DERET FOURIER. 1. Pendahuluan
|
|
|
- Harjanti Hartono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 DERET FOURIER 1. Pendahuluan Teorema Fourier: Suatu fungsi periodik terhadap waktu, x p (t), dengan perioda dasar T 0, dapat dinyatakan sebagai jumlah tak hingga dari gelombang-gelombang sinusoidal. Fungsi periodik: x p (t) = x p (t + T 0 ) (1.1) dapat dinyatakan dalam bentuk Deret Fourier sebagai berikut: (1.2) Di mana, a n, b n : keffisien Fourier (1.3) n= 1,2, (1.4) n=1,2, (1.5) 2. Sifat-Sifat Simetri 2.1. Fungsi Genap f(t) dikatakan suatu fungsi genap jika memenuhi: f(t) = f(-t) untuk setiap t (1.6)
2 f(t)=sin t f(t)=sin 2 (t) Deret Fourier t Gambar 1 Fungsi Genap (1.7) contoh: ~ f(t)= t 2 ~ f(t)= cos(t) 2.2 Fungsi Ganjil f(t) dikatakan suatu fungsi genap jika memenuhi: f(t) = -f(-t) untuk setiap t (1.8) t Gambar 2. Fungsi Ganjil
3 (1.9) contoh: ~ f(t) = t ~ f(t) = sin t 2.3 Perkalian Antar Fungsi Fungsi genap x fungsi genap = fungsi genap Fungsi ganjil x fungsi ganjil = fungsi genap fungsi genap x fungsi ganjil = fungsi ganjil 2.4 Penerapan Sifat Simetri Pada Deret Fourier Ambil: f(t) = x p (t) cos nω 0 t g(t) = x p (t) sin nω 0 t (i) Jika x p (t) adalah fungsi genap, maka: f(t) = fungsi genap x fungsi genap = fungsi genap sehingga berlaku: g(t) = fungsi genap x fungsi ganjil = fungsi ganjil sehingga berlaku: Persamaan (1.4) dan (1.5) menjadi: n= 0,1,2, (1.10) n=1,2, (1.11)
4 (ii) Jika x p (t) adalah fungsi ganjil, maka: f(t) = fungsi ganjil x fungsi genap = fungsi ganjil sehingga berlaku: g(t) = fungsi ganjil x fungsi ganjil = fungsi genap sehingga berlaku: Persamaan (1.4) dan (1.5) menjadi: n= 0,1,2, (1.12) n=1,2, (1.13) 2.5 Simetri ½ Gelombang Suatu fungsi dikatakan mempunyai simetri ½ gelombang jika memenuhi: f(t+t/2) = -f(t) untuk setiap t (1.14) f(t) -T -T/2 T/2 T t Gambar 3. Fungsi Simetri ½ Gelombang Pada kondisi ini, persamaan (1.4) dan (1.5) menjadi:
5 untuk n genap untuk n ganjil (1.15) dan, untuk n genap untuk n ganjil (1.16) Contoh soal: f(t) π -2π -π π 2π t -π Gambar 4. Gelombang Gigi Gergaji Gelombang gigi gergaji dengan persamaan: f(t) = t untuk -π < t < π f(t+2π) = f(t) Tentukan deret Fouriernya! Solusi: f(t) merupakan fungsi ganjil, sehingga berlaku: n= 0,1,2, n=1,2,
6 T= 2π ω 0 = 2π/T = 2π/2π = 1 ======================================================== ========================================================= didapat: ~ untuk n genap: cos nπ = 1 b n = - 1/n ~ untuk n ganjil: cos nπ = -1 b n = 1/n sehingga, =
7 f(t) Deret Fourier deret fourier gel. gigi gergaji sin(x) sin(2*x)/2 sin(3*x)/ t Gambar 5. Deret Fourier dari Gelombang Gigi Gergaji 3. Deret Fourier Eksponensial Kompleks Deret Fourier eksponensial kompleks menggambarkan respon frekuensi dan mengandung seluruh komponen frekuensi (harmonisa dari frekuensi dasar) dari sinyal. Tinjau rumus Euleur berikut: Sustitusi rumus Euleur ke persamaan (1.2) menjadi: (1.17) = (1.18) pasangan konjugasi kompleks
