PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON
|
|
|
- Veronika Setiawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON Haposan Sirait 1 dan Rustam Efendi 2 1,2 Dosen Program Studi Matematika FMIPA Universitas Riau. Abstrak: Makalah ini menyajikan tentang menentukan penaksir maksimum likelihood dari suatu parameter yang memiliki fungsi densitas probabilitas. Penaksir maksimum likelihood akan ditentukan dengan suatu metode iterasi Newton- Raphson. Penaksir yang diperoleh merupakan hampiran penaksir maksimum likelihood. Kata Kunci:Penaksir maksimum likelihood, fungsi densitas Newton-Raphson probabilitas, iterasi PENDAHULUAN Sebagai syarat awal dalam menganalisa data statistik yaitu mengidentifikasi distribusi probabilitas dari karakteristik. Oleh karena parameter dari distribusi probabilitas tersebut adalah sebagai penentu dari suatu karakteristik, hal ini akan menjadi perlu untuk menaksir parameter.dalam makalah ini diasumsikan bahwa bentuk matematis distribusi probabilitas diketahui (contoh : Binomial ; Normal ; dan lain sebagainya), akan tetapi parameter distribusi ( p untuk binomial; μ dan σ2 untuk normal, dan seterusnya ) tidak diketahui. Untuk memperoleh informasi semacam itu, tentunya diawali dengan mengambil sampel random dari populasi. Selanjutnya akan ditaksir parameter melalui data dari sampel random yang diambil dari suatu populasi. Dalam analisa statistik, penaksir titik dari suatu parameter populasi sangat berperan aktif guna untuk mengetahui fenomena alam[4] misalnya ingin mengestimasi proporsi produk yang rusak dari suatu proses produksi, ataupun rata- rata waktu sembuh pasien yang menjalani operasi tertentu. Dalam makalah ini akan disajikan secara sistematis suatu metode yang digunakan untuk menentukan penaksir titik yaitu metode maksimum likelihood, dimana metode maksimum likelihood merupakan suatu metode yang mempunyai prinsip menentukan penaksir titik titik suatu parameter dengan peluang maksimum. Penaksir yang diperoleh dengan metode maksimum likelihood disebut sebagai penaksir maksimun likelihood. Penaksir maksimum likelihood suatu parameter dari distribusi probabilitas (Mungkin tidak ada, ada, atau banyak ). Untungnya sering diperoleh satu estimator dengan sifat yang baik. Langkah yang dilakukan,apabila memungkinkan yaitu dengan mendifferensialkan fungsi likelihood terhadap parameter, selanjutnya disamakan dengan nol yang disebut dengan persamaan likelihood. Namun dalam menentukan Penaksir Maksimum Likelihood, pada persamaan likelihood terkadang sulit dilakukakan secara analitik atau dengan kata lain tidak diperolehnya penaksir titik secang eksak, hal ini dikarenakann bentuk persamaan likeliohood yang sangat kompleks. Untuk kasus yang demikian Penaksir Maksimum Likelihood ditempuh dengan cara iterasi numerik yaitu dengan netode newton Raphson. LANDASAN TEORI Hal 247
2 Haposan Sirait Dan Rustam Efendi: Penaksir Maksimum Likelihood Dengan Metode Iterasi Newton - Raphson Penaksir Maksimum Likelihood Misalkan merupakan sampel random yang berasal dari popoulasi X dengan fungsi densitas probabilitas yang tergantung pada. yaitu. Dikarenakan bahwa merupakan sampel random maka fungsi juga merupakan variabel acak. Suatu fungsi yang diamati misalnya disebut sebagai statistik, dan disebut juga suatu penaksir dari yang dinotasikan dengan [3]. Akan tetapi menghadapi persoalan mencari penaksir titik ada tiga metode yang populer, yaitu metode momen, metode maksimum likelihood dan metode B es [2]. N mun d l m m k l h ini yang akan disajikan yaitu suatu metode yang menurut intuisi, wajar dalam menghasilkan penaksir yang mungkin baik untuk diselidiki yaitu penaksir maksimum likelihood, seperti dinyatakan dalam definisi berikut : Definisi1:[2]Misalkan f ungsi kepadatan peluang gabungan untuk variable random dengan nilai sampel. Fungsi likelihood dari sampel nya adalah (1) Definisi 2 : [2]Misalkan merupakan