Analisis Deret Waktu

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Analisis Deret Waktu"

Transkripsi

1 Analisis Deret Waktu

2 Jenis Data Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time Series Satu pengamatan diamati selama sekian periode secara teratur Harga saham P.T. TELKOM di BEJ dari 2 Januari 2008 hingga 27 Februari 2008 Longitudinal/panel Beberapa pengamatan diamati bersama-sama selama kurun waktu tertentu (gabungan cross section dan time series) Harga saham P.T. TELKOM, P.T. INDOSAT, dan P.T. Mobile8 di BEJ dari 2 Januari 2008 hingga 27 Februari 2008

3 Pola Data Time Series Konstan Trend Seasonal Cyclic

4 Metode Forecasting Metode forecasting dapat dibedakan menjadi dua kelompok: Smoothing Moving average, Single Exponential Smoothing, Double Exponential Smoothing, Metode Winter Modeling ARIMA, ARCH/GARCH

5

6 Sekilas Tentang Smoothing Prinsip dasar: pengenalan pola data dengan menghaluskan variasi lokal. Prinsip penghalusan umumnya berupa rata-rata. Beberapa metode penghalusan hanya cocok untuk pola data tertentu.

7 Metode Yang Dibahas Single Moving Average Double Moving Average Single Exponential Smoothing Double Exponential Smoothing Metode Winter untuk musiman aditif Metode Winter untuk musiman multiplikatif

8 Single Moving Average Ide: data pada suatu periode dipengaruhi oleh data beberapa periode sebelumnya Cocok untuk pola data konstan/stasioner Prinsip dasar: Data smoothing pada periode ke-t merupakan ratarata dari m buah data dari data periode ke-t hingga t ke-(t-m+1) 1 S t m i t m 1 Data smoothing pada periode ke-t berperan sebagai nilai forecasting pada periode ke-t+1 F t = S t-1 dan F n,h = S n X i

9 Ilustrasi MA dengan m=3 Periode (t) Data (X t ) Smoothing (S t ) Forecasting (F t )

10 Pengaruh Pemilihan Nilai m Semula MA (m=3) MA (m=6) Waktu MA dengan m yang lebih besar menghasilkan pola data yang lebih halus.

11 Double Moving Average Mirip dengan single moving average Cocok untuk data yang berpola tren Proses penghalusan dengan rata-rata dilakukan dua kali t 1 S1, t Xi Tahap I: m i t m 1 Tahap II: S t 1 2, t S1, i m i t m 1

12 Double Moving Average (lanjutan) Forecasting dilakukan dengan formula dengan F2, t, t h At Bt ( h) A 2S S t 1, t 2, t 2 B S S m 1 t 1, t 2, t

13 Ilustrasi DMA dengan m=3 t X t S 1,t S 2,t A t B t F 2,t

14 Single Exponential Smoothing Metode Moving Average mengakomodir pengaruh data beberapa periode sebelumnya melalui pemberian bobot yang sama dalam proses merata-rata. Hal ini berarti bobot pengaruh sekian periode data tersebut dianggap sama. Dalam kenyataannya, bobot pengaruh data yang lebih baru mestinya lebih besar. Adanya perbedaan bobot pengaruh ini diakomodir metode SES dengan menetapkan bobot secara eksponensial.

15 Single Exponential Smoothing (lanjutan) Nilai smoothing pada periode ke-t: S t = X t + (1 ) S t 1 Nilai merupakan parameter pemulusan dengan nilai 0 < < 1. S 0 biasanya diambil dari rataan beberapa data pertama (5 untuk MINITAB) Nilai smoothing pada periode ke-t bertindak sebagai nilai forecast pada periode ke-(t+1) F t = S t 1 dan F n,h = S n

16 Bobot Penghalusan MA vs SES Perbandingan Bobot Penghalusan Moving Average Dengan Single Exponential Smoothing Bobot dalam penghalusan SES(0.7) MA(3) MA(6) Periode sebelumnya

17 Ilustrasi SES dengan = 0.2 Periode (t) Data (X t ) Smoothing (S t ) Forecasting (F t )

18 Pemilihan Model Beberapa model dapat diterapkan untuk data yang sama (MA dengan m = 3 atau m = 6, SES dengan = 0.3 atau = 0.4) mana yang dipilih?? Membagi data menjadi dua bagian, training dan testing Training: bagian data yang digunakan untuk smoothing atau modeling Testing: bagian data yang digunakan untuk verifikasi