8 di mana, (1.19) Ambil, c n, suatu koefisien kompleks dengan hubungan: (1.20) Persamaan (1.18) menjadi Deret Fourier Eksponensial Kompleks, (1.21) di mana, ; n= 0, + 1, +2, (1.22) Fungsi dasar nilai kompleks dan komponen frekuensi negative tidak mempunyai arti fisis, penampakannya hanya untuk memberikan gambaran matematis secara utuh dari sinyal periodik. Karena c n merupakan bilangan kompleks, maka secara umum dapat dituliskan sebagai, (1.23) di mana, (i) : amplituda komponen harmonic ke n dari sinyal x p (t). Plot terhadap frekuensi menghasilkan spectrum amplitude diskrit. (ii) arg(c n ) : sududt fasa dari c n. Plot c n terhadap frekuensi menghasilkan spectrum fasa diskrit. Jika x p (t) merupakan fungsi periodik dengan nilai riil, maka dari persamaan (1.22) didapat: c -n = c * (konjugasi kompleks dari c n, sehingga, simetri: fungsi genap dari n (1.24) arg(c -n ) = - arg(c n ) asimetri: fungsi ganjil dari n (1.25)
MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER
MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER 1 Deret Fourier 2 Tujuan : 1. Dapat merepresentasikan seluruh fungsi periodik dalam bentuk deret Fourier. 2. Dapat memetakan Cosinus Fourier, Sinus Fourier, Fourier
Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS
Deret Fourier Slide: Tri Harsono PENS ITS [email protected] . Pendahuluan Gelombang di alam nyata merupakan : Jumlahan gelombang-gelombang pembentuknya (=gelombanggelombang harmonisanya) Suatu gelombang
Spektrum dan Domain Sinyal
Spektrum dan Domain Sinyal 1 Sinyal dan Spektrum Sinyal Komunikasi merupakan besaran yang selalu berubah terhadap besaran waktu Setiap sinyal dapat dinyatakan di dalam domain waktu maupun di dalam domain
Deret Fourier untuk Sinyal Periodik
x( t T ) x( Analisis Fourier Jean Baptiste Fourier (1768-1830, ahli fisika Perancis) membuktikan bahwa sembarang fungsi periodik dapat direpresentasikan sebagai penjumlahan sinyal-sinyal sinus dengan frekuensi
Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier
Aplikasi Deret Fourier (FS) 1. Deret Fourier Menurut Fourier setiap fungsi periodik dapat dinyatakan sebagai jumlah fungsi sinus dan cosinus yang tak berhingga jumlahnya dan dihubungkan secara harmonis.
BAB IV DERET FOURIER
BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut
5.1 Fungsi periodik, fungsi genap, fungsi ganjil
Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk
Fungsi dan Grafik Diferensial dan Integral
Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral 2 Darpublic BB 7 Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banyak peristiwa terjadi secara siklis sinusoidal, seperti
SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017
SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 TUJUAN PERKULIAHAN Memahami berbagai pernyataan gelombang sinyal Memahami konsep harmonisa
s(t) = C (2.39) } (2.42) atau, dengan menempatkan + )(2.44)
2.9 Analisis Fourier Alasan penting untuk pusat osilasi harmonik adalah bahwa virtually apapun osilasi atau getaran dapat dipecah menjadi harmonis, yaitu getaran sinusoidal. Hal ini berlaku tidak hanya
DERET FOURIER DAN APLIKASINYA DALAM FISIKA
Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER
SYARAT DIRICHLET. 1, 1 < t < 0
SYARAT DIRICHET Misalkan f t adalah fungsi yang licin bagian demi bagian, berperioda, maka deret fourier konvergen. Ke nilai f t untuk setiap titik di mana fungsi f kontinu.. Ke nilai f t + + f t bagi
2. Sinyal Waktu-Diskret dan Sistemnya
2.1 Sinyal Waktu-Diskret Sinyal waku diskret x(n) : 2. Sinyal Waktu-Diskret dan Sistemnya Sinyal waktu diskret didefinisikan untuk setiap nilai n integer untuk - < n
SINYAL DAN SISTEM DALAM KEHIDUPAN
SINYAL DAN SISTEM DALAM KEHIDUPAN DUM 27 Agustus 2014 Definisi Sinyal Sinyal merupakan sebuah fungsi yang berisi informasi mengenai keadaan tingkah laku dari sebuah sistem secara fisik, Meskipun sinyal
MATERI PENGOLAHAN SINYAL :
MATERI PENGOLAHAN SINYAL : 1. Defenisi sinyal 2. Klasifikasi Sinyal 3. Konsep Frekuensi Sinyal Analog dan Sinyal Diskrit 4. ADC - Sampling - Aliasing - Quantiasasi 5. Sistem Diskrit - Sinyal dasar system
Darpublic Nopember 2013
Darpublic Nopember 213 www.darpublic.com 7. Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banak peristiwa terjadi secara siklis sinusoidal, seperti misalna gelombang cahaa, gelombang radio pembawa,
6. OPTIKA FOURIER 6.1. ANALISIS FOURIER
6. OPTIKA FOURIER 6.1. ANALISIS FOURIER Dala intererensi, diraksi, terjadi superposisi dua buah gelobang bahkan lebih. Seringkali superposisi terjadi antara gelobang yang eiliki aplitudo, panjang gelobang
Modulasi Sudut / Modulasi Eksponensial
Modulasi Sudut / Modulasi Eksponensial Modulasi sudut / Modulasi eksponensial Sudut gelombang pembawa berubah sesuai/ berpadanan dengan gelombang informasi kata lain informasi ditransmisikan dengan perubahan
Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor
Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor Alexander Sadiku edited by Agus Virgono Ir. MT. & Randy E. Saputra Prodi S1-Sistem Komputer Fakultas Teknik Elektro Universitas Telkom - 2016
KONSEP SINYAL. Asep Najmurrokhman Jurusan Teknik Elektro Universitas Jenderal Achmad Yani February EL2032 Sinyal dan Sistem
KONSEP SINYAL Asep Najmurrokhman Jurusan Teknik Elektro Universitas Jenderal Achmad Yani 1 18 February 2013 Tujuan Belajar : mendefinisikan sinyal dan memberi contoh tentang sinyal menggambarkan domain
ANALISA SINYAL DAN SISTEM TE 4230
ANALISA SINYAL DAN SISTEM TE 430 TUJUAN: Sinyal dan Sifat-sifat Sinyal Sistem dan sifat-sifat Sisterm Analisa sinyal dalam domain Waktu Analisa sinyal dalam domain frekuensi menggunakan Tools: Transformasi
(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP
(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP Judul Mata Kuliah : Rangkaian Listrik III Nomer Kode / SKS : Diskripsi singkat : Metode transformasi untuk pemecahan persamaan diferensial menawarkan
BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang
BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus
BAB III METODE PENGAMBILAN DAN PENGOLAHAN DATA SEISMOELEKTRIK. palu. Dari referensi pengukuran seismoelektrik di antaranya yang dilakukan oleh
BAB III METODE PENGAMBILAN DAN PENGOLAHAN DATA SEISMOELEKTRIK 3.1 Metode Pengambilan Data Ada beberapa konfigurasi pengukuran yang digunakan dalam pengambilan data seismoelektrik di lapangan. Konfigurasi
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu sistem tenaga listrik dikatakan ideal jika bentuk gelombang arus yang dihasilkan dan bentuk gelombang tegangan yang disaluran ke konsumen adalah gelombang sinus murni.
4. Deret Fourier pada Interval Sebarang dan Aplikasi
4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret trigonometri tersebut
Deret Fourier dan Respons Frekuensi
Program Studi Teknik Telekomunikasi - Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Praktikum Pengolahan Sinyal Waktu Kontinyu sebagai bagian dari Mata Kuliah ET 2004 Modul 2 : Deret
KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T
Data dan Sinyal Data yang akan ditransmisikan kedalam media transmisi harus ditransformasikan terlebih dahulu kedalam bentuk gelombang elektromagnetik. Bit 1 dan 0 akan diwakili oleh tegangan listrik dengan
1. Sinyal adalah besaran fisis yang berubah menurut. 2. X(z) = 1/(1 1,5z 1 + 0,5z 2 ) memiliki solusi gabungan causal dan anti causal pada
1. Sinyal adalah besaran fisis yang berubah menurut 2. X(z) = 1/(1 1,5z 1 + 0,5z 2 ) memiliki solusi gabungan causal dan anti causal pada 3. X + (z) mempunyai sifat sifat seperti yang disebutkan di bawah
Signal Models {Rangkaian Elektrik} By: Gutama Indra Gandha, M.Eng Program Studi Teknik Elektro Fakultas Teknik Universitas Dian Nuswantoro
Signal Models {Rangkaian Elektrik} By: Gutama Indra Gandha, M.Eng Program Studi Teknik Elektro Fakultas Teknik Universitas Dian Nuswantoro Tujuan perkuliahan Mahasiswa mampu membuat model matematis sinyal
FUNGSI DAN GRAFIK FUNGSI
FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)
BAB 5 SIMULASI INVERTER PWM LIMA-FASA
BAB 5 SIMULASI INVERTER PWM LIMA-FASA 5.1 Pendahuluan Bab ini berisi tentang implementasi inverter lima-fasa pada simulasi dengan metode-metode PWM yang telah dibahas sebelumnya. Simulasi ini ditujukan
Prinsip superposisi Jika dua atau lebih gelombang merambat dalam satu medium yang sama, gelombang resultan-nya sama dengan jumlahan aljabar dari
Pertemuan 8 1 Jika gelombang-gelombang sinusoidal yang bergabung dalam satu medium yang sama mempunyai frekuensi dan panjang-gelombang yang sama, maka sebuah pola stasioner dapat terbentuk. Pola stasioner
Deret Fourier. (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya. Fungsi Genap dan Fungsi Ganjil
TKS 4007 Matematika III Deret Fourier (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Fungsi Genap dan Fungsi Ganjil Perhitungan koefisien-koefisien Fourier sering kali
BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.
BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan
ANALISA HARMONISA PADA SISI MASUKAN DAN KELUARAN PENYEARAH TERKENDALI SATU FASA TUGAS AKHIR
ANALISA HARMONISA PADA SISI MASUKAN DAN KELUARAN PENYEARAH TERKENDALI SATU FASA TUGAS AKHIR Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik
SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT
1 SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT List Of Content 2 Pengertian Sinyal Pengertian Sistem Jenis-Jenis Sinyal dan Aplikasinya Pengertian Sinyal 3 sinyal adalah suatu isyarat
3. Analisis Spektral 3.1 Analisis Fourier
3. Analisis Spektral 3.1 Analisis Fourier Hampir semua sinyal Geofisika dapat dinyatakan sebagai suatu dekomposisi sinyal ke dalam fungsi sinus dan cosinus dengan frekuensi yang berbeda-beda (juga disebut
GETARAN DAN GELOMBANG
GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran
SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN
SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : TEKNIK RANGKAIAN LISTRIK Kode Mata : DK - 23202 Jurusan / Jenjang : S1 SISTEM KOMPUTER Tujuan Instruksional Umum
4. Deret Fourier pada Interval Sebarang dan Aplikasi
8 Hendra Gunawan 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage :
INSTITUT TEKNOOGI BANDUNG FAKUTAS MATEMATIKA DAN IMU PENGETAHUAN AAM PROGRAM STUDI FISIKA Jl. Ganesha No. Bandung, 43 Telp. () 5834, 5347, Fax. () 5645 Homepage : http://www.fi.itb.ac.id E-mail : [email protected]
BAB 2 TINJAUAN PUSTAKA. Personal Computer (Gambar 2.1) adalah seperangkat komputer yang
BAB 2 TINJAUAN PUSTAKA 2.1. Personal Computer (PC) Personal Computer (Gambar 2.1) adalah seperangkat komputer yang digunakan oleh satu orang saja/pribadi. Biasanya komputer ini adanya dilingkungan rumah,
Sinyal pembawa berupa gelombang sinus dengan persamaan matematisnya:
Modulasi Amplitudo (Amplitude Modulation, AM) adalah proses menumpangkan sinyal informasi ke sinyal pembawa (carrier) dengan sedemikian rupa sehingga amplitudo gelombang pembawa berubah sesuai dengan perubahan
Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan.
Untai Elektrik I Waveforms & Signals Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Secara umum, tegangan dan arus dalam sebuah untai elektrik dapat dikategorikan menjadi tiga jenis
TRANSFORMASI LAPLACE. Matematika Lanjut 2. Achmad Fahrurozi-Universitas Gunadarma
TRANSFORMASI LAPLACE Matematika Lanjut 2 Definisi: Transformasi Laplace adalah transformasi dari suatu fungsi waktu f(t), t menjadi fungsi frekuensi F(s). Transformasi dilakukan dengan operasi perkalian
PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH
PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT
PSALM: Program Simulasi untuk Sistem Linier
PSALM: Program Simulasi untuk Sistem Linier Hany Ferdinando Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Kristen Petra [email protected] Abstrak Dalam mempelajari Sistem Linier, mahasiswa
ANALISIS DERET FOURIER UNTUK MENENTUKAN PERSAMAAN FUNGSI GELOMBANG SINUSOIDAL ARUS AC PADA OSILOSKOP
ANAISIS DERE FOURIER UNUK MENENUKAN PERSAMAAN FUNGSI GEOMBANG SINUSOIDA ARUS AC PADA OSIOSKOP 1.Dian Sandi,.Imas R.E, Malinda Pendidikan Fisika UHAMKA Jakarta Email [email protected]@yahoo.com
KOMPUTASI SINYAL DIGITAL SINYAL DAN SISTEM. GEMBONG EDHI SETYAWAN, S.T., M.T. -
KOMPUTASI SINYAL DIGITAL SINYAL DAN SISTEM GEMBONG EDHI SETYAWAN, S.T., M.T. [email protected] - http://gembong.lecture.ub.ac.id Apa itu sinyal? Besaran fisis yang berubah menurut waktu, ruang atau variabel-variabel
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1 Tujuan Belajar Peserta mengerti proses interpolasi yang terjadi dalam DAC Digital to Analog Converter Digital to Analog Converter digunakan
Persamaan Diferensial Parsial CNH3C3
Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan [email protected] 1 Review
Analog to Digital Converter (ADC)
Analog to Digital Converter (ADC) Analog to Digital Converter by AGL ADC merupakan proses untuk mengubah sinyal analog menjadi digital. Tahap-tahap nya adalah sebagai berikut: Gambar: Proses ADC Analog
GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana
GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap
TUGAS AKHIR PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA
TUGAS AKHIR PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1)
SISTEM PENGOLAHAN ISYARAT. Kuliah 1 Sinyal Deterministik
TKE 2403 SISTEM PENGOLAHAN ISYARAT Kuliah 1 Sinyal Deterministik Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 2009 1
REPRESENTASI ISYARAT ISYARAT FOURIER
REPRESENTASI ISYARAT ISYARAT FOURIER Ridzky Novasandro (32349) Yodhi Kharismanto (32552) Theodorus Yoga (34993) Jurusan Teknik Elektro dan Teknologi Informasi Fakultas Teknik Universitas Gadjah Mada 3.
C.1 OSILASI GANDENG PEGAS
Mata Kuliah GELOMBANG-OPTIK OPTIK TOPIK I SUB TOPIK OSILASI GANDENG C. SISTEM OSILASI DUA DERAJAT KEBEBASAN:OSILASI GANDENG Satu derajat kebebasan: Misalkan: pegas yang memiliki satu simpangan Dua derajat
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,
Bab III Respon Sinusoidal
Bab III Respon Sinusoidal Sinyal sinusiodal digunakan sebagai input ui terhadap kinera sistem, misal untuk mengetahui respon frekuensi, distorsi harmonik dan distorsi intermodulasi... Bentuk Amplituda-fasa
Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. (
Gelombang Stasioner 16:33 Segala ada No comments Apa yang terjadi jika ada dua gelombang berjalan dengan frekuensi dan amplitudo sama tetapi arah berbeda bergabung menjadi satu? Hasil gabungan itulah yang
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1. Harmonisa Dalam sistem tenaga listrik dikenal dua jenis beban yaitu beban linier dan beban tidak linier. Beban linier adalah beban yang memberikan bentuk gelombang keluaran
Reflektor Gelombang Berupa Serangkaian Balok
Bab 4 Reflektor Gelombang Berupa Serangkaian Balok Setelah kita mengetahui bagaimana pengaruh dan dimensi optimum dari 1 balok terendam sebagai reflektor gelombang maka pada bab ini akan dibahas bagaimana
PERANCANGAN TUNABLE BAND PASS FILTER AKTIF UNTUK APLIKASI ANALISIS SINYAL DENGAN DERET FOURIER
PERANCANGAN TUNABLE BAND PASS FILTER AKTIF UNTUK APLIKASI ANALISIS SINYAL DENGAN DERET FOURIER F.X. Hendra Prasetya Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Katolik Soegijapranata
PUBLIKASI JURNAL ILMIAH
STUDI ANALISIS PENGARUH HARMONISA BEBAN NONLINIER RUMAH TANGGA TERHADAP HASIL PENUNJUKAN kwh METER DIGITAL FASA PUBLIKASI JURNAL ILMIAH JURUSAN TEKNIK ELEKTRO Disusun oleh: ARFINNA CAHYANI NIM. 963332-63
B a b 1 I s y a r a t
9 TKE 35 ISYARAT DAN SISTEM B a b I s y a r a (bagian 2) Indah Susilawai, S.T., M.Eng. Program Sudi Teknik Elekro Fakulas Teknik dan Ilmu Kompuer Universias Mercu Buana Yogyakara 29 2.4. Isyara Periodik
Polarisasi Gelombang. Polarisasi Gelombang
Polarisasi Gelombang Polarisasi Gelombang Gelombang cahaya adalah gelombang transversal, sedangkan gelombang bunyi adalah gelombang longitudinal. Nah, ada satu sifat gelombang yang hanya dapat terjadi
tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter
tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tersebut. 1.5. Manfaat Penelitian Adapun manfaat dari penelitian ini dapat memberikan konsep mengenai penggunaan single
SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010
TAHUN PERTEMUAN : 1 : 100 MENIT Mahasiswa dapat menjelaskan dan Memahami tentang dasardasar Sinyal dan sistem Definisi sinyal dan sistem Ssinyal waktu kontinu dan diskrit Tipe sinyal khusus: eksonential,
Perilaku Kesalahan Puncak Spektrum Akibat Penggunaan Fungsi Jendela Kotak, Hanning, dan Flattop pada Sinyal Sinus Waktu Kontinu
Perilaku Kesalahan Puncak Spektrum Akibat Penggunaan Fungsi Jendela Kotak, Hanning, dan Flattop pada Sinyal Sinus Waktu Kontinu Khuschandra dan Zainal Abidin Laboratorium Dinamika PPAU-IR, Institut Tteknologi
Tujuan Belajar 1. Peserta mengetahui definisi, representasi matematis, dan pengertian dasar tentang sinyal, sistem, dan pemrosesan sinyal
Bab : PENDAHULUAN Sinyal, Sistem, dan Pemrosesan Sinyal Tujuan Belajar Peserta mengetahui definisi, representasi matematis, dan pengertian dasar tentang sinyal, sistem, dan pemrosesan sinyal Sinyal adalah
Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t
Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)
MODUL 3 SINYAL WAKTU DISKRIT DALAM KAWASAN FREKUENSI
MODUL 3 SINYAL WAKTU DISKRIT DALAM KAWASAN FREKUENSI I. Tugas Pendahuluan Perintah atau fungsi pada MATLAB dapat dilihat dan dipelajari dengan online help pada Command window. Contoh ketiklah : help plot.
SATUAN ACARA PERKULIAHAN
Topik bahasan : Analisis Vektor Tujuan pembelajaran umum : Mahasiswa memahami kalkulus vektor dan dapat menerapkannya dalam bidang rekayasa. Jumlah pertemuan : 3 (tiga ) kali 1, 2 dan 3 1. Mengingat mbali
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan
Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik
Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik Eko Rendra Saputra, Agus Purwanto, dan Sumarna Pusat Studi Getaran dan Bunyi, Jurdik Fisika, FMIPA, UNY ABSTRAK Penelitian ini bertujuan untuk menganalisa
Matematika Dasar FUNGSI DAN GRAFIK
FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan
Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden
Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan
KOMPUTASI SINYAL DIGITAL SINYAL DAN SISTEM. GEMBONG EDHI SETYAWAN, S.T., M.T. -
KOMPUTASI SINYAL DIGITAL SINYAL DAN SISTEM GEMBONG EDHI SETYAWAN, S.T., M.T. [email protected] - http://gembong.lecture.ub.ac.id Apa itu sinyal? Besaran fisis yang berubah menurut waktu, ruang atau variabel-variabel
menganalisis suatu gerak periodik tertentu
Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak
BAB 2 TINJAUAN PUSTAKA
BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang
Modul 1 : Respons Impuls dan Deret Fourier
Program Studi Teknik Telekomunikasi - Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Praktikum Pengolahan Sinyal dalam Waktu Kontinyu sebagai bagian dari Mata Kuliah ET 2004 Modul 1
PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A
PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan
FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK
FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus
Sudaryatno Sudirham. Fungsi dan Grafik
Sudaratno Sudirham Fungsi dan Grafik Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Buku Fungsi dan Grafik (pdf) tersedia
PENGOLAHAN SINYAL DAN SISTEM DISKRIT. Pengolahan Sinyal Analog adalah Pemrosesan Sinyal. bentuk m dan manipulasi dari sisi sinyal dan informasi.