sampel random yang berasal dari populasi X dengan fungsi kepadatan peluang yang tergantung pada. yaitu dengan adalah parameter yang tidak diketahui. Maka Fungsi likelihood gabungannya adalah : (2) Definisi 3 :[2] Misalkan merupakan sampel random yang berasal dari popoulasi X dengan fungsi probabilitas yang tergantung pada. yaitu dengan adalah parameter yang tidak diketahui. Maka Fungsi likelihood gabungannya adalah: (3) Definisi 4 : Taksiran maksimum likelihood untuk adalah nilai yang memaksimumkan fungsi likelihood.dengan kata lain, sedemikian sehingga ( ) { }maka, disebut penaksir maksimum likelihood. Dalam manentukan penaksir maksimum likelihood, cukup hanya membutuhkan fungsi likelihood dan kemudian memaksimumkan fungsi likelihood terhadap parameter yang akan ditaksir. Dalam beberapa kasus, untuk memudahkan memaksimumkan fungsi likelihood, kadang kala dikerjakan dengan melakukan transformasi logaritma natural (ln)terhadap fungsi likelihood,selanjutnya disebut sebagai log fungsi likelihood.alasan tersebut tentunya dapat diterima dikarenakan logaritma natural merupakan fungsi increasing. Sehingga nilai yang membuat maksimum fungsi likelihood, jika ada, akan merupakan nilai sama yang membuat maksimum lof fungsi likelihood. Berikut ini merupakan prosedur menentukan penaksir maksimum likelihood : 1. Menentukan fungsi likelihood, L(θ). 2. Melakukan transformasi logaritma natural dari L(θ). 3. Melakukan differensial ln L(θ) terhadap θ, dan kemudian menyamakan hasil dervativnyadengan nol (persamaan likelihood ). 4. Menentukan akar persamaan likekelihood (θ ),yang disebut sebagai penaksir maksimumlikelihood ( ) Metode Newton-Raphson Dalam Satu Dimensi Banyak persoalan yang telah mempunyai penyelesaian secara eksak. Misalnya mencari akar dari suatu persamaan merupakan haln yang banyak dijumpai dalam berbagai bidang. Telah dikenal suatu cara untuk mencari akarakar persamaan kuadrat yang sederhana, yaitu bila ada persamaan Hal 248
3 maka : adalah akar dari persamaan kuadrat, artinya bila x disubstitusikan kedalam persamaan tersebut maka akan memenuhi persamaan diatas. Secara umum, persoalannya ataupun permasalahannya adalah dalam fungsi yaitu mencari harga untuk persamaan: (4) dengan dapat berupa fungsi Aljabar, atau Transenden dan diasumsikan dapat didifferensialkan. Di dalam praktek, fungsi yang hendak dicari akarnya, tidak mempunyai rumus tertentu seperti pada persamaan kuadrat. Dalam arti belum ada metode untuk mendapatkan penyelesaian eksak. Bila demikian halnya, perlu diusahakan suatu metode numerik untuk dapat menyelesaikan persoalan tersebut. Dengan kata lain dalam kondisi demikian ada beberapa pendekatan yang akan dilakukan yaitu : 1. Pendekatan atau penyederhanaan perumusan persoalan sehingga dapat diselesaikan. 2. Mengusahakan diperolehnya jawaban pendekatan dalam persoalan yang perumusannya eksak. 3. Gabungan dari kedua cara pendekatan diatas. Pada umumnya, metode numerik tidak menyatakan diperolehnya jawab eksak(tepat) tetapi memperoleh perumusan metode yang menghasilkan jawaban pendekatan yang berbeda dari jawab yang eksak, sebesar suatu nilai yang dapat diterima berdasarkan pertimbangan praktis, akan tetapi cukup dapat memberikan penghayatan pada persoalan yang dihadapi. Metode numerik untuk mendapatkan pendekatan yang berhasil adalah dengan teknik iterasi. Metode iterasi akan konvergen bila pendekatan makin mendapatkan hasil tertentu. Kembali kepada permasalahan mencari akar, maka untuk mendapatkan nilai akarnya, digunakan metode pendekatan yang meliputi dua tahap yaitu : 1. Penentuan akar pendekatan 2. Akar pendekatan dijabarkan lagi untuk mendapatkan ketelitian yang diinginkan. Teorema : (Deret Taylor). Misalkan, dengan B bilangan bulat positip. Misalkan suatu interval I=[a,b] sehingga f dan turunan kontinu pada I dan ada pada (a,b). Jika maka untuk sebarang terdapat titik c diantara dan sehingga : Beberapa metode numerik dalam penentuan akar pendekatan telah banyak diperkenalkan, antara lain metode Newton-Raphson[1]. Langkah yang dilakukan dalam metode Newton-Raphson dari persoalan ( 4 ), yaitu dengan menggunakan ekspansi deret Taylor berderajat satu yaitu: (5) Dengan. Apabila, pada persamaan (5), maka : (6) Dengan demikian apabila x, menyatakan sebagai nilai tebakan awal, kemudian disubtitusikan kedalam persamaan (6), diperolehlah (7) Dengan menyatakan nilai pada iterasi ke- m dan nilai tebakan awal dinotasikan dengan. Persamaan (7) dinamakan metode ierasi Newton Raphson. Teorema : Kekonvergenan Metode Newton Raphson. Misalkan fungsi f Hal 249
4 Haposan Sirait Dan Rustam Efendi: Penaksir Maksimum Likelihood Dengan Metode Iterasi Newton - Raphson mempunyai turunan f dan f yang kontinu dan merupakan akar sederhana dari f ( x) 0, maka f ( ) 0. Jika x0 cukup dekat ke metode Newton Konvergen kuadratik ke. Artinya bahwa dalam setiap error yang berurutan, error memenuhi persamaan yang berbentuk 2 n 1 K xn x, (1) Dengan max f ( ) 1 ~ n x x K ). 2 min f ( x ) ( x ~ x HASIL DAN PEMBAHASAN Penaksir Maksimum Likelihood Dengan Metode Newton Raphson Untuk kasus menetukan penaksir maksimum likelihood, yaitu dengan menentukan akan dari persamaan likelihood: n (8) Dengan ; fungsi likelihood dari sampel Dari persamaan (7), diperoleh suatu algoritma iterasi untuk menentukan penaksir maksimum likelihood yang diberikan dengan formula : (9) Ilustrasi : Misalkan merupakan sampel random yang berasal dari populasi X yang berdistribusi gamma dengan parmeter dan.akan ditentukan penaksir penaksir maksimum likelihood untuk parameter dengan metode Newton Raphson, dengan langkah sebagai berikut yang diketahui bahwa populasi berarti fungsi kepadatan probabilitas dari X : { Fungsi likelihoodnya : (10) [ ] Dengan melakukan transformasi logaritma natural persamaan (10) diperoleh : ( ) (11) Selanjutnya dilakukan derivative parsial persamaan (11) terhadap dan kemudian disamakan dengan nol diperolehlah : (12) dan (13) Selanjutnya persamaan (12) dan (13) disebut sebagai persamaan likelihood.dari persamaan (13) diperolehlah: (14) Selanjutnya disubstitusikan persamaan (14) kedalam persamaan (12 ), maka : (15) Dengan memisalkan : Maka : [ (16) (17) Dengan memanfaatkan persamaan (9), diperolehlah iterasi penaksir maksiumu likelihood untuk yaitu : Kemudian nilai iterasi digunakan untuk menentukan nilai taksiran.nilai iterasi yang diperoleh dinamakanlah penaksir maksimum likelihood dengan iterasi metode Newton- Raphson. KESIMPULAN Metode Newton-Raphson merupakan salah satu metode yang dapat memperoleh estimatormaksimum likelihood apabila akar persamaan likelihood parameternya Hal 250
5 tidak dapat diperoleh secara eksak, dan estimator yang diperoleh merupakan nilai pendekatan estimator. TINJAUAN PUSTAKA A.M.Ostrowsky, 1973, Solusion of equations in Euclidean and Banach space, third edition.academic Press.,New York Bain, J Lee & Engelhardt, Max Introduction to Probability and Mathematical Statistics second edition Duxbury Press. California. Feller W An Introduction Probability Theory and Its Application (vol. 1): 3 rd edition. Willey, New York. George, G Roussas A First Course in Mathematical Statistics. Wesley, Philippines. Kandethody M.Ramachandran and Chris P.Tsokos. 2009, Matematical statistcs with Aplications, Academic press.elseiver. New york Hal 251
Sarimah. ABSTRACT
PENDETEKSIAN OUTLIER PADA REGRESI LOGISTIK DENGAN MENGGUNAKAN TEKNIK TRIMMED MEANS Sarimah Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas
OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S
OLEH : Riana Ekawati (1205 100 014) Dosen Pembimbing : Dra. Farida Agustini W, M.S Salah satu bagian penting dari statistika inferensia adalah estimasi titik. Estimasi titik mendasari terbentuknya inferensi
UJI LIKELIHOOD RASIO UNTUK PARAMETER DISTRIBUSI WEIBULL
UJI LIKELIHOOD RASIO UNTUK PARAMETER DISTRIBUSI WEIBULL Sartika 1) Wayan Somayasa 2) Rahmaliah Sahupala 2) 1) Mahasiswa Program Studi Matematika 2) Dosen Program Studi Matematika Jurusan Matematika F-MIPA
ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD
ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD Fitra1, Saleh2, La Podje3 Mahasiswa Program Studi Statistika, FMIPA Unhas 2,3 Dosen Program Studi Statistika,
PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD
Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 23 28 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD FEBY RIDIANI Program
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel
5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor
Penaksiran Parameter Regresi Linier Logistik dengan Metode Maksimum Likelihood Lokal pada Resiko Kanker Payudara di Makassar
Vol.14, No. 2, 159-165, Januari 2018 Penaksiran Parameter Regresi Linier Logistik dengan Metode Maksimum Likelihood Lokal pada Resiko Kanker Payudara di Makassar Sutrianah Burhan 1, Andi Kresna Jaya 1
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem
PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL
PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL Vania Mutiarani 1, Adi Setiawan, Hanna Arini Parhusip 3 1 Mahasiswa Program Studi Matematika FSM UKSW, 3 Dosen
MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.
MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro
Kata Kunci: Model Regresi Logistik Biner, metode Maximum Likelihood, Demam Berdarah Dengue
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 9 16 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN FAKTOR-FAKTOR YANG MEMPENGARUHI KEJADIAN DBD (DEMAM BERDARAH DENGUE) MENGGUNAKAN REGRESI LOGISTIK
PENAKSIR RATA-RATA DISTRIBUSI EKSPONENSIAL TERPOTONG. Agustinus Simanjuntak ABSTRACT
PENAKSIR RATA-RATA DISTRIBUSI EKSPONENSIAL TERPOTONG Agustinus Simanjuntak Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya Pekanbaru
KONVOLUSI DARI PEUBAH ACAK BINOMIAL NEGATIF
Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 22 27 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KONVOLUSI DARI PEUBAH ACAK BINOMIAL NEGATIF NUR ADE YANI Program Studi Magister Matematika, Fakultas Matematika
Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi
ESTIMASI TITIK Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi sampel. Statistik merupakan bentuk dari
ESTIMASI PARAMETER UNTUK DISTRIBUSI HALF LOGISTIK. Jl. A. Yani Km. 36 Banjarbaru, Kalimantan Selatan
Jurnal Matematika Murni dan Terapan εpsilon Vol. 07, No.01, 201, Hal. 45 52 ESTIMASI PARAMETER UNTUK DISTRIBUSI HALF LOGISTIK Rizqi Elmuna Hidayah 1, Nur Salam 2 dan Dewi Sri Susanti 1,2, Program Studi
Algoritma Expectation-Maximization(EM) Untuk Estimasi Distribusi Mixture
Vol. 4, No., Oktober 04 Algoritma Expectation-Maximization(EM) Untuk Estimasi Distribusi Mixture Tomy Angga Kusuma ), Suparman ) ) Program Studi Matematika FMIPA UAD ) Program Studi Pend. Matematika UAD
DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA
digilib.uns.ac.id DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA oleh ANIS TELAS TANTI M0106003 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika
BAB III METODE UNTUK MENAKSIR VOLATILITAS. harga saham, waktu jatuh tempo, waktu sekarang, suku bunga,
BAB III METODE UNTUK MENAKSIR VOLATILITAS 3.1. Pendahuluan Dalam menentukan harga opsi call dan opsi put dibutuhkan parameter harga saham, waktu jatuh tempo, waktu sekarang, suku bunga, strike price, dan
Pengantar Statistika Matematika II
Bab 3: Statistika FMIPA Universitas Islam Indonesia Bila sampling berasal dari populasi yang digambarkan melalui fungsi peluang f X (x θ), pengetahuan tentang θ menghasilkan karakteristik mengenai keseluruhan
BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang
BAB II KAJIAN TEORI BAB II KAJIAN TEORI A. Analisis Survival Analisis survival atau analisis ketahanan hidup adalah metode yang berhubungan dengan jangka waktu, dari awal pengamatan sampai suatu kejadian
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam
PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal)
PEMODELAN DENGAN REGRESI LOGISTIK 1. Data Biner Data biner merupakan data yang hanya memiliki dua kemungkinan hasil. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) dengan peluang masing-masing
PENAKSIR PARAMETER DISTRIBUSI INVERS MAXWELL UKURAN BIAS SAMPEL MENGGUNAKAN METODE BAYESIAN. Rince Adrianti 1, Haposan Sirait 2 ABSTRACT ABSTRAK
PENAKSIR PARAMETER DISTRIBUSI INVERS MAXWELL UKURAN BIAS SAMPEL MENGGUNAKAN METODE BAYESIAN Rince Adrianti, Haposan Sirait Mahasiswa Program Studi S Matematika Dosen Matematika, Jurusan Matematika Fakultas
PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG)
MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) Shaifudin Zuhdi, Dewi Retno Sari Saputro Fakultas Matematika dan Ilmu Pengetahuan
TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu
II. TINJAUAN PUSTAKA. Distribusi Weibull Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu hidup dalam tekhnik ketahanan. Distribusi ini adalah distribusi serbaguna yang dapat
Pengantar Statistika Matematika II
Pengantar Statistika Matematika II Distribusi Sampling Atina Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com Bila sampling berasal dari populasi yang
LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.
II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma
STATISTIKA UNIPA SURABAYA
MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi
ESTIMASI PARAMETER DISTRIBUSI RAYLEIGH TUNGGAL DAN DISTRIBUSI RAYLEIGH DUA CAMPURAN TUGAS AKHIR. Oleh : ISMA NETI
ESTIMASI PARAMETER DISTRIBUSI RAYLEIGH TUNGGAL DAN DISTRIBUSI RAYLEIGH DUA CAMPURAN TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : ISMA
BAB II TINJAUAN PUSTAKA. diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event
BAB II TINJAUAN PUSTAKA A. Analisis Survival Analisis survival merupakan suatu analisis data dimana variabel yang diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event terjadi dengan
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan
INDEKS KEMAMPUAN PROSES BERDASARKAN PROPORSI PERSESUAIAN UNTUK DISTRIBUSI NON NORMAL
J. Math. and Its Appl. ISSN: 1829-605X Vol. 7, No. 2, November 2010, 47 55 INDEKS KEMAMPUAN PROSES BERDASARKAN PROPORSI PERSESUAIAN UNTUK DISTRIBUSI NON NORMAL Laksmi P Wardhani 1, Resty Z Fahrida, Nur
Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson
Vol. 6, No.1, 44-48, Juli 2009 Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson Georgina M. Tinungki Abstrak Terdapat beberapa metode untuk membangun uji statistik yang baik, diantaranya
Penaksiran Parameter Model Kalibrasi Linier yang Berdistribusi Skew-Normal dengan Algoritma-EM
Vol. 12, No. 1, 36-47, Juli 2015 Penaksiran Parameter Model Kalibrasi Linier yang Berdistribusi Skew-Normal dengan Algoritma-EM Try Widyaiswara Hairil 1, Anna Islamiyati 1, Raupong 1 Abstrak Sebuah penelitian
BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU
BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU 3.1 Model Regresi Cox Proportional Hazard dengan Variabel Terikat oleh Waktu Model regresi Cox proportional hazard
BAB III REGRESI SPASIAL DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED POISSON REGRESSION (GWPR)
BAB III REGRESI SPASIAL DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED POISSON REGRESSION (GWPR) 3.1 Regresi Poisson Regresi Poisson merupakan suatu bentuk analisis regresi yang digunakan untuk memodelkan data
Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada
Estimasi Titik (Point Estimation) Minggu ke 1-3 Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada 2014 Prof. Dr. Sri Haryatmi, M. Sc. (UGM) Daftar Isi 2014 1 / 33 DAFTAR ISI 1 Minggu 1 Pertemuan 1
APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgiyono Jurusan Matematika FMIPA UNDIP.
APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgiyono Jurusan Matematika FMIPA UNDIP Abstraks Diberikan populasi dengan densitas dengan parameter,
BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di
5 BAB II LANDASAN TEORI Bab ini membahas pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di bahas adalah sebagai berikut: A.
Distribusi Weibull Power Series
Distribusi Weibull Power Series Maulida Yanti 1, Sarini S.Si.,M.Stats 2 1 Mahasiswa Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424 2 Staff Pengajar Departemen Matematika, FMIPA UI, Kampus UI Depok,
PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN
E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,
BAB I PENDAHULUAN. 1.1 Latar Belakang
1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan
KONSISTENSI ESTIMATOR
KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)
DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak
DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan
BAB III ESTIMASI BIAYA GARANSI TV. Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk
BAB III ESTIMASI BIAYA GARANSI TV Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk mengestimasi biaya garansi satu dimensi pada TV. Adapun tahapan-tahapan yang dilakukan seperti terlihat
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi
KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA
Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas
MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI LOG-LOGISTIK ABSTRAK
JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 83-92 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI LOG-LOGISTIK Ibnu
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pada bab ini akan diuraikan mengenai beberapa teori dan metode yang mendukung serta mempermudah dalam melakukan perhitungan dan dapat membantu di dalam pembahasan
PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL
PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL Jainal, Nur Salam, Dewi Sri Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung
ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER
ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN
MENAKSIR PARAMETER µ DARI N( µ, ) DENGAN METODE BAYES
MENAKSIR PARAMETER µ DARI N( µ, ) DENGAN METODE BAYES Hartayuni Saini 1 1 Jurusan Matematika, FMIPA-UNTAD. e-mail: [email protected] Abstrak Untuk menaksir nilai µ dari N(µ, ) umumnya digunakan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen
TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT
TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR Yeni Cahyati 1, Agusni 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan
II. LANDASAN TEORI. sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah
II. LANDASAN TEORI Peubah acak X(s) merupakan sebuah fungsi X yang menetapkan setiap anggota sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah peubah acak diskrit, yaitu banyaknya
PROSES PERCABANGAN PADA DISTRIBUSI POISSON
PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik
METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika
METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK
METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika
BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi
BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva
SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT
SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
II. TINJAUAN PUSTAKA
II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan
Pengantar Metode Numerik
Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan
ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER
1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal
ALGORITMA PENENTUAN UKURAN SAMPEL EKSAK UNTUK DISTRIBUSI NORMAL, DISTRIBUSI POISSON DAN DUA DISTRIBUSI BINOMIAL DALAM MODEL KELUARGA EKSPONENSIAL
ALGORITMA PENENTUAN UKURAN SAMPEL EKSAK UNTUK DISTRIBUSI NORMAL, DISTRIBUSI POISSON DAN DUA DISTRIBUSI BINOMIAL DALAM MODEL KELUARGA EKSPONENSIAL 1) Program Studi Matematika Universitas Ahmad Dahlan [email protected]
Implementasi Algoritma Pencarian Akar Kuadrat Bilangan Positif
Implementasi Algoritma Pencarian Akar Kuadrat Bilangan Positif Muhammad Iqbal W. (0510633057) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Brawijaya Dosen Pembimbing: Waru Djuriatno, ST., MT. dan
Course Note Numerical Method Akar Persamaan Tak Liniear.
Course Note Numerical Method Akar Persamaan Tak Liniear. Dalam matematika terapan seringkali harus mencari selesaian persamaan yang berbentuk f() = 0 yakni bilangan o sedemikian sehingga f( o ) = 0. Dalam
II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log
II. TINJAUAN PUSTAKA Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log Normal Menggunakan Metode Generalized Moment digunakan beberapa definisi, dan teorema yang berkaitan dengan
BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain
II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2
5 II. LANDASAN TEORI Dalam proses penelitian penduga parameter dari suatu distribusi diperlukan beberapa konsep dan teori yang mendukung dari ilmu statistika. Berikut ini akan dijelaskan beberapa konsep
PAM 252 Metode Numerik Bab 4 Pencocokan Kurva
PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan
TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika
II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum
4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum likelihood estimation, penyensoran, bias relatif, penduga parameter distribusi Weibull dan beberapa istilah
BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan
BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Metode statistika adalah prosedur-prosedur yang digunakan dalam pengumpulan, penyajian, analisis, dan penafsiran data. Metode statistika dibagi ke dalam dua kelompok
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,
METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT
METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika
MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI
MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI Oleh : WINDA FAATI KARTIKA J2E 006 039 PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN
BAB 1 PENDAHULUAN. ii Bagaimana rata-rata atau nilai tengah dibuat oleh Stimulan eksternal.
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan matematika dan penerapannya dalam berbagai bidang keilmuan selalu mencari metode baru untuk memudahkan dalam memprediksi dan menaksir
Ilustrasi Persoalan Matematika
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti
PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING
FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT
FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,
KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT. Oleh : Entit Puspita. Dosen Jurusan pendidikan Matematika
KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT Oleh : Entit Puspita Dosen Jurusan pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia Abstrak Dalam Keluarga eksponensial satu parameter
SILABUS MATA KULIAH. : Dapat menganalisis tentang statistika inferensial secara teoritik beserta komponen dan sifat-sifatnya
SILABUS MATA KULIAH Program Studi : Pendidikan Matematika Kode Mata Kuliah : 50603 Mata kuliah : Statistika Matematika Bobot : 3 SKS Semester : V Mata Kuliah Prasyarat : Probabilitas Deskripsi Mata Kuliah
MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR
TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang
BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat
BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan
FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT
FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM Oktario Anjar Pratama Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON
BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON 3.1 Regresi Poisson Regresi Poisson merupakan salah satu model regresi dengan variabel responnya tidak berasal
Azzakiy Fiddarain ABSTRACT
IDENTIFIKASI TITIK HIGH LEVERAGE PADA MODEL REGRESI LOGISTIK DENGAN METODE ROBUST LOGISTIC DIAGNOSTIC Azzakiy Fiddarain Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam
II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam
4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik
METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT
METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika
ESTIMASI PARAMETER DISTRIBUSI LOGLOGISTIK PADA DATA TERSENSOR PROGRESSIVE TIPE II DENGAN MENGGUNAKAN ALGORITMA EM SKRIPSI
ESTIMASI PARAMETER DISTRIBUSI LOGLOGISTIK PADA DATA TERSENSOR PROGRESSIVE TIPE II DENGAN MENGGUNAKAN ALGORITMA EM SKRIPSI ANNAS RIEZKI ROMADHONI PROGRAM STUDI S-1 MATEMATIKA DEPARTEMEN MATEMATIKA FAKULTAS
MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT
MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1
BAB IV KESIMPULAN DAFTAR PUSTAKA LAMPIRAN... 64
DAFTAR ISI Halaman HALAMAN JUDUL... ii HALAMAN PENGESAHAN... iii KATA PENGANTAR... v ABSTRAK... vii ABSTACT... viii DAFTAR ISI... ix DAFTAR SIMBOL... xii DAFTAR TABEL... xiv DAFTAR GAMBAR... xv DAFTAR
(R.2) KAJIAN PREDIKSI KLASIFIKASI OBYEK PADA VARIABEL RESPON BINER
(R.2) KAJIAN PREDIKSI KLASIFIKASI OBYEK PADA VARIABEL RESPON BINER Drs. Soekardi Hadi P. Prodi Matematika Fakultas Sains dan Teknologi Universitas Islam As-Syafi iyah Email : [email protected] Abstrak
RENCANA MUTU PEMBELAJARAN
RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 504203 Nama Mata Kuliah : Statistika Matematika Jumlah sks : 3 sks Semester : V Alokasi
