl ii. ( ) pd f : Z Z Fungsi stu ke stu, kren untuk, 1 1. Mislkn untuk x = 2, mk f (2) sedngkn untuk f (-2) = -3. pkh fungsi di wh ini merupkn fungsi pd? i. ( ) pd f : Z Z ukn fungsi pd, kren tidk semu nili ilngn ult merupkn jeljh dri f. Mislny tidk d nili x yng memut nili fungsi sm dengn 0, yitu 1 = tidk dipenuhi untuk nili x erppun. ii. ( ) pd f : Z Z Fungsi pd, kren untuk untuk setip ilngn ult y, sellu d nili x yng memenuhi, yitu kn dipenuhi untuk. c. pkh fungsi di wh ini merupkn fungsi erkorespondensi stu stu? i. ( ) pd f : Z Z ukn fungsi erkorespondensi stu stu kren ukn fungsi stu ke stu dn ukn fungsi pd. ii. ( ) pd f : Z Z Fungsi erkorespondensi stu stu kren merupkn fungsi stu ke stu dn fungsi pd.

3 17 Jik f dlh fungsi erkorespondensi stu stu dri ke, mk d inversi / invers dri f 2. Fungsi Invers ( ). Misl dlh nggot himpunn dn dlh nggot himpunn, mk ( ) = dn ( ) = ( ) ( ). = {1,2,3} dn = {u,v,w} dn f = {(1,u),(2,v),(3,w)} dlh fungsi erkorespondensi stu stu. Tentukn invers dri fungsi f. = *(u, 1), (v, 2), (w, 3)+. Tentukn fungsi invers dri ( ) ( ) ( ) c. Tentukn fungsi invers dri ( ) ( ) ukn merupkn fungsi erkorespondensi stu stu, sehingg tidk mempunyi invers. NOTE: Fungsi yng erkorespondensi stu stu diseut fungsi invertile (dpt dilikkn), kren dpt didefinisikn fungsi inversny. Fungsi non invertile (tidk dpt dilikkn) jik fungsi ukn merupkn fungsi yng erkorespondensi stu stu dn tidk mempunyi fungsi invers. 3. Komposisi Fungsi Mislkn g dlh fungsi dri himpunn ke dn f dlh fungsi dri himpunn ke. Komposisi f dn g dlh ( )( ) = ( ( )). Dierikn fungsi ( ) dn ( ). Tentukn dn. ( )( ) = ( ( )) ( )( ) = ( 1) ( )( ) = ( 1) 1 ( )( ) 1 ( )( ) = ( )( ) = ( ( )) ( )( ) = ( 1 ) ( )( ) = ( 1 ) 1 ( )( ) = ( 2 1) 1 ( )( ) = ( )( ) = 2 2

4 4. eerp Fungsi Khusus. Fungsi floor nd ceiling Mislkn x dlh ilngn riil, errti x erd di ntr du ilngn ult. Fungsi floor dinotsikn dengn menytkn ilngn ult teresr yng leih kecil tu sm dengn x Dpt pul diktkn hw fungsi floor memultkn ke wh Fungsi ceiling dinotsikn dengn menytkn ilngn ult terkecil yng leih esr tu sm dengn x Dpt pul diktkn hw fungsi ceiling memultkn ke ts = 3.5 = 3.5 = = = 3.5 =. Fungsi modulo Mislkn dlh semrng ilngn ult dn m dlh ilngn ult positif. mod m memerikn sis pemgin ilngn ult il digi dengn m. mod m = r sedemikin sehingg = mq r dengn r m. 25 mod 7 = 4 15 mod 4 = 3-25 mod 7 = 3 (kren -25 = 7 (-4) + 3) c. Fungsi fktoril Untuk semrng ilngn ult tk negtif n, fktoril n dilmngkn dengn n! 1, = = { ( 1), 0! 3! x 2 x 3 = 6 d. Fungsi eksponensil 4 3 = 4 x 4 x 4 = = 3 x 3 x 3 = 27 = { 1, =, Ksus pngkt negtif

5 e. Fungsi logritmik = og mk = og 64 = 3 kren 4 = 64

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R.

RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R. REASI DAN FUNGSI A. REASI Adlh hubungn ntr elemen himpunn dengn elemen himpunn yng lin. Cr pling mudh untuk menytkn hubungn ntr elemen himpunn dlh dengn himpunn psngn terurut. Himpunn psngn terurut diperoleh

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

RELASI EKUIVALENSI (Minggu ke-12 dan 13)

RELASI EKUIVALENSI (Minggu ke-12 dan 13) ELASI EKUIVALENSI (Minggu ke-1 dn 13) 1. elsi Ekuivlensi. Definisi 1. Dikethui A himpunn tidk kosong. elsi pd A (dri A ke A) diseut refleksif jik untuk setip nggot dri semestny erlku refleksif ( A).. Contoh:

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan

SISTEM BILANGAN REAL. Purnami E. Soewardi. Direktorat Pembinaan Tendik Dikdasmen Ditjen GTK Kementerian Pendidikan dan Kebudayaan SISTEM BILANGAN REAL Purnmi E. Soewrdi Direktort Peminn Tendik Dikdsmen Ditjen GTK Kementerin Pendidikn dn Keudyn Himpunn Bilngn Asli (N) Bilngn sli dlh ilngn yng pertm kli dikenl dn digunkn oleh mnusi

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

- - RELASI DAN FUNGSI - - dlp2fungsi

- - RELASI DAN FUNGSI - - dlp2fungsi 804 Mtemtik Relsi dn Fungsi - - RELASI DAN FUNGSI - - Modul ini singkron dengn Apliksi Android, Downlod mellui Ply Store di HP Kmu, ketik di penrin dlpfungsi Jik Kmu kesulitn, Tnykn ke tentor gimn r downlodny.

Lebih terperinci

Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.

Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Mtriks Mtriks dlh dlh susunn sklr elemen-elemen dlm bentuk bris dn kolom. Mtriks A yng berukurn dri m bris dn n kolom (m n) dlh: mn m m n n A Mtriks bujursngkr dlh mtriks yng berukurn n n. Dlm prktek,

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

FUNGSI SMTS 1101 / 3SKS

FUNGSI SMTS 1101 / 3SKS FUNGSI SMTS 0 / SKS LOGIK MTEMTIK Disusun Oleh : Dr. Noerynti, M.Si 6 DFTR ISI Cover pokok hsn... 6 Dftr isi... 6 Judul Pokok hsn... 64 6.. Pengntr... 64 6.. Kompetensi... 64 6.. Urin Mteri... 64 6.. Definisi

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

Bab. Fungsi. A. Relasi B. Fungsi atau Pemetaan C. Menghitung Nilai Fungsi

Bab. Fungsi. A. Relasi B. Fungsi atau Pemetaan C. Menghitung Nilai Fungsi Sumer: Dokumentsi Penulis Fungsi Thukh kmu p yng dimksud dengn fungsi? Konsep fungsi merupkn slh stu konsep yng penting dlm mtemtik. nyk permslhn sehri-hri yng tnp disdri menggunkn konsep ini. Mislny,

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

MODUL 4 PEUBAH ACAK. Peubah acak adalah suatu fungsi yang memetakan setiap elemen dari ruang sampel ke bilangan Real. X : S R

MODUL 4 PEUBAH ACAK. Peubah acak adalah suatu fungsi yang memetakan setiap elemen dari ruang sampel ke bilangan Real. X : S R MODUL 4 EUBAH ACAK engntr Sutu percon melempr mt ung yng setimng senyk kli. Rung smpel dri percon terseut dlh S= { AAA, AGG, AGA, AAG, GAG, GGA, GAA, GGG } Sutu kejdin A : dri ketig lemprn nykny gmr sejumlh

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

02. OPERASI BILANGAN

02. OPERASI BILANGAN 0. OPERASI BILANGAN A. Mm-mm Bilngn Rel Dlm kehidupn sehri-hri dn dlm mtemtik ergi keterngn seringkli menggunkn ilngn yng is digunkn dlh ilngn sli. Bilngn dlh ungkpn dri penulisn stu tu eerp simol ilngn.