19 Pemilihan Model (lanjutan) Semula MA(m=3) MA(m=6) SES(0.3) SES(0.4) Waktu

20 Accuracy Measures Beberapa ukuran yang dapat dipakai untuk penilaian seberapa baik metode mengepas data: Mean Absolute Deviation (MAD) n 1 MAD X Xˆ n t 1 Mean Squared Deviation (MSD) n 1 MSD ( X Xˆ ) n t 1 t t t t Mean Absolute Percentage Error (MAPE) n 1 X ˆ t X MAPE n X t 1 t t 2 100%

21 Double Exponential Smoothing Digunakan untuk data yang memiliki pola tren Semacam SES, hanya saja dilakukan dua kali Pertama untuk tahapan level Kedua untuk tahapan tren

22 Double Exponential Smoothing (lanjutan) Nilai smoothing data ke-t: S t = L t-1 + T t-1 T t = (L t L t-1 ) + (1- )T t-1 L t = X t + (1- )(L t-1 + T t-1 ) Bila: Y t = a + b*t + e, maka L 0 = a dan T 0 = b Nilai forecasting diperoleh dengan formula F t+h = L t + h*t t

23 Ilustrasi DES dengan = 0.2 dan = 0.3 t X t L t T t S t F t

24 Metode Winters Merupakan salah satu pendekatan smoothing untuk data yang berpola musiman (seasonal) Memiliki dua prosedur penghitungan tergantung kondisi data: Aditif: komponen musiman bersifat aditif dengan komponen level dan tren Jika perbedaan data pada setiap musim relative konstan Multiplikatif: komponen musiman bersifat multiplikatif dengan komponen level dan tren Jika data pada musim tertentu proporsional terhadap musim-musim lainnya

25 Seasonal Aditif vs Multiplikatif Aditif Multiplikatif

26 Nilai Awal Aditif - Multiplikatif Ambil 2q data pertama (q: ordo musiman) Hitung rata-rata masing-masing musim Musim I Musim II V V 1 2 q 1 q i 2q q i q 1 X X i i T 0 = (V 2 V 1 )/q L 0 =( V 2 + T 0 (q 1))/2 Deseasonalized data: M q+1 = (X 2q+1 + X q+1 )/2,, M 0 = (X q + X 0 )/2

27 Metode Winters - Aditif Komponen model: L t = (X t M t q ) + (1 ) (L t 1 + T t 1 ) T t = (L t L t 1 ) + (1 ) T t 1 M t = (X t L t-1 - T t 1 )+ (1 ) M t-q Nilai Forecast: F t+h = L t + h*t t + M t q+h

28 Metode Winters - Multiplikatif Komponen model: L t = (X t M t q ) + (1 )(L t 1 + T t 1 ) T t = (L t L t 1 ) + (1 )T t 1 M t = (X t (L t-1 -T t 1 ))+ (1 )M t-q Nilai Forecast: F t,h = (L t + h*t t )M t q+h

ANALISIS DERET WAKTU

ANALISIS DERET WAKTU ANALISIS DERET WAKTU JENIS DATA Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time

Lebih terperinci

Analisis Deret Waktu

Analisis Deret Waktu Analisis Deret Waktu Pertemuan 2 Cross section Jenis Data Beberapa pengamatan diamati bersama sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari

Lebih terperinci

This is a widely used forecasting technique. be especially accurate, www,clt,astate,edu/crbrown/smoothing07,ppt

This is a widely used forecasting technique. be especially accurate, www,clt,astate,edu/crbrown/smoothing07,ppt Proses Pemulusan usa Data Exponential smoothing This is a widely used forecasting technique in retailing, even though it has not proven to be especially accurate, www,clt,astate,edu/crbrown/smoothing07,ppt

Lebih terperinci

Exponential smoothing

Exponential smoothing Exponenial smoohing This is a widely used forecasing echnique in reailing, even hough i has no proven o be especially accurae, www,cl,asae,edu/crbrown/smoohing07,pp 1 Exponenial Smoohing n Period Moving

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Author: Junaidi Junaidi Terdapat berbagai jenis model/metode peramalan hubungan deret waktu. Diantaranya adalah: 1) Model Linear; 2) Model Quadratic;

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013 BAB I PENDAHULUAN 1.1. Latar Belakang Tingkat pencemaran udara di beberapa kota besar cenderung meningkat dari tahun ke tahun. Hal ini disebabkan oleh beberapa faktor diantaranya jumlah transportasi terus

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit tanaman pada lahan yang telah disediakan, pemupukan dan perawatan sehingga

Lebih terperinci

Metode Peramalan Deret Waktu. Pika Silvianti, M.Si Akbar Rizki, M.Si

Metode Peramalan Deret Waktu. Pika Silvianti, M.Si Akbar Rizki, M.Si Metode Peramalan Deret Waktu Pika Silvianti, M.Si Akbar Rizki, M.Si Toleransi 15 menit Absen Pakaian Sopan dan Rapi Pengguna kaos pendek/tanpa lengan dan ketat dilarang mengikuti perkuliahan Pengguna sandal

Lebih terperinci

(FORECASTING ANALYSIS):

(FORECASTING ANALYSIS): ANALISIS KUANTITATIF ANALISIS PERAMALAN Hand-out ke-3 ANALISIS PERAMALAN (FORECASTING ANALYSIS): Contoh-contoh sederhana PRODI AGRIBISNIS UNEJ, 2017 PROF DR IR RUDI WIBOWO, MS Contoh aplikasi tehnik peramalan

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1 Teori Dunia industri biasanya tak lepas dari suatu peramalan, hal ini disebabkan bahwa peramalan dapat memprediksi kejadian di masa yang akan datang untuk mengambil keputusan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Peramalan (forecasting) 2.1.1. Hubungan Forecast dengan Rencana Forecast adalah peramalan apa yang akan terjadi pada waktu yang akan datang, sedang rencana merupakan penentuan apa

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA

BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA Forecasting adalah suatu peramalan nilai sebuah atau sekumpulan variabel pada satu titik waktu di masa depan. Dalam melakukan perhitungan peramalan pertumbuhan

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Desain Penelitian Dari uraian latar belakang masalah, penelitian ini dikategorikan ke dalam penelitian kasus dan penelitian lapangan. Menurut Rianse dan Abdi dalam Surip (2012:33)

Lebih terperinci

PEMODELAN DERET WAKTU MENGGUNAKAN TEKNIK EXPONENSIAL SMOOTHING

PEMODELAN DERET WAKTU MENGGUNAKAN TEKNIK EXPONENSIAL SMOOTHING PEMODELAN DERET WAKTU MENGGUNAKAN TEKNIK EXPONENSIAL SMOOTHING UNTUK PERAMALAN DEBIT ALIRAN SUNGAI (Studi Kasus Sungai Cabenge SWS WalanaE - CenranaE) Melly Lukman[1] ), Eko Susanto *) ABSTRACT Exponential

Lebih terperinci

METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN

METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN Peramalan kuantitatif hanya dapat digunakan apabila terdapat

Lebih terperinci

TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI.

TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI. TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI. PENERAPAN TEKNIK Keakuratan data yang dimiliki Asumsi yang disepakati bersama Kondisi perusahaan yang terdiri dari

Lebih terperinci

SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING

SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING Afni Sahara (0911011) Mahasiswa Program Studi Teknik Informatika,

Lebih terperinci

PENGGUNAAN METODE SMOOTHING EKSPONENSIAL DALAM MERAMAL PERGERAKAN INFLASI KOTA PALU

PENGGUNAAN METODE SMOOTHING EKSPONENSIAL DALAM MERAMAL PERGERAKAN INFLASI KOTA PALU PENGGUNAAN METODE SMOOTHING EKSPONENSIAL DALAM MERAMAL PERGERAKAN INFLASI KOTA PALU Romy Biri ), Yohanes A.R. Langi ), Marline S. Paendong ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi Jl.