PENGOLAHAN SINYAL DAN SISTEM DISKRIT Pengolahan Sinyal Analog adalah Pemrosesan Sinyal yang mempunyai kaitan dengan penyajian,perubahan bentuk m dan manipulasi dari sisi sinyal dan informasi. Pengolahan
KOMPUTASI SINYAL DIGITAL SINYAL DAN SISTEM
KOMPUTASI SINYAL DIGITAL SINYAL DAN SISTEM Sinyal dan Sistem Sinyal dan Sistem Klasifikasi Sinyal Konsep rekuensi Analog to Digital Conversion Sampling SINYAL, SISTEM DAN KOMPUTASI SINYAL Sinyal Besaran-besaran
1 BAB 4 ANALISIS DAN BAHASAN
1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan
3. Kekonvergenan Deret Fourier
3. Kekonvergenan Deret Fourier Sekarang kita akan membahas kekonvergenan deret Fourier, khususnya kekonvergenan titik demi titik. Melalui Contoh 2 yang dibahas pada bab sebelumnya kita mengetahui bahwa
Visualisasi karakter gelombang dengan Excel
SEMINAR NASIONAL PENDIDIKAN FISIKA III 2017 "Etnosains dan Peranannya Dalam Menguatkan Karakter Bangsa" Program Studi Pendidikan Fisika, FKIP, UNIVERSITAS PGRI Madiun Madiun, 15 Juli 2017 1 Makalah Utama
Materi W6b BARISAN DAN DERET. Kelas X, Semester 2. B. Barisan dan Deret Aritmatika.
Materi W6b BARISAN DAN DERET Kelas X, Semester 2 B. Barisan dan Deret Aritmatika www.yudarwi.com B. Barisan dan Deret Aritmatika Barisan adalah kumpulan objek-objek yang disusun menurut pola tertentu U
BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya
9 BAB 2 TINJAUAN PUSTAKA 2.1 Sistem Catu Daya Listrik dan Distribusi Daya Pada desain fasilitas penunjang Bandara Internasional Kualanamu adanya tuntutan agar keandalan sistem tinggi, sehingga kecuali
BAB 1. RANGKAIAN LISTRIK
BAB 1. RANGKAIAN LISTRIK Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen
Analisis Pengaruh Harmonisa terhadap Pengukuran KWh Meter Tiga Fasa
Analisis Pengaruh Harmonisa terhadap Pengukuran KWh Meter Tiga Fasa Agus R. Utomo Departemen Teknik Elektro, Fakultas Teknik Universitas Indonesia, Depok 16424 E-mail : [email protected] Mohamad Taufik
Jaringan Syaraf Tiruan pada Robot
Jaringan Syaraf Tiruan pada Robot Membuat aplikasi pengenalan suara untuk pengendalian robot dengan menggunakan jaringan syaraf tiruan sebagai algoritma pembelajaran dan pemodelan dalam pengenalan suara.
PENERAPAN DERET FOURIER PADA SISTEM PENDENGARAN MANUSIA. (The Application of Fourier Series on Human Earing)
PENERAPAN DERE FOURIER PADA SISEM PENDENGARAN MANUSIA (he Application of Fourier Series on Human Earing) ri Widjajanti Jurusan Matematika dan Statistika, Fakultas MIPA, UNIPA, Jln. Gunung Salju Amban,
Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,
Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =
FOURIER Oktober 2013, Vol. 2, No. 2, PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL
FOURIER Oktober 3, Vol., No., 8 PENYELESAIAN MASALAH NILAI BAAS PERSAMAAN DIFERENSIAL MAHIEU HILL Santosa, M. Wakhid Musthofa, & Malahayati 3,, 3 Program Studi Matematika, UIN Sunan Kalijaga Yogyakarta
LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)
LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah