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

RELASI. Matriks. Matriks. Relasi & Fungsi 10/6/2011. Sesi 06

RELASI. Matriks. Matriks. Relasi & Fungsi 10/6/2011. Sesi 06 // Sesi Relsi & Fungsi RELASI Mtriks Mtriks dlh dlh susunn sklr elemen-elemen dlm bentuk bris dn kolom. Mtriks A yng berukurn dri m bris dn n kolom (m n) dlh: Mtriks bujursngkr dlh mtriks yng berukurn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

BENTUK PANGKAT, AKAR DAN LOGARITMA

BENTUK PANGKAT, AKAR DAN LOGARITMA BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

matematika WAJIB Kelas X FUNGSI K-13 A. Definisi Fungsi

matematika WAJIB Kelas X FUNGSI K-13 A. Definisi Fungsi K- Kels X mtemtik WAJIB FUNGSI TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu ihrpkn memiliki kemmpun erikut.. Memhmi iefinisi fungsi.. Memhmi omin n rnge fungsi liner.. Memhmi omin n rnge fungsi

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP) Kelas / Semester : XI / 2. : Ilmu Pengetahuan Alam

Rencana Pelaksanaan Pembelajaran (RPP) Kelas / Semester : XI / 2. : Ilmu Pengetahuan Alam Renn Pelksnn Pemeljrn (RPP) Stun Pendidikn Mt Peljrn : SM Negeri Sidorjo : Mtemtik Kels / Semester : XI / Progrm loksi Wktu : Ilmu Pengethun lm : x menit Stndrt Kompetensi : Menentukn Komposisi Du Fungsi

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

PERTEMUAN 4 Metode Simpleks Kasus Maksimum

PERTEMUAN 4 Metode Simpleks Kasus Maksimum PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi FUNGSI TRANSENDEN I. Pendhulun. Pokok Bhsn Logritm Fungsi Eksponen.2 Tujun Mengethui entuk fungsi trnsenden dlm klkulus. Mengethui dn memhmi entuk fungsi trnseden itu logritm dn fungsi eksponen sert dlm

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO]

PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] Jenis FSA Deterministic Finite Automt (DFA) Dri sutu stte d tept stu stte erikutny untuk setip simol msukn yng diterim Non-deterministic Finite Automt (NFA) Dri

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2016/2017 31 Mret 2017 Kulih yng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien

Lebih terperinci

TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA)

TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA) TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA) Finite Stte Automt Seuh Finite Stte Automt dlh: Model mtemtik yng dpt menerim input dn mengelurkn output Kumpuln terts (finite set) dri stte (kondisi/kedn).

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

Latihan 2. Ruang Vektor. Bagian 1

Latihan 2. Ruang Vektor. Bagian 1 Ltihn. Rung Vektor Bgin. Andikn H = {,,,,, }. Opersi penjumlhn pd H dlh opersi penjumlhn modulo. Apkh H merupkh grup? Grup elin?. Dengn opersi penjumlhn modulo 8, selidiki pkh himpunn G merupkn Grup? Grup

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

DIAGRAM DARI PRESENTASI SEMIGRUP dan. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

DIAGRAM DARI PRESENTASI SEMIGRUP dan. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia DIAGRAM DARI PRESENTASI SEMIGRUP dn Welly Aziz 1*, Sri Gemwti 2, Asli Sirit 2 1 Mhsisw Progrm S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Univerits Riu Kmpus Bin Widy 28293 Indonesi

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed

PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed Prosiding Seminr Nsionl Thunn Mtemtik, Sins dn Teknologi 0 Universits Teruk Convention Center, 1 Oktoer 0 PERSAMAAN DIOPHANTINE NON LINEAR z Agus Sugndh 1, Agustini Tripen Surkti, Agung Prowo 3 1,,3) Stf

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

Sudaryatno Sudirham. Matriks Dan Sistem Persamaan Linier

Sudaryatno Sudirham. Matriks Dan Sistem Persamaan Linier Sudrytno Sudirhm Mtriks Dn Sistem Persmn inier hn Kulih Teruk dlm formt pdf tersedi di www.uku-e.lipi.go.id dlm formt pps ernimsi tersedi di www.ee-cfe.org Mtrik dlh susunn tertur ilngn-ilngn dlm ris

Lebih terperinci

BAB II ELEMEN-ELEMEN RANGKAIAN

BAB II ELEMEN-ELEMEN RANGKAIAN BAB II ELEMEN-ELEMEN RANGKAIAN 2. Elemen-Elemen Rngkin Elemen-elemen rngkin d yng diseut segi elemen ktif (sumer tegngn dn sumer rus) yitu : elemen yng siftny mmpu menylurkn energy ke rngkin. Selin itu

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

Soal Latihan dan Pembahasan Fungsi kuadrat

Soal Latihan dan Pembahasan Fungsi kuadrat Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci