Fungsi dan Grafik Diferensial dan Integral
|
|
|
- Widya Lie
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral 2 Darpublic
2 BB 7 Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banyak peristiwa terjadi secara siklis sinusoidal, seperti misalnya gelombang cahaya, gelombang radio pembawa, gelombang tegangan listrik sistem tenaga, dsb. Peristiwa-peristiwa itu merupakan fungsi waktu, sehingga kita akan melihatnya dengan menggunakan waktu sebagai peubah bebas, dengan simbol t, satuan detik. Dalam peristiwa sinusoidal, jumlah siklus yang terjadi setiap detik disebut frekuensi siklus, dengan simbol f, dengan satuan Hertz (1 Hz = 1 siklus per detik). Jadi jika fungsi sinus memiliki perioda T maka 1 f = (7.1) T Sebagaimana dikemukakan di bab sebelumnya, kita menggunakan jumlah radian untuk menyatakan sudut. Karena satu siklus perubahan sudut bersesuaian dengan perubahan sebesar 2π radian, maka f siklus per detik bersesuaian dengan 2πf radian per detik. Jadi di samping frekuensi siklus f kita memiliki frekuensi sudut dengan simbol ω, dengan satuan radian per detik. Relasi antara frekuensi siklus (f) dengan frekuensi sudut (ω), dan juga dengan perioda (T ), adalah 2π ω = 2πf = (7.2) T Suatu fungsi cosinus yang memiliki amplitudo (nilai puncak) dituliskan sebagai 2πt y = cosωt= cos (7.3) T Catatan: Sebelum kita lanjutkan pembahasan kita, ada sedikit catatan yang perlu dicermati. Di bab sebelum ini kita menyatakan fungsi sinus y = sin(x) atau fungsi cosinus cos(x) dengan x sebagai peubah bebas dengan satuan radian. Pada (7.3) kita menyatakan fungsi cosinus cos ωt dengan t sebagai peubah bebas dengan satuan detik. Faktor ω-lah yang membuat satuan detik menjadi radian; ω disebut frekuensi susut, satuan rad/detik. 7-1
3 Gb.7.1. memperlihatkan kurva fungsi cosinus. Jika fungsi cosinus ini kita geser ke arah positif sebesar ¼ perioda kita akan mendapatkan fungsi sinus. Gb.7.2. π 2πt y = cos ωt = sinωt= sin 2 (7.4) T y T t - Gb.7.1. Fungsi cosinus y 2πt y = cosωt= cos T T t - Gb.7.2. Fungsi sinus 2πt π y = sinωt= sin = cos ωt T 2 Pergeseran fungsi cosinus sebesar T s diperlihatkan pada Gb.7.3. Persamaan kurva cosinus tergeser ini adalah cosω 2πt ( t T ) = cos s s T T 2πT 7-2 Sudaryatno Sudirham, Fungsi dan Grafik Diferensial dan Integral
4 y T T s t - Gb.7.3. Fungsi cosinus tergeser Kita perhatikan bahwa puncak pertama fungsi cosinus menunjukkan pergeseran. Pada Gb.7.1. pergeseran adalah nol. Pada Gb.7.3. pergeseran adalah T s. Pada Gb.7.2. pergeseran adalah π/2 yang kemudian menjadi kurva fungsi sinus. Jadi akan sangat mudah menuliskan persamaan suatu fungsi sinusoidal sembarang, yaitu dengan menuliskannya dalam bentuk cosinus, dengan memasukkan pergeseran yang terjadi yaitu yang ditunjukkan oleh posisi puncak yang pertama. Untuk selanjutnya, peristiwa-peristiwa yang berubah secara sinusoidal kita nyatakan dengan menggunakan fungsi cosinus, yang dianggap sebagai bentuk normal Perhatikanlah bahwa T s adalah pergeseran waktu dalam detik, sehingga fungsi sinusoidal dengan pergeseran T s kita tuliskan (Gb.7.3) yang dapat pula kita tuliskan cos ω cos ( t ) T s ( ωt ω ) Pada penulisan terakhir ini, ωt s mempunyai satuan radian, sama dengan satuan ωt. Selanjutnya 2πTs ϕ =ωts = (7.5) T disebut sudut fasa dari fungsi cosinus dan menunjukkan posisi puncak pertama dari fungsi cosinus. Fungsi cosinus dengan sudut fasa ϕ kita tuliskan ( ω ϕ) T s cos t (7.6) 7-3
5 Jika ϕ = π/2 maka kita mempunyai fungsi sinus. Jadi untuk mengubah fungsi sinus ke dalam format normal (menggunakan fungsi cosinus) kita menambahkan pergeseran sebesar π/2 pada fungsi cosinus Kombinasi Fungsi Sinus. Dalam tinjauan selanjutnya, jika disebut fungsi sinus, yang dimaksudkan adalah fungsi sinus yang dinyatakan dalam bentuk normal, yaitu cosinus. Fungsi sinus adalah fungsi periodik. Fungsi-fungsi periodik lain yang bukan sinus, dapat dinyatakan sebagai jumlah dari fungsi-fungsi sinus. tau dengan kata lain suatu fungsi periodik dapat diuraikan menjadi jumlah dari beberapa komponen sinus, yang memiliki amplitudo, sudut fasa, dan frekuensi yang berlainan satu sama lain. Dalam penguraian itu, fungsi akan terdiri dari komponen-komponen yang berupa komponen searah (nilai rata-rata dari fungsi), komponen sinus dengan frekuensi dasar f, dan harmonisa yang memiliki frekuensi harmonisa nf. Sebaliknya dapat juga dikatakan bahwa jumlah dari beberapa fungsi sinus yang memiliki amplitudo, frekuensi, serta sudut fasa yang berlainan, akan membentuk fungsi periodik, walaupun bukan berbentuk sinus. Gb.7.4. memperlihatkan beberapa bentuk fungsi periodik; bentuk fungsi-fungsi periodik ini tergantung macam komponen sinus yang menyusunnya. Frekuensi harmonisa adalah nilai frekuensi yang merupakan kelipatan bulat n dari frekuensi dasar f. Frekuensi f kita sebut sebagai frekuensi dasar karena frekuensi inilah yang menentukan perioda T = 1/f. Frekuensi harmonisa dimulai dari harmonisa kedua (2f o ), harmonisa ketiga (3f ), dan seterusnya, yang secara umum kita katakan harmonisa ke-n mempunyai frekuensi nf Spektrum Dan Lebar Pita. Spektrum. Jika kita menghadapi suatu fungsi periodik, kita bisa mempertanyakan bagaimana komponen-komponen sinusoidalnya. Bagaimana penyebaran amplitudo dan sudut fasa setiap komponen, atau dengan singkat bagaimana spektrum fungsi tersebut. Kita juga mempertanyakan bagaimana sebaran frekuensi dari komponenkomponen tersebut. 7-4 Sudaryatno Sudirham, Fungsi dan Grafik Diferensial dan Integral
6 4 y y t t -4 y = 3 cos 2f t -4 y = cos 2f t y t cos 2πft 2cos(2π(2 f) t) y = 1+ 3cos 2π ft 2cos(2π(2 f) t+ π / 4) Gb.7.4. Beberapa fungsi periodik. Berikut ini kita akan melihat suatu contoh fungsi yang dinyatakan dengan persamaan ( 2πf t) + 15sin( 2π(2 f ) t) 7,5 cos( 2 (4 f ) t) 1+ 3 cos π Fungsi ini merupakan jumlah dari satu komponen konstan dan tiga komponen sinus. Komponen konstan sering disebut komponen berfrekuensi nol karena y(t) = cos(2πft) = jika f =. Komponen sinus yang pertama adalah komponen sinus dasar karena komponen inilah yang mempunyai frekuensi paling rendah tetapi tidak nol. Suku ketiga dan keempat adalah harmonisa ke-2 dan ke-4; harmonisa ke-3 tidak ada. Fungsi ini dinyatakan dengan campuran fungsi sinus dan cosinus. Untuk melihat bagaimana spektrum fungsi ini, kita harus menuliskan tiap suku dengan bentuk yang sama yaitu bentuk normal (standar). Telah dikatakan 7-5
7 di depan bahwa bentuk normal pernyataan fungsi sinusoidal adalah menggunakan fungsi cosinus, yaitu y = cos( 2πft+ ϕ). Dengan menggunakan kesamaan sin( 2πft ) = cos(2πft π / 2) dan cos( 2πft ) = cos(2πft+ π) persamaan fungsi di atas dapat kita tulis y = 1+ 3 cos(2πft) + 15 cos(2π2 ft π / 2) + 7,5cos(2π4 ft+ π) Dalam pernyataan terakhir ini semua suku telah kita tuliskan dalam bentuk standar, dan kita dapat melihat amplitudo dan sudut fasa dari tiap komponen seperti dalam tabel berikut. Frekuensi f 2 f 4 f mplitudo ,5 Sudut fasa π/2 π Fungsi yang kita ambil sebagai cintoh mungkin merupakan pernyataan suatu sinyal (dalam rangkaian listrik misalnya). Tabel ini menunjukkan apa yang disebut sebagai spektrum dari sinyal yang diwakilinya. Suatu spektrum sinyal menunjukkan bagaimana komposisi baik amplitudo maupun sudut fasa dari semua komponen cosinus sebagai fungsi dari frekuensi. Sinyal yang kita bahas ini berisi empat macam frekuensi, yaitu :, f, 2f, dan 4f. mplitudo dari setiap frekuensi secara berturut-turut adalah 1, 3, 15, dan 7,5 satuan (volt misalnya, jika ia adalah sinyal tegangan). Sudut fasa dari komponen sinus yang berfrekuensi f, 2f dan 4f berturut turut adalah, π/2, dan π radian. Dari tabel tersebut di atas kita dapat menggambarkan dua grafik yaitu grafik amplitudo dan grafik sudut fasa, masing-masing sebagai fungsi frekuensi. Grafik yang pertama kita sebut spektrum amplitudo (Gb.7.5.a) dan grafik yang kedua kita sebut spektrum sudut fasa (Gb.7.5.b). 7-6 Sudaryatno Sudirham, Fungsi dan Grafik Diferensial dan Integral
8 4 mplitudo Frekuensi [ f ] Gb.7.5.a. Spektrum mplitudo 2π Sudut Fasa π/ π/2 2π Frekuensi [ f ] Gb.7.5.b. Spektrum sudut fasa. Penguraian fungsi periodik menjadi penjumlahan harmonisa sinus, dapat dilakukan untuk semua bentuk fungsi periodik dengan syarat tertentu. Fungsi persegi misalnya, yang juga periodik, dapat diuraikan menjadi jumlah harmonisa sinus. Empat suku pertama dari persamaan hasil uraian fungsi persegi ini adalah sebagai berikut : cos(2πf t π / 2) + cos(2π3 ft π / 2) 3 + cos(2π5 ft π / 2) + cos(2π7 ft π / 2) Dari persamaan ini, terlihat bahwa semua harmonisa mempunyai sudut fasa sama besar yaitu π/2; amplitudonya menurun dengan meningkatnya frekuensi dengan faktor 1/n; tidak ada komponen konstan dan tidak ada harmonisa genap. Tabel amplitudo dan sudut fasa adalah seperti berikut. 7-7
9 Frekuensi: f 2f 3f 4f 5f.. nf mplitudo: /3 /5.. /n Sudut Fasa: - -π/2 - -π/2 - -π/2.. -π/2 Gb.7.6. berikut ini memperlihatkan bagaimana fungsi persegi dibangun dari harmonisa-harmonisanya. a) b) c) d) e) Gb.7.1. Uraian fungsi persegi. a). sinus dasar. b). harmonisa-3 dan sinus dasar + harmonisa-3. c). harmonisa-5 dan sinus dasar + harmonisa-3 + harmonisa-5. d). harmonisa-7 dan sinus dasar + harmonisa-3 + harmonisa-5 + harmonisa-7. e) hasil penjumlahan yang dilakukan sampai pada harmonisa ke-21. Lebar Pita. Dari contoh fungsi persegi di atas, terlihat bahwa dengan menambahkan harmonisa-harmonisa pada sinus dasarnya kita akan makin mendekati bentuk persegi. Penambahan ini dapat kita lakukan terus sampai ke suatu harmonisa tinggi yang memberikan bentuk fungsi yang kita anggap cukup memuaskan artinya cukup dekat dengan bentuk yang kita inginkan. Pada spektrum amplitudo, kita juga dapat melihat bahwa makin tinggi frekuensi harmonisa akan makin rendah amplitudonya. Hal ini tidak hanya berlaku untuk fungsi persegi saja melainkan berlaku secara umum. Oleh karena itu secara umum kita dapat menetapkan suatu batas 7-8 Sudaryatno Sudirham, Fungsi dan Grafik Diferensial dan Integral
10 frekuensi tertinggi dari suatu fungsi periodik, dengan menganggap amplitudo harmonisa-harmonisa yang frekuensinya di atas frekuensi tertinggi ini dapat diabaikan. Batas frekuensi tertinggi tersebut dapat kita tetapkan, misalnya frekuensi harmonisa yang amplitudonya tinggal 2% dari amplitudo sinus dasar. Jika batas frekuensi tertinggi kita tetapkan, batas frekuensi terendah juga perlu kita tetapkan. Batas frekuensi terendah adalah frekuensi sinus dasar jika bentuk fungsi yang kita tinjau tidak mengandung komponen konstan. Jika mengandung komponen konstan maka frekuensi terendah adalah nol. Selisih dari frekuensi tertinggi dan terendah disebut lebar pita (band width). 7-9
11 Soal-Soal: Fungsi Sinus, Gabungan Sinus, Spektrum 1. Tentukan persamaan bentuk kurva fungsi sinus berikut ini dalam format cosinus cos( x xs ) : a). mplitudo 1, puncak pertama terjadi pada x =, frekuensi siklus 1 siklus/skala. b). mplitudo 1, puncak pertama terjadi pada x =,2, frekuensi siklus 1 siklus/skala. c). mplitudo 1, pergeseran sudut fasa o, frekuensi sudut 1 rad/skala. d). mplitudo 1, pergeseran sudut fasa +3 o, frekuensi sudut 1 rad/skala. 2. Carilah spektrum amplitudo dan sudut fasa dari fungsi gabungan sinus berikut ini 4+ 5sin 2π2t 2cos 2π4t+,2sin 2π8t Dengan mengambil batas amplitudo harmonisa tertinggi 5%, tentukan lebar pita fungsi ini. 3. Ulangi soal sebelumnya untuk fungsi berikut. o 3cos(2π1t 6 ) - 2sin2π2t+ cos2π8t 4. Ulangi soal sebelumnya untuk fungsi berikut. 1 cos1t+ 2cos3t + cos5t +.2 cos15t+,2 cos 5t 5. Ulangi soal sebelumnya untuk fungsi berikut. 1+ 1cos 2π5t + 3cos 2π1t + 2cos 2π15t+,2cos 2π2t 7-1 Sudaryatno Sudirham, Fungsi dan Grafik Diferensial dan Integral
Darpublic Nopember 2013
Darpublic Nopember 213 www.darpublic.com 7. Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banak peristiwa terjadi secara siklis sinusoidal, seperti misalna gelombang cahaa, gelombang radio pembawa,
