TUGAS KELOMPOK STRUKTUR DATA. (Yuniasyah) GRAPH

Ukuran: px
Mulai penontonan dengan halaman:

Download "TUGAS KELOMPOK STRUKTUR DATA. (Yuniasyah) GRAPH"

Transkripsi

1 TUGAS KELOMPOK STRUKTUR DATA (Yuniasyah) GRAPH Disusun oleh : Agung Juliansyah ( ) Akbar Aswad ( ) Nafisatul Hasanah ( ) Indra Putra ( ) Nurhadi Jumain Fantri ( ) UNIVERSITAS INTERNASIONAL BATAM 2010

2 KATA PENGANTAR Puji Syukur khadirat Allah Yang Maha Kuasa karena atas Rahmat dan Hidayah-Nyalah kami dapat menyelesaikan Tugas Tengah Semester ini. Makalah ini merupkan salah satu bagian dalam Tugas kami yang berjudul GRAPH. Terima kasih juga kepada Bapak Yuniasyah selaku dosen Pembimbing Mata Kulias Struktur Data di kelas kami 1SIMC. Makalah ini berisi tentang Pembelajaran mengenai GRAPH di dalam Struktur Data. Tentunya kami sangat berharap Makalah ini dapat berguna bagi siapapun yang membacanya. Masih banyak kekurangan dalam makalah ini. Selain itu dalam penyusunan tugas atau materi ini, tidak sedikit hambatan yang penulis hadapi. Namun penulis menyadari bahwa kelancaran dalam penyusunan materi ini tidak lain berkat bantuan, dorongan dan bimbingan orang tua, sehingga kendalakendala yang penulis hadapi teratasi Batam, 9 November 2010 Tim Penyusun 2

3 DAFTAR ISI KATA PENGANTAR... 2 DAFTAR ISI... 3 I. PENDAHULUAN... 4 II. TEORI GRAPH... 6 A. Definisi Graph... 6 B. Istilah dalam Graph... 9 C. Jenis jenis Graph D. Konektivitas Tiap Jenis Graph E. Metode Pencarian Vertex a. Depth First Search (DFS) b. Breadth First Search (BFS) F. Shortest Path a. Graph Berbobot (Weighted Graph) b. Algoritma Dijkstra s c. Dinamic Programming G. Minimum Spanning Tree H. Algoritma Menentukan Minimum Spanning Tree (MST) III. GRAPH PADA JAVA IV. KESIMPULAN DAFTAR PUSTAKA

4 I. PENDAHULUAN Dalam istilah ilmu komputer, sebuah struktur data adalah cara penyimpanan, pengorganisasian dan pengaturan data di dalam media penyimpanan komputer sehingga data tersebut dapat digunakan secara efisien. Dalam tehnik pemrograman, struktur data berarti tata letak data yang berisi kolom-kolom data, baik itu kolom yang tampak oleh pengguna (user) ataupun kolom yang hanya digunakan untuk keperluan pemrograman yang tiadak tampak oleh pengguna. Graph merupakan struktur data yang paling umum. Jika struktur linear memungkinkan pendefinisian keterhubungan sikuensial antara entitas data, struktur data tree memungkinkan pendefinisian keterhubungan hirarkis, maka struktur graph memungkinkan pendefinisian keterhubungan tak terbatas antara entitas data. Banyak entitas-entitas data dalam masalah-masalah nyata secara alamiah memiliki keterhubungan langsung (adjacency) secara tak terbatas demikian. Contoh: informasi topologi dan jarak antar kota-kota di pulau Jawa. Dalam masalah ini kota x bisa berhubungan langsung dengan hanya satu atau lima kota lainnya. Untuk memeriksa keterhubungan dan jarak tidak langsung antara dua kota dapat diperoleh berdasarkan data keterhubunganketerhubungan langsung dari kota-kota lainnya yang memperantarainya. Representasi data dengan struktur data linear ataupun hirarkis pada masalah ini masih bisa digunakan namun akan membutuhkan pencarianpencarian yang kurang efisien. Struktur data graph secara eksplisit menyatakan keterhubungan ini sehingga pencariannya langsung (straightforward) dilakukan pada strukturnya sendiri. Graf adalah salah satu jenis struktur data yang terdiri dari titik (vertex) dan garis (edge), dimana dalam graf tersebut, vertex - vertex yang ada 4

5 dihubungkan oleh edge, hingga menjadi suatu kesatuan yang disebut graf. Sebagai contoh dari pemodelan graf adalah peta kota kota, dimana kota disini sebagai vertex dan jalur yang menghubungkannya berlaku sebagai edge. Agar lebih jelas perhatikan gambar dibawah ini : Dalam gambar tersebut, terdapat beberapa kota yang berada dipulau jawa dimana kota - kota tersebut dihubungkan oleh beberapa jalur jalur yang ada. Untuk contoh diatas kita bisa menganggap bawah kota-kota yang ada merupakan vertex, dan jalur-jalur yang menghubungkan kota-kota tersebut sebagai edge. Sehingga secara keseluruhan peta diatas dapat dibuat pemodelannya sebagai sebuah graf. Ada terdapat beberapa jenis graf yang bisa kita gunakan, yaitu beberapa diantaranya adalah sebagai berikut : Graf Berarah : adalah graf yang edge-nya memiliki arah, sebagai contoh edge AB menghubungkan vertex A ke B, dimana hubungan vertex B ke A, harus diperoleh dari edge lain, yaitu edge BA, dan jika edge BA tidak ada, maka vertex B ke A tidak memiliki hubungan, meski vertex A ke B memiliki hubungan Graf Tak Berarah : adalah graf yang edge-nya tidak memiliki arah, sehingga jika edge AB menghubungkan vertex A ke B, maka secara otomatis juga menghubungkan vertex B ke A. 5

6 Graf Berbobot : adalah suatu graf dimana edge dari graf tersebut memiliki bobot atau nilai tertentu. Graf Tidak Berbobot : adalah suatu graf dimana edge dari graf tersebut tidak memiliki bobot atau nilai. Untuk merepresentasikannya dalam pemrograman komputer, graf dapat disusun dari LinkedList yang berada dalam LinkedList. II. TEORI GRAPH A. Definisi Graph Suatu graph didefinisikan oleh himpunan verteks dan himpunan sisi (edge). Verteks menyatakan entitas-entitas data dan sisi menyatakan keterhubungan antara verteks. Biasanya untuk suatu graph G digunakan notasi matematis. G = (V, E) Dimana : G = Graph V = Simpul atau Vertex, atau Node, atau Titik E = Busur atau Edge, atau arc V adalah himpunan verteks dan E himpunan sisi yang terdefinisi antara pasangan-pasangan verteks. Sebuah sisi antara verteks x dan y ditulis {x, y}. Suatu graph H = (V1, E1) disebut subgraph dari graph G jika V1 adalah himpunan bagian dari V dan E1 himpunan bagian dari E. Cara pendefinisian lain untuk graph adalah dengan menggunakan himpunan keterhubungan langsung Vx. Pada setiap verteks x terdefinisi Vx sebagai himpunan dari verteks-verteks yang adjacent dari x. Secara formal: Vx = {y (x,y) -> E} Dalam digraph didefinisikan juga terminologi-terminologi berikut ini. Predesesor dari suatu verteks x (ditulis Pred(x)) adalah himpunan semua verteks 6

7 yang adjacent ke x. Suksesor dari verteks x (ditulis Succ(x)) adalah himpunan semua verteks yang adjacent dari x, yaitu adjacenct set di atas. Struktur data yang berbentuk network/jaringan, hubungan antar elemen adalah many-to-many. Contoh dari graph adalah informasi topologi jaringan dan keterhubungan antar kota-kota. Keterhubungan dan jarak tidak langsung antara dua kota sama dengan data keterhubungan langsung dari kota-kota lainnya yang memperantarainya. Penerapan struktur data linear atau hirarkis pada masalah graph dapat dilakukan tetapi kurang efisien. Struktur data graph secara eksplisit menyatakan keterhubungan ini sehingga pencariannya langsung (straight forward) dilakukan pada strukturnya sendiri. 1. Struktur Data Linear = keterhubungan sekuensial antara entitas data 2. Struktur Data Tree = keterhubungan hirarkis 3. Struktur Data Graph = keterhubungan tak terbatas antara entitas data. Representasi Graph dalam Bentuk Matrik a. Graph Tak Berarah Graf tersebut dapat direpresentasikan dalam sebuah matrik 5x5, dimana baris dan kolom di matriks tersebut menunjukan vertex yang ada. 7

8 b. Graph Berarah Dalam matrik diatas dapat kita lihat bahwa kotak yang berisi angka satu menunjukan bahwa dalam dua vertex tersebut terdapat edge yang menghubungkannya. Dan jika dalam kotak terdapat angka nol, maka hal tersebut menandakan tidak ada edge yang mengubungkan secara langsung dua vertex tersebut. Untuk representasi dalam pemorgraman komputer, graf tersebut dapat digambarkan seperti dibawah ini : 8

9 B. Istilah Dalam Graph 1. Incident Jika e merupakan busur dengan simpul-simpulnya adalah v dan w yang ditulis e=(v,w), maka v dan w disebut terletak pada e, dan e disebut incident dengan v dan w. 2. Degree Didalam Graph ada yang disebut dengan Degree, Degree mempuyai 3 jenis antara lain : Degree dari suatu verteks x dalam undigraph adalah jumlah busur yang incident dengan simpul tersebut. Indegree dari suatu verteks x dalam digraph adalah jumlah busur yang kepalanya incident dengan simpul tersebut, atau jumlah busur yang masuk atau menuju simpul tersebut.. Outdegree dari suatu verteks x dalam digraph adalah jumlah busur yang ekornya incident dengan simpul tersebut, atau jumlah busur yang keluar atau berasal dari simpul tersebut. 9

10 3. Adjacent Pada graph tidah berarah, 2 buah simpul disebut adjacent bila ada busur yang menghubungkan kedua simpul tersebut. Simpul v dan w disebut adjacent. Pada graph berarah, simpul v disebut adjacent dengan simpul w bila ada busur dari w ke v. 4. Successor dan Predecessor Pada graph berarah, bila simpul v adjacent dengan simpul w, maka simpul v adalah successor simpul w, dan simpul w adalah predecessor dari simpul v. 5. Path Sebuah path adalah serangkaian simpul-simpul berbeda yang adjacent secara berturut-turut dari simpul satu ke simpul berikutnya. 10

11 C. Jenis - Jenis Graph 1. Directed Graph (Digraph) Jika sisi-sisi graph hanya berlaku satu arah. Misalnya : {x,y} yaitu arah x ke y, bukan dari y ke x, x disebut origin dan y disebut terminus. Secara notasi sisi digraph ditulis sebagai vektor (x, y). Contoh Digraph G = {V, E} : V = {A, B, C, D, E, F, G, H, I,J, K, L, M} E = {(A,B), (A,C), (A,D), (A,F), (B,C), (B,H), (C,E), (C,G), (C,H), (C,I), (D,E), (D,F), (D,G), (D,K), (D,L), (E,F), (G,I), (G,K), (H,I), (I,J), (I,M), (J,K), (J,M), (L,K), (L,M)}. 2. Graph Tak Berarah (Undirected Graph atau Undigraph) Setiap sisi {x, y} berlaku pada kedua arah: baik x ke y maupun y ke x. Secara grafis sisi pada undigraph tidak memiliki mata panah dan secara notasional menggunakan kurung kurawal. Contoh Undigraph G = {V, E} 11

12 V = {A, B, C, D, E, F, G, H, I,J, K, L, M} E = { {A,B},{A,C}, {A,D}, {A,F}, {B,C}, {B,H}, {C,E}, {C,G}, {C,H}, {C,I}, {D,E}, {D,F}, {D,G}, {D,K}, {D,L}, {E,F}, {G,I}, {G,K}, {H,I}, {I,J}, {I,M}, {J,K}, {J,M}, {L,K}, {L,M}}. Khusus graph, undigraph bisa sebagai digraph (panah di kedua ujung edge berlawanan) Struktur data linear maupun hirarkis adalah juga graph. Nodenode pada struktur linear ataupun hirarkis adalah verteks-verteks dalam pengertian graph dengan sisi-sisinya menyusun node-node tersebut secara linear atau hirarkis. Struktur data linear adalah juga tree dengan pencabangan pada setiap node hanya satu atau tidak ada. Linear 1-way linked list (digraph), linear 2- way linked list (undigraph). D. Konektivitas Tiap Jenis Graph a. Konektivitas pada Undigraph Adjacency: Dua verteks x dan y yang berlainan disebut berhubungan langsung (adjacent) jika terdapat sisi {x, y} dalam E. Path: Sederetan verteks yang mana setiap verteks adjacent dengan verteks yang tepat berada disebelahnya. 12

13 Panjang dari path: jumlah sisi yang dilalui path. Siklus: suatu path dengan panjang lebih dari satu yang dimulai dan berakhir pada suatu verteks yang sama. Siklus sederhana: dalan undigraph, siklus yang terbentuk pada tiga atau lebih verteks-verteks yang berlainan yang mana tidak ada verteks yang dikunjungi lebih dari satu kali kecuali verteks awal/akhir. Dua verteks x dan y yang berbeda dalam suatu undigraph disebut berkoneksi (connected) apabila jika terdapat path yang menghubungkannya. Himpunan bagian verteks S disebut terkoneksi (connected) apabila dari setiap verteks x dalam S terdapat path ke setiap verteks y (y bukan x) dalam S. Suatu komponen terkoneksi (connected components) adalah subgraph (bagian dari graph) yang berisikan satu himpunan bagian verteks yang berkoneksi. Suatu undigraph dapat terbagi atas beberapa komponen yang terkoneksi; jika terdapat lebih dari satu komponen terkoneksi maka tidak terdapat path dari suatu verteks dalam satu komponen verteks di komponen lainnya. Pohon bebas (free tree): suatu undigraph yang hanya terdapat satu komponen terkoneksi serta tidak memiliki siklus sederhana. b. Konektivitas pada Digraph Terminologi di atas berlaku juga pada Digraph kecuali dalam digraph harus dikaitkan dengan arah tertentu karena pada arah yang sebaliknya belum tentu terdefinisi. Adjacency ke / dari: Jika terdapat sisi (x,y) maka dalam digraph dikatakan bahwa x "adjacent ke" y atau y "adjacent dari" x. Demikian pula jika terdapat path dari x ke y maka belum tentu ada path dari y ke x Jadi dalam digraph keterkoneksian didefinisikan lebih lanjut lagi sebagai berikut. Terkoneksi dengan kuat: Himpunan bagian verteks S dikatakan terkoneksi dengan kuat (strongly connected) bila setiap pasangan verteks berbeda x dan 13

14 y dalam S, x berkoneksi dengan y dan y berkoneksi dengan x (dpl., ada path dari x ke y dan sebaliknya dari y ke x). Terkoneksi dengan Lemah: Himpunan bagian verteks S dikatakan terkoneksi dengan lemah (weakly connected) bila setiap pasangan verteks berbeda x dan y dalam S, salah satu: x berkoneksi dengan y (atau y berkoneksi dengan x) dan tidak kebalikan arahnya (dpl., hanya terdefinisi satu path: dari x ke y atau sebaliknya dari y ke x). E. Metode Pencarian Vertex Pencarian vertex adalah proses umum dalam graph. Terdapat 2 metoda pencarian, yakni Depth First Search (DFS) dan Breadth First Search (BFS). a. Depth First Search (DFS) Pencarian dengan metode ini dilakukan dari node awal secara mendalam hingga yang paling akhir (dead-end) atau sampai ditemukan. Dengan kata lain, simpul cabang atau anak yang terlebih dahulu dikunjungi. Proses pencarian dilakukan dengan mengunjungi cabang terlebih dahulu hingga tiba di simpul terakhir. Jika tujuan yang diinginkan belum tercapai maka pencarian dilanjutkan ke cabang sebelumnya, turun ke bawah jika memang masih ada cabangnya. Begitu seterusnya hingga diperoleh tujuan akhir (goal). Depth First Search, memiliki kelebihan diantaranya adalah cepat mencapai kedalaman ruang pencarian. Jika diketahui bahwa lintasan solusi permasalahan akan panjang maka Depth First Search tidak akan memboroskan waktu 14

15 untuk melakukan sejumlah besar keadaan dangkal dalam permasalahan graf. Depth First Search jauh lebih efisien untuk ruang pencarian dengan banyak cabang karena tidak perlu mengeksekusi semua simpul pada suatu level tertentu pada daftar open. Selain itu, Depth First Search memerlukan memori yang relatif kecil karena banyak node pada lintasan yang aktif saja yang Selain kelebihan, Depth First Search juga memiliki kelemahan di antaranya adalah memungkinkan tidak ditemukannya tujuan yang diharapkan dan hanya akan mendapatkan satu solusi pada setiap pencarian. b. Breadth First Search (BFS) Prosedur Breadth First Search (BFS) merupakan pencarian yang dilakukan dengan mengunjungi tiap-tiap node secara sistematis pada setiap level hingga keadaan tujuan (goal state) ditemukan. Atau dengan kata lain, penulusuran yang dilakukan adalah dengan mengunjungi tiap-tiap node pada level yang sama hingga ditemukan goal state-nya. Implementasi algoritma BFS : Pengimplementasian BFS dapat ditelusuri dengan menggunakan daftar (list), open, dan closed, untuk menelusuri gerakan pencarian di dalam ruang keadaan. Prosedur untuk Breadth First Search dapat dituliskan sebagai berikut: 15

16 Pada diatas, state 21 merupakan tujuannya (goal) sehingga bila ditelusuri menggunakan prosedur Breadth First Search, diperoleh: 1) Open = [1]; closed = [ ]. 2) Open = [2, 3, 4]; closed = [1]. 3) Open = [3, 4, 5, 6]; closd = [2, 1]. 4) Open = [4, 5, 6, 7, 8]; closed = [3, 2, 1]. 5) Open = [5, 6, 7, 8, 9, 10]; closed = [4, 3, 2, 1]. 6) Open = [6, 7, 8, 9, 10, 11, 12]; closed = [5, 4, 3, 2, 1]. 7) Open = [7, 8, 9, 10, 11, 12, 13] (karena 12 telah di-open); closed = [6, 5, 4, 3, 2, 1]. 8) Open = [8, 9, 10, 11, 12, 13, 14]; closed = [7, 6, 5, 4, 3, 2, 1]. 9) Dan seterusnya sampai state 21 diperoleh atau open = [ ]. Ada beberapa keuntungan menggunakan algoritma Breadth First Search ini, diantaranya adalah tidak akan menemui jalan buntu dan jika ada satu solusi maka Breadth First Search akan menemukannya, dan jika ada lebih dari satu solusi maka solusi minimum akan ditemukan. Namun ada tiga persoalan utama berkenaan dengan Breadth First Search ini yaitu : 1) Membutuhkan memori yang lebih besar, karena menyimpan semua node dalam satu pohon. 16

17 2) Membutuhkan sejumlah besar pekerjaan, khususnya jika lintasan solusi terpendek cukup panjang, karena jumlah node yang perlu diperiksa bertambah secara eksponensial terhadap panjang lintasan. 3) Tidak relevannya operator akan menambah jumlah node yang harus diperiksa. Oleh karena proses Breadth First Search mengamati node di setiap level graf sebelum bergerak menuju ruang yang lebih dalam maka mulamula semua keadaan akan dicapai lewat lintasan yang terpendek dari keadaan awal. Oleh sebab itu, proses ini menjamin ditemukannya lintasan terpendek dari keadaan awal ke keadaan tujuan (akhir). Lebih jauh karena mula-mula semua keadaan ditemukan melalui lintasan terpendek sehingga setiap keadaan yang ditemui pada kali kedua didapati pada sepanjang sebuah lintasan yang sama atau lebih panjang. Kemudian, jika tidak ada kesempatan ditemukannya keadaan yang identik pada sepanjang lintasan yang lebih baik maka algoritma akan menghapusnya F. Shortest Path Pencarian shortest path (lintasan terpendek) adalah masalah umum dalam suatu weighted, connected graph. Misal : Pencarian jaringan jalan raya yang menghubungkan kota-kota disuatu wilayah. 1. Lintasan terpendek yag menghubungkan antara dua kota berlainan tertentu (Single-source Single-destination Shortest Path Problems) 2. Semua lintasan terpendek masing-masing dari suatu kota ke setiap kota lainnya (Single-source Shortest Path problems) 3. Semua lintasan terpendek masing-masing antara tiap kemungkinan pasang kota yang berbeda (All-pairs Shortest Path Problems) Untuk memecahkan masing-masing dari masalah-masalah tersebut terdapat sejumlah solusi. 17

18 Dalam beberapa masalah graph lain, suatu graph dapat memiliki bobot negatif dan kasus ini dipecahkan oleh algoritma Bellman-Ford. Yang akan dibahas di sini adalah algoritma Dijkstra yaitu mencari lintasan terpendek dari suatu verteks asal tertentu vs ke setiap verteks lainnya. a. Graph berbobot (weighted graph) Apabila sisi-sisi pada graph disertai juga dengan suatu (atau beberapa) harga yang menyatakan secara unik kondisi keterhubungan tersebut maka graph tersebut disebut graph berbobot. Biasanya dalam masalah-masalah graph bobot tersebut merupakan "harga" dari keterhubungan antar vertex. Pengertian "harga" ini menggeneralisasikan banyak aspek, biaya ekonomis dari proses/aktifitas, jarak geografis/tempuh, waktu tempuh, tingkat kesulitan, dan lain sebagainya. Dalam beberapa masalah lain bisa juga bobot tersebut memiliki pengertian "laba" yang berarti kebalikan dari "biaya" di atas. Dalam pembahasan algoritma-algoritma graph nanti pengertian bobot akan menggunakan pengertian biaya sehingga apabila diaplikasikan pada masalah yang berpengertian laba maka kuantitas-kuantitas terkait adalah kebalikannnya. Misalnya mencari jarak tempuh minimum digantikan dengan mencari laba maksimum. 18

19 b. Algoritma Dijkstra s Algoritma Dijkstra's : 1. Menyelesaikan problem single-source shortest-path ketika semua edge memiliki bobot tidak negatif. 2. Algoritma greedy mirip ke algoritma Prim's. 3. Algoritma di awali pada vertex sumber s, kemudian berkembang membentuk sebuah tree T, pada akhirnya periode semua vertex dijangkau dari S. Vertex di tambah ke T sesuai urutan Misalnya : Pertama S, kemudian vertex yang tepat ke S, kemudian yang tepat berikutnya dan seterusnya. c. Dynamic Programming Terdiri dari sederetan tahapan keputusan. Pada setiap tahapan berlaku prinsip optimality (apapun keadaan awal dan keputusan yang diambil, keputusan berikutnya harus memberikan hasil yang optimal dengan melihat hasil keputusan sebelumnya. Misalnya : Multistage Graph Dimana : Cost (i,j) = Min(C(j,l) + Cost(i+1,l)} Dengan : C(j,l) = Bobot edge j dan l l = Elemen Vi+1 Dan <j,l> eemen E i=stage ke-i dan j = node dalam V Proses dimulai dari k-2, dimana k adalah banyak stage. Perhatikan contoh untuk menentukan biaya termurah dari 1 hingga 12. Diketahui graph dengan stage sebagai berikut : 19

20 Maka langkah-langkah yang dilakukan adalah : K=5, sehingga dimulai dari S3 Cost(3,6) = Min{6+Cost(4,9); 5+Cost(4,10)} = Min{6+4;5+2} = 7 Cost(3,7) = Min{4+Cost(4,9); 3+Cost(4,10)} = Min{4+4;3+2} = 5 Cost(3,8) = Min{5+Cost(4,10); 6+Cost(4,11)} = Min(5+2;6+5} = 7 Cost(2,2) = Min{4+Cost(3,6);2+Cost(3,7);1+Cost(3,8)} = Min{4+7;2+5;1+7} = 7 Cost(2,3) = Min{2+Cost(3,6); 7+Cost(3,7)} = Min(2+7; 7+5) = 9 Cost(2,4) = Min{11+Cost(3,8)} = 18 Cost(2,5) = Min{11+Cost(3,7); 8+Cost(3,8)} = Min(11+5;8+7} = 15 Cost(1,1) = Min{9+Cost(2,2);7+Cost(2,3);3+Cost(2,4),2+Cost(2,5)} = Min{9+7;7+9;3+18;2+15} = 16 Shorthest Path menjadi : 1 -> 3 -> -> -> u 1 -> -> -> -> Jika ada dua atau lebih shorthest path maka total biaya harus sama. 20

21 Shortest Path Pertama adalah : Shortest Path Kedua adalah : G. Minimum Spanning Tree Definisi Pohon rentangan atau spanning tree dari suatu connected graph didefinisikan sebagai free-tree yang terbentuk dari subset sisi-sisi serta menghubungkan setiap verteks dalam graph tersebut. Minimum Spanning Tree 21

22 (MST) adalah pohon rentangan dengan total bobot dari sisi-sisinya adalah minimal. Dalam penelusuran vertex tidak diperkenankan terbentuk siklus (cycle). Diketahui sebuah graph tak berarah dan tak berbobot sebagai berikut : Kemungkinan Spanning Tree : Bila jalur (edge) mempunyai biaya (cost) maka yang dicari adalah minimum cost spanning tree. H. Algoritma Menentukan Minimum Spanning Tree (MST) Dua algoritma populer untuk menentukan minimum spanning tree (MST) adalah Kruskal Algorithm dan Prim s Algorithm. 1. Algoritma Kruskal Algoritma ini lebih sederhana jika dilihat dari konsepnya namun lebih sulit dalam implementasinya. Idenya adalah mendapatkan satu demi satu sisi mulai dari yang berbobot terkecil untuk membentuk tree, suatu sisi walaupun berbobot kecil tidak akan diambil jika membentuk siklik dengan sisi yang sudah termasuk 22

23 dalam tree. Yang menjadi masalah dalam implementasinya adalah keperluan adanya pemeriksaan kondisi siklik tersebut.salah satu pemecahaannya adalah dengan subsetting yaitu pembentukan subset-subset yang disjoint dan secara bertahap dilakukan penggabungan atas tiap dua subset yang berhubungan dengan suatu sisi dengan bobot terpendek. Algoritma lengkapnya: Tahap pertama, jika dalam V terdapat n verteks maka diinisialisasi n buah subset yang disjoint, masing-masing berisi satu verteks, sebagai subsetsubset awal. Tahap berikutnya, urutkan sisi-sisi dengan bobot yang terkecil hingga terbesar. Mulai dari sisi dengan bobot terkecil hingga terbesar lakukan dalam iterasi: jika sisi tsb. menghubungkan dua vertex dalam satu subset (berarti membentuk siklik) maka skip sisi tersebut dan periksa sisi berikutnya jika tidak (berarti membentuk siklik) maka kedua subset dari verteks-verteks yang bersangkutan digabungkan menjadi satu subset yang lebih besar. Iterasi akan berlangsung hingga semua sisi terproses. MST_KRUSKAL (G) { For setiap vertex v dalam V[G] Do { set S(v) {v} } Inisialisasi priority queue Q yang berisi semua edge dari G, gunakan bobot sebagai keys. A { } // A berisi edge dari MST While A lebih kecil dari pada n-1 edge Do { set S(v) berisi v dan S(u) berisi u } IF S(v)!= S(u) Then { Tambahkan edge (u, v) ke A Merge S(v) dan S(u) menjadi satu set } Return A } 23

24 2. Algoritma Prim Algoritma dimulai dari suatu verteks awal tertentu dan bisa ditentukan oleh pemanggil atau dipilih sembarang oleh algoritma. Misalnya verteks awal tersebut adalah v. Pada setiap iterasi terdapat kondisi di mana himpunan vertex V terbagi dalam dua: W yaitu himpunan verteks yang sudah dievaluasi sebagai node di dalam pohon, serta (V-W) yaitu himpunan verteks yang belum dievaluasi. Di awal algoritma W diinisialisasi berisi verteks awal v. Selanjutnya, di dalam iterasinya: Pada setiap adjacency dari tiap verteks dalam W dengan verteks dalam (V-W) dicari sisi dengan panjang minimal. setelah diperoleh, sisi tersebut ditandai sebagai sisi yang membentuk tree dan verteks adjacent sisi tersebut dalam (VW) dipindahkan ke W (menjadi anggota W). Jika sisi tersebut tidak ada maka proses selesai. Dari contoh di atas misalnya dilakukan pencarian mulai dari verteks A Maka algoritma ini menghasilkan tahapan-tahapan iterasi pencarian sbb.: MST_PRIM (G, w, v) { Q V[G] for setiap u dalam Q do key [u] key [r] 0 π[r] NIl while queue tidak kosong do { u EXTRACT_MIN (Q) for setiap vertex v dalam Adj[u] do { if v ada dalam Q dan w(u, v) < key [v] then { π[v] w(u, v) key [v] w(u, v) } } } 24

25 III. GRAPH PADA JAVA Pada Project ini, kita lakukan pengaplikasian dari teori Graph pada program Java. Software yang kita gunakan adalah Eclipse. Didalam Project ini terdapat 5 package Java. Dan yang akan kita bahas disini adalah Package GRAPH_BASIC. Package GRAPH_BASIC, berisi 5 file berextensi.java yang saling berhubungan satu sama lain. Untuk detail File bisa di lihat di gambar di bawah ini. Untuk melakukan Logika Aplikasi Graph terdapat pada File Main.java 25

26 Tampilan Scriptnya seperti gambar di bawah ini. Dapat Kita lihat dari gambar diatas, logika Graph di mulai dari penambahan Vertex/Node, dengan memanggil fungsi AddVertex pada file Graph.java. Setelah vertex tercipta, dilakukan penambahan Edge/Busur dan terakhir memanggil fungsi untuk menghasilkan output. Untuk Output yang di hasilkan bisa di lihat gambar di bawah ini. 26

27 IV. KESIMPULAN Mengenal Graph : Terdiri dari node dan terdiri dari link (busur) Node disebut vertex dan Link disebut edge Informasi penting dalam graph adalah koneksi antar vertex Pada undirected graph, tidak terdapat directions (arah), Edge dari v0 ke v1 adalah sama dengan edge dari v1 ke v0 Jika sebuah masalah dapat direpresentasikan ke dalam bentuk kgraph maka solusi dari masalah tersebut bisa dicari dengan bantuan graph Setiap vertex mewakili sebuah kondisi (state) dan edge mewakili transisi antar state Analogi Graph dalam Kehidupan Sehari-Hari Graph dalam kehidupan sehari-hari dapat dianalogikan sebagai suatu jaringan satu dengan jaringan lainnya yang saling terhubung. Misal seperti negara Indonesia yang memiliki banyak kota seperti: Jakarta, Bandung, Surabaya, Yogyakarta. Kota-kota itulah yang tergabung dalam negara Indonesia dan kota-kota itulah yang saling berhubungan. 27

28 DAFTAR PUSTAKA Undip, BFS dan DFS, Tanggal Akses : 10 November 2010 Rachmat Antonius, Struktur Data Tanggal Akses : 10 November 2010 AlpenYap, Struktur Data Hirarkis Tanggal Akses : 2 November 2010 Ciptarjo Imam, Pengantar Graph Tanggal Akses : 2 November

Denny Setyo R. Masden18.wordpress.com

Denny Setyo R. Masden18.wordpress.com Denny Setyo R. masden18@gmail.com Masden18.wordpress.com Graph adalah kumpulan dari simpul dan busur yang secara matematis dinyatakan sebagai : Dimana G = (V, E) G = Graph V = Simpul atau Vertex, atau

Lebih terperinci

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan

Lebih terperinci

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Marvin Jerremy Budiman / 13515076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif CRITICAL PATH Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5 Graph G Path Bobot Alternatif 1 4 5 16 1 2 5 15 1 2 3 5 24 1 4 3 5 19 1 2 3 4 5 29 1 4 3

Lebih terperinci

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Rahadian Dimas Prayudha - 13509009 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya

Lebih terperinci

TEKNIK INFORMATIKA. Teori Dasar Graf

TEKNIK INFORMATIKA. Teori Dasar Graf Teori Graf mulai dikenal pada saat seorang matematikawan bangsa Swiss, bernama Leonhard Euler, berhasil mengungkapkan Misteri Jembatan Konigsberg pada tahun 1736. Di Kota Konigsberg (sekarang bernama Kalilingrad,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul

Lebih terperinci

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex

Lebih terperinci

IKI 20100: Struktur Data & Algoritma

IKI 20100: Struktur Data & Algoritma IKI : Struktur Data & Algoritma Graph Ruli Manurung & Ade Azurat ( Setiawan (acknowledgments: Denny, Suryana Fasilkom UI Ruli Manurung & Ade Azurat Fasilkom UI - IKI 7/8 Ganjil Minggu Materi Motivasi Definisi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Graf 2.1.1 Definisi Graf Graf adalah pasangan himpunan (V, E), dan ditulis dengan notasi G = (V, E), V adalah himpunan tidak kosong dari verteks-verteks {v 1, v 2,, v n } yang

Lebih terperinci

ALGORITMA PENCARIAN (1)

ALGORITMA PENCARIAN (1) ALGORITMA PENCARIAN (1) Permasalahan, Ruang Keadaan, Pencarian Farah Zakiyah Rahmanti Diperbarui 2016 Overview Deskripsi Permasalahan dalam Kecerdasan Buatan Definisi Permasalahan Pencarian Breadth First

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan

Lebih terperinci

Pertemuan 11 GRAPH, MATRIK PENYAJIAN GRAPH

Pertemuan 11 GRAPH, MATRIK PENYAJIAN GRAPH Pertemuan 11 GRAPH, MATRIK PENYAJIAN GRAPH GRAPH Suatu Graph mengandung 2 himpunan, yaitu : 1. Himpunan V yang elemennya disebut simpul (Vertex atau Point atau Node atau Titik) 2. Himpunan E yang merupakan

Lebih terperinci

NASKAH UJIAN UTAMA. JENJANG/PROG. STUDI : DIPLOMA TIGA / MANAJEMEN INFORMATIKA HARI / TANGGAL : Kamis / 18 FEBRUARI 2016

NASKAH UJIAN UTAMA. JENJANG/PROG. STUDI : DIPLOMA TIGA / MANAJEMEN INFORMATIKA HARI / TANGGAL : Kamis / 18 FEBRUARI 2016 NASKAH UJIAN UTAMA MATA UJIAN : LOGIKA DAN ALGORITMA JENJANG/PROG. STUDI : DIPLOMA TIGA / MANAJEMEN INFORMATIKA HARI / TANGGAL : Kamis / 18 FEBRUARI 2016 NASKAH UJIAN INI TERDIRI DARI 80 SOAL PILIHAN GANDA

Lebih terperinci

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Arifin Luthfi Putranto (13508050) Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesha 10, Bandung E-Mail: xenoposeidon@yahoo.com

Lebih terperinci

Studi Algoritma Optimasi dalam Graf Berbobot

Studi Algoritma Optimasi dalam Graf Berbobot Studi Algoritma Optimasi dalam Graf Berbobot Vandy Putrandika NIM : 13505001 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail : if15001@students.if.itb.ac.id

Lebih terperinci

Airline Shortest Path Software

Airline Shortest Path Software Analisis Algoritma Pemilihan Lintasan Terpendek pada Penerbangan Domestik untuk Perancangan Airline Shortest Path Software Tugas Akhir Diajukan untuk Memenuhi Syarat Kelulusan Sarjana Strata 1 Oleh : S

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

Penerapan Teori Graf Pada Algoritma Routing

Penerapan Teori Graf Pada Algoritma Routing Penerapan Teori Graf Pada Algoritma Routing Indra Siregar 13508605 Program Studi Teknik Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10, Bandung

Lebih terperinci

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING SEARCHING MENDEFINISIKAN MASALAH SEBAGAI SUATU RUANG KEADAAN Secara umum, untuk mendeskripsikan suatu permasalahan dengan baik harus: 1 Mendefinisikan suatu ruang keadaan. 2 Menerapkan satu atau lebih

Lebih terperinci

x 6 x 5 x 3 x 2 x 4 V 3 x 1 V 1

x 6 x 5 x 3 x 2 x 4 V 3 x 1 V 1 . PENGANTAR TEORI GRAF Definisi : Secara umum merupakan kumpulan titik dan garis. NET terdiri atas : 1. Himpunan titik (tidak boleh kosong) 2. Himpunan garis (directed line) 3. Setiap directed line menentukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA UNIVERSITAS GUNADARMA SK No. 92 / Dikti / Kep /1996 Fakultas Ilmu Komputer, Teknologi Industri, Ekonomi,Teknik Sipil & Perencanaan, Psikologi, Sastra Program Diploma (D3) Manajemen Informatika, Teknik

Lebih terperinci

2. Mahasiswa dapat membuat dan menggunakan array dan linked list dalam suatu kasus.

2. Mahasiswa dapat membuat dan menggunakan array dan linked list dalam suatu kasus. 1 ARRAY & LINKED LIST MODUL 1 Standar kompetensi: 1. Mahasiswa mengetahui perbedaan array dan linked list. 2. Mahasiswa dapat membuat dan menggunakan array dan linked list dalam suatu kasus. 3. Mahasiswa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graph 2.1.1 Definisi Graph Menurut Dasgupta dkk (2008), graph merupakan himpunan tak kosong titik-titik yang disebut vertex (juga disebut dengan node) dan himpunan garis-garis

Lebih terperinci

Pencarian Jalur Terpendek dengan Algoritma Dijkstra

Pencarian Jalur Terpendek dengan Algoritma Dijkstra Volume 2 Nomor 2, Oktober 207 e-issn : 24-20 p-issn : 24-044X Pencarian Jalur Terpendek dengan Algoritma Dijkstra Muhammad Khoiruddin Harahap Politeknik Ganesha Medan Jl.Veteran No. 4 Manunggal choir.harahap@yahoo.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah BAB II LANDASAN TEORI 2.1. Pendahuluan Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah berkembang sangat pesat dan digunakan untuk menyelesaikan persoalanpersoalan pada berbagai bidang

Lebih terperinci

Aplikasi Graf pada Persoalan Lintasan Terpendek dengan Algoritma Dijkstra

Aplikasi Graf pada Persoalan Lintasan Terpendek dengan Algoritma Dijkstra Aplikasi Graf pada Persoalan Lintasan Terpendek dengan Algoritma Dijkstra Adriansyah Ekaputra 13503021 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung Abstraksi Makalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 4 BAB 2 LANDASAN TEORI 2.1 Pengertian Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas

Lebih terperinci

Struktur. Bab 6: 4/29/2015. Kompetensi Dasar. Mahasiswa mendapatkan pemahaman mengenai cara kerja dan penyajian graph

Struktur. Bab 6: 4/29/2015. Kompetensi Dasar. Mahasiswa mendapatkan pemahaman mengenai cara kerja dan penyajian graph Struktur Bab 6: Prio Handoko, S. Kom., M.T.I. Program Studi Teknik Informatika Universitas Pembangunan Jaya Jl. Boulevard - Bintaro Jaya Sektor VII Tangerang Selatan Banten 15224 Kompetensi Dasar. Mahasiswa

Lebih terperinci

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Salman Muhammad Ibadurrahman NIM : 13506106 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

Kecerdasan Buatan. Penyelesaian Masalah dengan Pencarian... Pertemuan 02. Husni

Kecerdasan Buatan. Penyelesaian Masalah dengan Pencarian... Pertemuan 02. Husni Kecerdasan Buatan Pertemuan 02 Penyelesaian Masalah dengan Pencarian... Husni Lunix96@gmail.com http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM, 2013 Outline Konsep Pencarian Pencarian

Lebih terperinci

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF Anthony Rahmat Sunaryo NIM: 3506009 Jurusan Teknik Informatika ITB, Bandung email : if6009@students.if.itb.ac.id Abstract -- Makalah ini membahas tentang analsis

Lebih terperinci

Bagaimana merepresentasikan struktur berikut? A E

Bagaimana merepresentasikan struktur berikut? A E Bagaimana merepresentasikan struktur berikut? B D A E F C G Bagaimana merepresentasikan struktur berikut? Contoh-contoh aplikasi graf Peta (jaringan jalan dan hubungan antar kota) Jaringan komputer Jaringan

Lebih terperinci

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM Pudy Prima (13508047) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika

Lebih terperinci

Minimum Spanning Trees algorithm

Minimum Spanning Trees algorithm Minimum Spanning Trees algorithm Algoritma Minimum Spanning Trees algoritma Kruskal and algoritma Prim. Kedua algoritma ini berbeda dalam metodologinya, tetapi keduanya mempunyai tujuan menemukan minimum

Lebih terperinci

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.

Lebih terperinci

BAB III ALGORITMA BRANCH AND BOUND. Algoritma Branch and Bound merupakan metode pencarian di dalam ruang

BAB III ALGORITMA BRANCH AND BOUND. Algoritma Branch and Bound merupakan metode pencarian di dalam ruang BAB III ALGORITMA BRANCH AND BOUND Algoritma Branch and Bound merupakan metode pencarian di dalam ruang solusi secara sistematis. Ruang solusi diorganisasikan ke dalam pohon ruang status. Pohon ruang status

Lebih terperinci

Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data

Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data Winson Waisakurnia (13512071) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V).

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V). GRAF GRAF Suatu Graph mengandung 2 himpunan, yaitu : 1. Himpunan V yang elemennya disebut simpul (Vertex atau Point atau Node atau Titik) 2. Himpunan E yang merupakan pasangan tak urut dari simpul. Anggotanya

Lebih terperinci

Tujuan Instruksional

Tujuan Instruksional Pertemuan 4 P E N C A R I A N T A N P A I N F O R M A S I B F S D F S U N I F O R M S E A R C H I T E R A T I V E D E E P E N I N G B I D I R E C T I O N A L S E A R C H Tujuan Instruksional Mahasiswa

Lebih terperinci

Kecerdasan Buatan Penyelesaian Masalah dengan Pencarian

Kecerdasan Buatan Penyelesaian Masalah dengan Pencarian Kecerdasan Buatan Pertemuan 02 Penyelesaian Masalah dengan Pencarian Kelas 10-S1TI-03, 04, 05 Husni Lunix96@gmail.com http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM, 2012 Outline Pendahuluan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Graf G didefenisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G = (V,E), yang dalam hal ini V adalah himpunan tidak kosong dari simpul-simpul

Lebih terperinci

STRUKTUR DATA. By : Sri Rezeki Candra Nursari 2 SKS

STRUKTUR DATA. By : Sri Rezeki Candra Nursari 2 SKS STRUKTUR DATA By : Sri Rezeki Candra Nursari 2 SKS Literatur Sjukani Moh., (2007), Struktur Data (Algoritma & Struktur Data 2) dengan C, C++, Mitra Wacana Media Utami Ema. dkk, (2007), Struktur Data (Konsep

Lebih terperinci

Pelacakan dan Penentuan Jarak Terpendek terhadap Objek dengan BFS (Breadth First Search) dan Branch and Bound

Pelacakan dan Penentuan Jarak Terpendek terhadap Objek dengan BFS (Breadth First Search) dan Branch and Bound Pelacakan dan Penentuan Jarak Terpendek terhadap Objek dengan BFS (Breadth First Search) dan Branch and Bound Mico (13515126) Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB Jl. Ganesha 10,

Lebih terperinci

Konsep. Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi

Konsep. Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi GRPH 1 Konsep Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi 2 Contoh Graph agan alir pengambilan mata kuliah 3 Contoh Graph Peta 4 5 Dasar-dasar Graph Suatu graph

Lebih terperinci

Deteksi Wajah Menggunakan Program Dinamis

Deteksi Wajah Menggunakan Program Dinamis Deteksi Wajah Menggunakan Program Dinamis Dandun Satyanuraga 13515601 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

INTRODUCTION TO GRAPH THEORY LECTURE 2

INTRODUCTION TO GRAPH THEORY LECTURE 2 INTRODUCTION TO GRAPH THEORY LECTURE Operasi-Operasi Pada Graph Union Misal G dan H adalah dua graph yang saling asing. Union G H adalah graph dengan V(G H)=V(G) V(H) dan E(G H)=E(G) E(H). Join Join dari

Lebih terperinci

Diktat Algoritma dan Struktur Data 2

Diktat Algoritma dan Struktur Data 2 BB X GRF Pengertian Graf Graf didefinisikan sebagai pasangan himpunana verteks atau titik (V) dan edges atau titik (E). Verteks merupakan himpunan berhingga dan tidak kosongdari simpul-simpul (vertices

Lebih terperinci

Representasi Graph Isomorfisme. sub-bab 8.3

Representasi Graph Isomorfisme. sub-bab 8.3 Representasi Graph Isomorfisme sub-bab 8.3 Representasi graph:. Adjacency list. Adjacency matrix 3. Incidence matrix Contoh: undirected graph Adjacency list : tiap vertex v :, 3, di-link dengan 3:,, 5

Lebih terperinci

Aplikasi dan Analisis Algoritma BFS dan DFS dalam Menemukan Solusi pada Kasus Water Jug

Aplikasi dan Analisis Algoritma BFS dan DFS dalam Menemukan Solusi pada Kasus Water Jug Aplikasi dan Analisis Algoritma BFS dan DFS dalam Menemukan Solusi pada Kasus Water Jug Rizkydaya Aditya Putra NIM : 13506037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika, Institut

Lebih terperinci

SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013. Graf Berarah

SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013. Graf Berarah SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013 Graf Berarah Graf Berarah Suatu graf berarah (Direct Graf/Digraf) D terdiri atas 2 himpunan : 1. Himpunan V, anggotanya disebut Simpul. 2. Himpunan A, merupakan

Lebih terperinci

Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum

Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum Gerard Edwin Theodorus - 13507079 Jurusan Teknik Informatika ITB, Bandung, email: if17079@students.if.itb.ac.id Abstract Makalah ini

Lebih terperinci

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Andika Mediputra NIM : 13509057 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Algoritma dan Pemrograman Pendekatan Pemrograman Modular

Algoritma dan Pemrograman Pendekatan Pemrograman Modular PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Algoritma dan Pemrograman Pendekatan Pemrograman Modular Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Pendahuluan Teknik Pemrograman Penekanan

Lebih terperinci

Matematik tika Di Disk i r t it 2

Matematik tika Di Disk i r t it 2 Matematika tik Diskrit it 2 Teori Graph Teori Graph 1 Kelahiran Teori Graph Masalah Jembatan Konigsberg g : Mulai dan berakhir pada tempat yang sama, bagaimana caranya untuk melalui setiap jembatan tepat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Adapun landasan teori yang dibutuhkan dalam pembahasan tugas akhir ini di antaranya adalah definisi graf, lintasan terpendek, lintasan terpendek fuzzy, metode rangking fuzzy, algoritma

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma merupakan urutan langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, algoritma dibuat dengan tanpa memperhatikan bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. a) Purwadhi (1994) dalam Husein (2006) menyatakan: perangkat keras (hardware), perangkat lunak (software), dan data, serta

BAB II TINJAUAN PUSTAKA. a) Purwadhi (1994) dalam Husein (2006) menyatakan: perangkat keras (hardware), perangkat lunak (software), dan data, serta BAB II TINJAUAN PUSTAKA 2.1 Sistem Informasi Geografis (SIG) 2.1.1 Pengertian Sistem Informasi Geografis Ada beberapa pengertian dari sistem informasi geografis, diantaranya yaitu: a) Purwadhi (1994) dalam

Lebih terperinci

Perbandingan Algoritma Dijkstra dan Algoritma Floyd-Warshall dalam Penentuan Lintasan Terpendek (Single Pair Shortest Path)

Perbandingan Algoritma Dijkstra dan Algoritma Floyd-Warshall dalam Penentuan Lintasan Terpendek (Single Pair Shortest Path) Perbandingan Algoritma Dijkstra dan Algoritma Floyd-Warshall dalam Penentuan Lintasan Terpendek (Single Pair Shortest Path) Raden Aprian Diaz Novandi Program Studi Teknik Informatika, Sekolah Teknik Elektro

Lebih terperinci

Sistem Kecerdasan Buatan. Masalah, Ruang Masalah dan Pencarian Solusi. Masalah. Masalah Sebagai Ruang Keadaan 10/7/2015

Sistem Kecerdasan Buatan. Masalah, Ruang Masalah dan Pencarian Solusi. Masalah. Masalah Sebagai Ruang Keadaan 10/7/2015 Sistem Kecerdasan Buatan Masalah, Ruang Masalah dan Pencarian Solusi Bahan Bacaan : Sri Kusumadewi, Artificial Intelligence. Russel, Artificial Intelligence Modern Approach 2 bagian utama kecerdasan buatan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Graf adalah salah satu metode yang sering digunakan untuk mencari solusi dari permasalahan diskrit dalam dunia nyata. Dalam kehidupan sehari-hari, graf digunakan untuk

Lebih terperinci

Elvira Firdausi Nuzula, Purwanto, dan Lucky Tri Oktoviana Universitas Negeri Malang

Elvira Firdausi Nuzula, Purwanto, dan Lucky Tri Oktoviana Universitas Negeri Malang PENERAPAN ALGORITMA AUCTION UNTUK MENGATASI MASALAH LINTASAN TERPENDEK (SHORTEST PATH) Elvira Firdausi Nuzula, Purwanto, dan Lucky Tri Oktoviana Universitas Negeri Malang E-mail : elvira_firdausi@yahoo.co.id

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Lintasan Terpendek Lintasan terpendek merupakan lintasan minumum yang diperlukan untuk mencapai suatu titik dari titik tertentu (Pawitri, ) disebutkan bahwa. Dalam permasalahan pencarian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan

Lebih terperinci

OPTIMASI ALGORITMA POHON MERENTANG MINIMUM KRUSKAL

OPTIMASI ALGORITMA POHON MERENTANG MINIMUM KRUSKAL OPTIMASI ALGORITMA POHON MERENTANG MINIMUM KRUSKAL Karol Danutama / 13508040 Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Selat Bangka IV no 6 Duren Sawit Jakarta Timur e-mail:

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 39 BAB 2 TINJAUAN PUSTAKA 2.1. Teori Graf 2.1.1 Definisi Graf Teori graf merupakan salah satu cabang matematika yang paling banyak aplikasinya dalam kehidupan sehari hari. Salah satu bentuk dari graf adalah

Lebih terperinci

Algoritma Greedy (lanjutan)

Algoritma Greedy (lanjutan) Algoritma Greedy (lanjutan) 5. Penjadwalan Job dengan Tenggang Waktu (Job Schedulling with Deadlines) Persoalan: - Ada n buah job yang akan dikerjakan oleh sebuah mesin; - tiap job diproses oleh mesin

Lebih terperinci

Graf. Program Studi Teknik Informatika FTI-ITP

Graf. Program Studi Teknik Informatika FTI-ITP Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan

Lebih terperinci

METODE BRANCH AND BOUND UNTUK MENEMUKAN SHORTEST PATH

METODE BRANCH AND BOUND UNTUK MENEMUKAN SHORTEST PATH METODE BRANCH AND BOUND UNTUK MENEMUKAN SHORTEST PATH Mira Muliati NIM : 35050 Program Studi Teknik Informatika Sekolah Teknik Elektro Informatika Institut Teknologi Bandung Jl. Ganesha 0, Bandung E-mail

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA UNIVERSITAS GUNADARMA SK No. 92 / Dikti / Kep /1996 Fakultas Ilmu Komputer, Teknologi Industri, Ekonomi,Teknik Sipil & Perencanaan, Psikologi, Sastra Program Diploma (D3) Manajemen Informatika, Teknik

Lebih terperinci

Mata Kuliah Penelitian Operasional II OPERATIONS RESEARCH AN INTRODUCTION SEVENTH EDITION BY HAMDY A. TAHA BAB 6.

Mata Kuliah Penelitian Operasional II OPERATIONS RESEARCH AN INTRODUCTION SEVENTH EDITION BY HAMDY A. TAHA BAB 6. Mata Kuliah Penelitian Operasional II OPERATIONS RESEARCH AN INTRODUCTION SEVENTH EDITION BY HAMDY A. TAHA BAB 6 Analisis Jaringan Dipresentasikan oleh: Herman R. Suwarman, S.Si Pendahuluan- Ilustrasi

Lebih terperinci

Menyelesaikan Topological Sort Menggunakan Directed Acyclic Graph

Menyelesaikan Topological Sort Menggunakan Directed Acyclic Graph Menyelesaikan Topological Sort Menggunakan Directed Acyclic Graph Muhammad Afif Al-hawari (13510020) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan diuraikan mengenai teori dan terminologi graph, yaitu bentukbentuk khusus suatu graph dan juga akan diuraikan penjelasan mengenai shortest path. 2.1 Konsep Dasar

Lebih terperinci

Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem

Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Arie Tando (13510018) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Solusi UTS Stima. Alternatif 1 strategi:

Solusi UTS Stima. Alternatif 1 strategi: Solusi UTS Stima 1. a. (Nilai 5) Representasikanlah gambar kota di atas menjadi sebuah graf, dengan simpul merepresentasikan rumah, dan bobot sisi merepresentasikan jumlah paving block yang dibutuhkan.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, akan dibahas landasan teori mengenai teori-teori yang digunakan dan konsep yang mendukung pembahasan, serta penjelasan mengenai metode yang digunakan. 2.1. Jalur Terpendek

Lebih terperinci

Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa

Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa Darwin Prasetio ( 001 ) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

STRUKTUR DATA HIRARKIS : TREE

STRUKTUR DATA HIRARKIS : TREE STRUKTUR DATA HIRARKIS : TREE Tree merupakan salah satu struktur data yang paling penting, karena banyak aplikasi menggunakan informasi dan data yang secara alami memiliki struktur hirarkis berguna dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 18 BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma adalah urutan atau deskripsi langkah- langkah penyelesaian masalah yang tersusun secara logis, ditulis dengan notasi yang mudah dimengerti sedemikian

Lebih terperinci

PENYELESAIAN MASALAH ALIRAN MAKSIMUM MENGGUNAKAN EDMONS KARP ALGORITHM

PENYELESAIAN MASALAH ALIRAN MAKSIMUM MENGGUNAKAN EDMONS KARP ALGORITHM PENYELESAIAN MASALAH ALIRAN MAKSIMUM MENGGUNAKAN EDMONS KARP ALGORITHM Fathimatuzzahro, Sapti Wahyuningsih, dan Darmawan Satyananda Universitas Negeri Malang E-mail: fathimatuzzahro90@gmail.com ABSTRAK:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Menurut (Suarga, 2012 : 1) algoritma: 1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun

Lebih terperinci

Pemanfaatan Algoritma Hybrid Ant Colony Optimization dalam Menyelesaikan Permasalahan Capacitated Minimum Spanning Tree. Tamam Asrori ( )

Pemanfaatan Algoritma Hybrid Ant Colony Optimization dalam Menyelesaikan Permasalahan Capacitated Minimum Spanning Tree. Tamam Asrori ( ) Pemanfaatan Algoritma Hybrid Ant Colony Optimization dalam Menyelesaikan Permasalahan Capacitated Minimum Spanning Tree Tamam Asrori (5104 100 146) Pendahuluan Latar Belakang Tujuan Dan Manfaat Rumusan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari lintasan sederhana terpanjang maksimum dalam suatu graph yang diberikan. Lintasan terpanjang

Lebih terperinci

Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek

Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek Hugo Toni Seputro Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Jl. Ganesha 10 Bandung Jawa Barat Indonesia

Lebih terperinci

Penerapan strategi BFS untuk menyelesaikan permainan Unblock Me beserta perbandingannya dengan DFS dan Branch and Bound

Penerapan strategi BFS untuk menyelesaikan permainan Unblock Me beserta perbandingannya dengan DFS dan Branch and Bound Penerapan strategi BFS untuk menyelesaikan permainan Unblock Me beserta perbandingannya dengan DFS dan Branch and Bound Eric 13512021 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika

Lebih terperinci

ALGORITMA BELLMAN-FORD DALAM DISTANCE VECTOR ROUTING PROTOCOL

ALGORITMA BELLMAN-FORD DALAM DISTANCE VECTOR ROUTING PROTOCOL ALGORITMA BELLMAN-FORD DALAM DISTANCE VECTOR ROUTING PROTOCOL Algoritma Bellman-Ford dalam Distance Vector Routing Protocol Galih Andana NIM : 13507069 Program Studi Teknik Informatika, Institut Teknologi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah dalam menentukan rantaian terpendek diantara pasangan node (titik) tertentu dalam suatu graph telah banyak menarik perhatian. Persoalan dirumuskan sebagai kasus

Lebih terperinci

Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum

Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum Bramianha Adiwazsha - NIM: 13507106 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

SEARCHING SIMULATION SHORTEST ROUTE OF BUS TRANSPORTATION TRANS JAKARTA INDONESIA USING ITERATIVE DEEPENING ALGORITHM AND DJIKSTRA ALGORITHM

SEARCHING SIMULATION SHORTEST ROUTE OF BUS TRANSPORTATION TRANS JAKARTA INDONESIA USING ITERATIVE DEEPENING ALGORITHM AND DJIKSTRA ALGORITHM SEARCHING SIMULATION SHORTEST ROUTE OF BUS TRANSPORTATION TRANS JAKARTA INDONESIA USING ITERATIVE DEEPENING ALGORITHM AND DJIKSTRA ALGORITHM Ditto Djesmedi ( 0222009 ) Jurusan Teknik Elektro, Fakultas

Lebih terperinci

TERAPAN POHON BINER 1

TERAPAN POHON BINER 1 TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi

Lebih terperinci

Analisis Pengimplementasian Algoritma Greedy untuk Memilih Rute Angkutan Umum

Analisis Pengimplementasian Algoritma Greedy untuk Memilih Rute Angkutan Umum Analisis Pengimplementasian Algoritma Greedy untuk Memilih Rute Angkutan Umum Arieza Nadya -- 13512017 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Aplikasi Pohon dan Graf dalam Kaderisasi

Aplikasi Pohon dan Graf dalam Kaderisasi Aplikasi Pohon dan Graf dalam Kaderisasi Jonathan - 13512031 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL

RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL Naskah Publikasi diajukan oleh: Trisni jatiningsih 06.11.1016 kepada JURUSAN TEKNIK INFORMATIKA SEKOLAH TINGGI MANAJEMEN

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Simulasi Sistem didefinisikan sebagai sekumpulan entitas baik manusia ataupun mesin yang yang saling berinteraksi untuk mencapai tujuan tertentu. Dalam prakteknya,

Lebih terperinci