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,
SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017
SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 TUJUAN PERKULIAHAN Memahami berbagai pernyataan gelombang sinyal Memahami konsep harmonisa
FUNGSI DAN GRAFIK DIFERENSIAL DAN INTEGRAL
FUNGSI DAN GRAFIK DIFERENSIAL DAN INTEGRAL Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral darpublic Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaryatno
MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER
MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER 1 Deret Fourier 2 Tujuan : 1. Dapat merepresentasikan seluruh fungsi periodik dalam bentuk deret Fourier. 2. Dapat memetakan Cosinus Fourier, Sinus Fourier, Fourier
Oleh: Sudaryatno Sudirham. BAB 1 Sinyal onsinus Pada Rangkaian Linier
nalisis Harmonisa Oleh: Sudaryatno Sudirham BB Sinyal onsinus Pada Rangkaian Linier Penyediaan energi elektrik pada umumnya dilakukan dengan menggunakan sumber tegangan berbentuk gelombang sinus. rus yang
BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang
BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus
Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan.
Untai Elektrik I Waveforms & Signals Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Secara umum, tegangan dan arus dalam sebuah untai elektrik dapat dikategorikan menjadi tiga jenis
FUNGSI DAN GRAFIK FUNGSI
FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)
KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T
Data dan Sinyal Data yang akan ditransmisikan kedalam media transmisi harus ditransformasikan terlebih dahulu kedalam bentuk gelombang elektromagnetik. Bit 1 dan 0 akan diwakili oleh tegangan listrik dengan
GETARAN DAN GELOMBANG
GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran
BENTUK GELOMBANG AC SINUSOIDAL
BENTUK GELOMBANG AC SINUSOIDAL. PENDAHULUAN Pada bab sebelunya telah dibahas rangkaian resistif dengan tegangan dan arus dc. Bab ini akan eperkenalkan analisis rangkaian ac diana isyarat listriknya berubah
Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor
Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor Alexander Sadiku edited by Agus Virgono Ir. MT. & Randy E. Saputra Prodi S1-Sistem Komputer Fakultas Teknik Elektro Universitas Telkom - 2016
Signal Models {Rangkaian Elektrik} By: Gutama Indra Gandha, M.Eng Program Studi Teknik Elektro Fakultas Teknik Universitas Dian Nuswantoro
Signal Models {Rangkaian Elektrik} By: Gutama Indra Gandha, M.Eng Program Studi Teknik Elektro Fakultas Teknik Universitas Dian Nuswantoro Tujuan perkuliahan Mahasiswa mampu membuat model matematis sinyal
Deret Fourier untuk Sinyal Periodik
x( t T ) x( Analisis Fourier Jean Baptiste Fourier (1768-1830, ahli fisika Perancis) membuktikan bahwa sembarang fungsi periodik dapat direpresentasikan sebagai penjumlahan sinyal-sinyal sinus dengan frekuensi
Modulasi Sudut / Modulasi Eksponensial
Modulasi Sudut / Modulasi Eksponensial Modulasi sudut / Modulasi eksponensial Sudut gelombang pembawa berubah sesuai/ berpadanan dengan gelombang informasi kata lain informasi ditransmisikan dengan perubahan
Analisis Ajeg dari Sinusoidal
Analisis Ajeg dari Sinusoidal Slide-08 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Karakteristik Sinusoid Bentuk Umum Pergeseran Fase Sinus Kosinus 2 Tanggapan Paksaan thdp Sinusoid
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic ii BAB 3 Gabungan Fungsi Linier Fungsi-fungsi linier banak digunakan untuk membuat model dari perubahan-perubahan besaran
Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga
Sudaryatno Sudirham Analisis Keadaan Mantap Rangkaian Sistem Tenaga ii Bab 5 (dari Bab 8 Analisis Rangkaian Sistem Tenaga) Pembebanan Nonlinier Sistem Tiga Fasa dan Dampak pada Piranti 8.. Komponen Harmonisa
DERET FOURIER. 1. Pendahuluan
DERET FOURIER 1. Pendahuluan Teorema Fourier: Suatu fungsi periodik terhadap waktu, x p (t), dengan perioda dasar T 0, dapat dinyatakan sebagai jumlah tak hingga dari gelombang-gelombang sinusoidal. Fungsi
Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan
RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik
Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr
Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium
Bab 1 Pengenalan Dasar Sinyal
Bab 1 Pengenalan Dasar Sinyal Tujuan: Siswa mampu menyelesaikan permasalahan terkait dengan konsep sinyal, menggambarkan perbedaan sinyal waktu kontinyu dengan sinyal waktu diskrit. Siswa mampu menjelaskan
Spektrum dan Domain Sinyal
Spektrum dan Domain Sinyal 1 Sinyal dan Spektrum Sinyal Komunikasi merupakan besaran yang selalu berubah terhadap besaran waktu Setiap sinyal dapat dinyatakan di dalam domain waktu maupun di dalam domain
Analisis Rangkaian Listrik Di Kawasan s
Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Tanggapan Frekuensi Rangkaian Orde Pertama Sebagaimana kita ketahui, kondisi operasi
Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier
Aplikasi Deret Fourier (FS) 1. Deret Fourier Menurut Fourier setiap fungsi periodik dapat dinyatakan sebagai jumlah fungsi sinus dan cosinus yang tak berhingga jumlahnya dan dihubungkan secara harmonis.
TEGANGAN DAN ARUS BOLAK-BALIK
TEGANGAN DAN ARUS BOLAK-BALIK 1.Pengertian Tegangan dan Arus Listrik Bolak-Balik Yang dimaksud dengan arus bolsk-balik ialah arus listrik yang arah serta besarnya berubah berkala,menurut suatu cara tertentu.hal
Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.
1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.
Analisis Sinusoida. Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto
Analisis Sinusoida Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto 1. Fungsi Pemaksa Sinusoida 1.1 Karakteristik sinusoida Kita
INTERFERENSI GELOMBANG
INERFERENSI GELOMBANG Gelombang merupakan perambatan dari getaran. Perambatan gelombang tidak disertai dengan perpindahan materi-materi medium perantaranya. Gelombang dalam perambatannya memindahkan energi.
TEKNIK TELEKOMUNIKASI DASAR. Kuliah 3 Modulasi Amplitudo
TKE 10 TEKNIK TELEKOMUNIKASI DASAR Kuliah 3 Modulasi Amplitudo Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Komputer Universitas Meru Buana Yogyakarta 009 B A B
FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK
FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus
GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana
GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap
BAB 2 TINJAUAN PUSTAKA
BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang
HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA
GELOMBAG : Gerak Harmonik Sederhana M. Ishaq Pendahuluan Gerak harmonik adalah sebuah kajian yang penting terutama jika anda bergelut dalam bidang teknik, elektronika, geofisika dan lain-lain. Banyak gejala
ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2
ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir
TEKNIK TELEKOMUNIKASI DASAR. Kuliah 4 Modulasi Frekuensi
TKE 2102 TEKNIK TELEKOMUNIKASI DASAR Kuliah 4 Modulasi Frekuensi Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 2009 B
DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)
DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut
Fungsi dan Sinyal. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS
Fungsi dan Sinyal Slide : Tri Harsono PENS - ITS 1 Kelas Fungsi (Jenis Fungsi) Ada3 kelas dari fungsi: A. Fungsi Periodik, B. Fungsi Non Periodik, C. Fungsi Random 2 A. Fungsi Periodik Suatu fungsi f(t)
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB Turunan Fungsi-Fungsi (3) (Fungsi-Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial).. Turunan
Kondisi seperti tersebut dapat dikatakan bahwa antara flux (Ф) dan tegangan (e) terdapat geseran fasa sebesar π / 2 radian atau 90 o.
Bila dua buah gelombang dengan persamaan Ф = Фm cos ωt dan e = Em sin ωt dilukiskan secara bersama dalam satu susunan sumbu Cartesius seperti pada Gambar 1, maka terlihat bahwa kedua gelombang tersebut
Osilasi Harmonis Sederhana: Beban Massa pada Pegas
OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.
DERET FOURIER DAN APLIKASINYA DALAM FISIKA
Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 00 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham
BAB IV DERET FOURIER
BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut
PENDAHULUAN. Kardiawarman, Ph.D. Modul 7 Fisika Terapan 1
PENDAHULUAN Di dalam modul ini Anda akan mempelajari Aplikasi Rangkaian Elektronika Dalam eknologi Audio Visual yang mencakup: teknik pemancar dan penerima audio, serta pemancar dan penerima audio-video.
GETARAN DAN GELOMBANG
1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: [email protected] GETARAN Getaran adalah salah satu bentuk
PERCOBAAN I KARAKTERISTIK SINYAL AC
PERCOBAAN I KARAKTERISTIK SINYAL AC Tujuan : Mengetahui bentuk sinyal sinusoida, persegi ataupun segitiga Memahami karakteristik sinyal sinusoida, persegi ataupun segitiga Mengetahui perbedaan tegangan
Capaian Pembelajaran Mata Kegiatan Peserta mampu menganalisis rangkaian listrik arus bolak balik I fasa dan 3 fasa.
Kegiatan Belajar 2 : Rangkaian Listrik Arus Bolak Balik Capaian Pembelajaran Mata Kegiatan Peserta mampu menganalisis rangkaian listrik arus bolak balik I fasa dan 3 fasa. Subcapaian Pembelajaran Mata
Analisis Rangkaian Listrik Di Kawasan Waktu
Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Model Piranti Pasif Suatu piranti mempunyai karakteristik atau perilaku tertentu.
Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi
Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut
RANGKAIAN ARUS BOLAK-BALIK.
Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas
3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.
KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi
Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS
Deret Fourier Slide: Tri Harsono PENS ITS [email protected] . Pendahuluan Gelombang di alam nyata merupakan : Jumlahan gelombang-gelombang pembentuknya (=gelombanggelombang harmonisanya) Suatu gelombang
Interferensi Cahaya. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung
Interferensi Cahaya Agus Suroso ([email protected]) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Agus Suroso (FTETI-ITB) Interferensi Cahaya 1 / 39 Contoh gejala interferensi
Perilaku Kesalahan Puncak Spektrum Akibat Penggunaan Fungsi Jendela Kotak, Hanning, dan Flattop pada Sinyal Sinus Waktu Kontinu
Perilaku Kesalahan Puncak Spektrum Akibat Penggunaan Fungsi Jendela Kotak, Hanning, dan Flattop pada Sinyal Sinus Waktu Kontinu Khuschandra dan Zainal Abidin Laboratorium Dinamika PPAU-IR, Institut Tteknologi
Konsep Dasar. Arus Bolak Balik (AC)
Konsep Dasar Arus Bolak Balik (A) frekwensi f PN Hz 10 dimana : P = jumlah kutub magnit. N = putaran rotor permenit F = jumlah lengkap putaran perdetik.m.f (eletro motor force). 4, 44K K f Volt D dimana
SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT
1 SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT List Of Content 2 Pengertian Sinyal Pengertian Sistem Jenis-Jenis Sinyal dan Aplikasinya Pengertian Sinyal 3 sinyal adalah suatu isyarat
KARAKTERISTIK GERAK HARMONIK SEDERHANA
KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter
Karakteristik Gerak Harmonik Sederhana
Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,
Fisika Dasar I (FI-321)
Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran
BAB 1 GEJALA GELOMBANG
BAB 1 GEJALA GELOMBANG 1.1 Deskripsi Gelombang Secara umum, gejala gelombang dapat didefinisikan sebagai peristiwa perambatan energi dari satu tempat ke tempat yang lain. Jika kita perhatikan, banyak kejadian
Analisis Rangkaian Listrik Jilid 2
Sudaryatno Sudirham Analisis Rangkaian Listrik Jilid Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 6 Tanggapan Frekuensi Rangkaian Orde Pertama Sebagaimana kita ketahui, kondisi operasi normal
Open Course. Analisis Harmonisa. Oleh: Sudaryatno Sudirham
Open Course nalisis Harmonisa Oleh: Sudaryatno Sudirham Pengantar Penyediaan energi listrik pada umumnya dilakukan dengan menggunakan sumber tegangan berbentuk gelombang sinus. rus yang mengalir diharapkan
OPTIMISASI Minimisasi Rugi-rugi Daya pada Saluran
OPTIMISASI Minimisasi ugi-rugi Daya pada Saluran Oleh : uriman Anthony, ST. MT ugi-rugi daya pada saluran ugi-rugi pada saluran transmisi dan distribusi dipengaruhi oleh besar arus pada beban yang melewati
BAB III DASAR DASAR GELOMBANG CAHAYA
BAB III DASAR DASAR GELOMBANG CAHAYA Tujuan Instruksional Umum Pada bab ini akan dijelaskan mengenai perambatan gelombang, yang merupakan hal yang penting dalam sistem komunikasi serat optik. Pembahasan
V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI
V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI 5.1 Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat: 1. menyebutkan definisi sinus, cosinus dan tangen dalam segitiga
KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1
KELAS XII LC FISIKA SMA KOLESE LOYOLA M1-1 MODUL 1 STANDAR KOMPETENSI : 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah KOMPETENSI DASAR 1.1. Mendeskripsikan gejala dan ciri-ciri
Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga
Sudaryatno Sudirham Analisis Keadaan Mantap Rangkaian Sistem Tenaga ii BAB Transformator.. Transformator Satu Fasa Transformator banyak digunakan dalam teknik elektro. Dalam sistem komunikasi, transformator
B. LANDASAN TEORI Getaran adalah gerak bolak balik melalui titik keseimbangan. Grafik getaran memiliki persamaan: y= A sin ( ωt +φ o)
A. TUJUAN PERCOBAAN. Mengetahui berbagai pola lissajous dengan variasi frekuensi dan amplitudo. Menggambarkan pola-pola lissajous menggunakan fungsi sinusoidal pada sumbu x dan sumbu y 3. Membandingkan
FISIKA. Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN
FISIKA KELAS XII IPA - KURIKULUM KTSP 0 Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN Gelombang adalah getaran yang merambat. Adapun gelombang berjalan merupakan suatu gelombang di mana setiap
BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.
BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan
KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T
KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER 2 GANJIL 2017/2018 DOSEN : SUSMINI I. LESTARININGATI, M.T Data/Message Data yang dihasilkan oleh manusia atau aplikasi tidak dalam bentuk yang dapat langsung
SINYAL. Adri Priadana ilkomadri.com
SINYAL Adri Priadana ilkomadri.com Pengertian Sinyal Merupakan suatu perubahan amplitude dari tegangan atau arus terhadap waktu (time). Data yang dikirimkan dalam bentuk analog ataupun digital. Sinyal
λ = = 1.grafik simpangan waktu dan grafik simpangan-posisi ditunjukan pada gambar dibawah ini.
simpangan simpangan.graik simpangan waktu dan graik simpangan-posisi ditunjukan pada gambar dibawah ini. - - Waktu mikro sekon 0 0 30 0 posisi 0 0 30 0 tentukan: rekuensi getaran, b. panjang gelombang
GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan
GERAK HARMONIK SEDERHANA Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Dalam mempelajari masalah gerak pada gelombang atau gerak harmonik, kita mengenal yang namanya PERIODE, FREKUENSI DAN
Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage :
INSTITUT TEKNOOGI BANDUNG FAKUTAS MATEMATIKA DAN IMU PENGETAHUAN AAM PROGRAM STUDI FISIKA Jl. Ganesha No. Bandung, 43 Telp. () 5834, 5347, Fax. () 5645 Homepage : http://www.fi.itb.ac.id E-mail : [email protected]
Sinyal pembawa berupa gelombang sinus dengan persamaan matematisnya:
Modulasi Amplitudo (Amplitude Modulation, AM) adalah proses menumpangkan sinyal informasi ke sinyal pembawa (carrier) dengan sedemikian rupa sehingga amplitudo gelombang pembawa berubah sesuai dengan perubahan
Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik
Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat
Oleh: Sudaryatno Sudirham
1. Transformator Satu Fasa Transformator Oleh: Sudaryatno Sudirham Transformator banyak digunakan dalam teknik elektro. Dalam sistem komunikasi, transformator digunakan pada rentang frekuensi audio sampai
1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.
1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah
3. Gabungan Fungsi Linier
3. Gabungan Fungsi Linier Sudaratno Sudirham Fungsi-fungsi linier banak digunakan untuk membuat model dari perubahanperubahan besaran fisis. Perubahan besaran fisis mungkin merupakan fungsi waktu, temperatur,
Arus & Tegangan bolak balik(ac)
Arus & Tegangan bolak balik(ac) Dede Djuhana E-mail:[email protected] Departemen Fisika FMIPA-UI 0-0 Pendahuluan Arus dan Tegangan AC Arus dan tegangan bolak balik adalah arus yang dihasilkan oleh sebuah
Quadrature Amplitudo Modulation-16 Sigit Kusmaryanto,
Quadrature Amplitudo Modulation-16 Sigit Kusmaryanto, http://[email protected] BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, kebutuhan
TEKNIK MODULASI AMPLITUDO (AM) DAN MODULASI FREKUENSI (FM).
PROYEK PENINGKAAN PPPG IPA BANDUNG Pokok permasalahan yang terjadi dalam masyarakat. EKNIK MODULASI AMPLIUDO (AM) DAN MODULASI FREKUENSI (FM). Oleh: Kardiawarman, Ph.D. DAFAR ISI KAA PENGANAR PENGEMBANG
Rangkaian Arus Bolak-Balik. Balik (Rangkaian AC) Pendahuluan. Surya Darma, M.Sc Departemen Fisika Universitas Indonesia
Rangkaian Arus Bolak-Balik Balik (Rangkaian A) Surya Darma, M.Sc Departemen Fisika Universitas ndonesia Pendahuluan Akhir abad 9 Nikola esla dan George Westinghouse memenangkan proposal pendistribusian
SOAL DAN PEMBAHASAN ARUS BOLAK BALIK
SOAL DAN PEMBAHASAN ARUS BOLAK BALIK Berikut ini ditampilkan beberapa soal dan pembahasan materi Fisika Listrik Arus Bolak- Balik (AC) yang dibahas di kelas 12 SMA. (1) Diberikan sebuah gambar rangkaian
SOLUSI PR-08 (Thyristor dan UJT)
SOLUSI PR-08 (Thyristor dan UJT) SOAL- Tinjau rangkaian listrik di bawah ini. Sumber tegangan V i (t) = V m sin ωt merupakan tegangan jala-jala listrik (PLN) di mana Vm = 220 2 volt, dan RL mewakili resistansi
MATERI PENGOLAHAN SINYAL :
MATERI PENGOLAHAN SINYAL : 1. Defenisi sinyal 2. Klasifikasi Sinyal 3. Konsep Frekuensi Sinyal Analog dan Sinyal Diskrit 4. ADC - Sampling - Aliasing - Quantiasasi 5. Sistem Diskrit - Sinyal dasar system
Sudaryatno Sudirham. Integral dan Persamaan Diferensial
Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup
Analisis Rangkaian Listrik
Sudaryatn Sudirham nalisis Rangkaian Listrik Jilid ii Sudaryatn Sudirham, nalsis Rangkaian Listrik () BB Fasr, Impedansi, dan Kaidah Rangkaian Dalam teknik energi listrik, tenaga listrik dibangkitkan,
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1. Harmonisa Dalam sistem tenaga listrik dikenal dua jenis beban yaitu beban linier dan beban tidak linier. Beban linier adalah beban yang memberikan bentuk gelombang keluaran
HAND OUT FISIKA DASAR 2/GELOMBANG : Gelombang Tali, Gelombang berdiri, superposisi
HAND OUT FISIKA DASAR /GELOMBANG : Gelombang Tali, Gelombang berdiri, superposisi GELOMBANG : Traveling Wave, Standing Wave, Superposisi Gelombang M. Ishaq Salah satu fenomena fisis yang menarik dalam
KONSEP DAN TERMINOLOGI ==Terminologi==
TRANSMISI DATA KONSEP DAN TERMINOLOGI ==Terminologi== Direct link digunakan untuk menunjukkan jalur transmisi antara dua perangkat dimana sinyal dirambatkan secara langsung dari transmitter menuju receiver
GELOMBANG : GELOMBANG TALI, GELOMBANG BERDIRI, SUPERPOSISI
GELOMBANG : GELOMBANG TALI, GELOMBANG BERDIRI, SUPERPOSISI GELOMBANG : Traveling Wave, Standing Wave, Superposisi Gelombang M. Ishaq Salah satu fenomena fisis yang menarik dalam Fisika adalah gelombang
Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung
([email protected]) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Materi 1 Sumber arus bolak-balik (alternating current, AC) 2 Resistor pada rangkaian AC 3 Induktor
The Forced Oscillator
The Forced Oscillator Behaviour, Displacement, Velocity and Frequency Apriadi S. Adam M.Sc Jurusan Fisika Universitas Islam Negeri Sunan Kalijaga Yogyakarta Update 5 November 2013 A.S. Adam (UIN SUKA)
Bilangan Kompleks dan Fasor
Bilangan Kmpleks dan Fasr leh: Sudaryatn Sudirham. Bilangan Kmpleks.. Definisi Dalam buku Erwin Kreyszig kita baca definisi bilangan bilangan kmpleks sebagai berikut [] Bilangan kmpleks z ialah suatu pasangan
BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya
BAB TINJAUAN PUSTAKA.. Faktor Daya Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya aktif (P) dan daya reaktif (Q), maka besarnya daya semu (S) adalah sebanding dengan arus (I)