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan meramalkan atau memprediksi apa yang akan terjadi dimasa yang akan datang dengan waktu tenggang (lead time) yang relative lama,

Lebih terperinci

BAB I PENDAHULUAN. pada waktu yang akan datang berdasarkan data empiris. Data empiris(terhitung)

BAB I PENDAHULUAN. pada waktu yang akan datang berdasarkan data empiris. Data empiris(terhitung) BAB I PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan proses perkiraan tentang sesuatu yang terjadi pada waktu yang akan datang berdasarkan data empiris. Data empiris(terhitung) merupakan data yang

Lebih terperinci

ANALISIS TINGKAT PENJUALAN UNTUK MENENTUKAN PERENCANAAN PERSEDIAAN DENGAN MENGGUNAKAN FORECASTING. (Studi pada Toko Tekstil Gemilang Jaya Bandung)

ANALISIS TINGKAT PENJUALAN UNTUK MENENTUKAN PERENCANAAN PERSEDIAAN DENGAN MENGGUNAKAN FORECASTING. (Studi pada Toko Tekstil Gemilang Jaya Bandung) ANALISIS TINGKAT PENJUALAN UNTUK MENENTUKAN PERENCANAAN PERSEDIAAN DENGAN MENGGUNAKAN FORECASTING (Studi pada Toko Tekstil Gemilang Jaya Bandung) Skripsi Untuk Memenuhi Sebagian Persyaratan Mencapai Derajat

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

APLIKASI TRIPLE EXPONENTIAL SMOOTHING UNTUK FORECASTING JUMLAH PENDUDUK MISKIN

APLIKASI TRIPLE EXPONENTIAL SMOOTHING UNTUK FORECASTING JUMLAH PENDUDUK MISKIN APLIKASI TRIPLE EXPONENTIAL SMOOTHING UNTUK FORECASTING JUMLAH PENDUDUK MISKIN Fakultas Keguruan dan Ilmu Pendidikan Universitas PGRI Yogyakarta padrul.jana@upy.ac.id Abstract This study aims to predict

Lebih terperinci

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN Ryan Putranda Kristianto 1), Ema Utami 2), Emha Taufiq Lutfi 3) 1, 2,3) Magister Teknik informatika STMIK

Lebih terperinci

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman Lampiran 1. Data Tingkat Hunian Hotel di Propinsi DIY Tahun 1991-2003 48 49 Lampiran 1 Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun 1991-2003, Tahun Bulan Wisman 1991 1 27,00 1991 2 30,60

Lebih terperinci

BAB 3 METODE PENELITIAN. Dalam skripsi yang penulis lakukan ini menggunakan analisa forecasting dari

BAB 3 METODE PENELITIAN. Dalam skripsi yang penulis lakukan ini menggunakan analisa forecasting dari BAB 3 METODE PENELITIAN 3.1 Desain Penelitan Dalam skripsi yang penulis lakukan ini menggunakan analisa forecasting dari PT. Honda Dunia Motorindo. Setelah itu dengan analisa tersebut, penulis berusaha

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Bisnis pada berbagai kegiatannya selalu melakukan suatu perencanaan untuk kedepannya. Untuk melakukan perencanaan suatu kegiatan yang akan disusun dan dilakukan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 13 BAB 1 PENDAHULUAN 1.1 Latar Belakang Era globalisasi saat ini, perkembangan zaman semankin maju dan berkembang pesat, di antaranya banyak pernikahan dini yang menyebabkan salah satu faktor bertambahnya

Lebih terperinci

BAB 3 METODOLOGI PEMECAHAN MASALAH

BAB 3 METODOLOGI PEMECAHAN MASALAH BAB 3 METODOLOGI PEMECAHAN MASALAH 3.1 Flow Process Metodologi Penelitian IDENTIFIKASI DAN PERUMUSAN MASALAH Mencari teknik peramalan yang tepat terhadap volume produksi yang ada STUDI PUSTAKA Mencari

Lebih terperinci

Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya. Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya

Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya. Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya Rudy Adipranata 1, Tanti Octavia 2, Andi Irawan 1 Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya Pendahuluan Pentingnya

Lebih terperinci

PERAMALAN PRODUKSI SARUNG TENUN DENGAN MENGGUNAKAN METODE PEMULUSAN DATA

PERAMALAN PRODUKSI SARUNG TENUN DENGAN MENGGUNAKAN METODE PEMULUSAN DATA PERAMALAN PRODUKSI SARUNG TENUN DENGAN MENGGUNAKAN METODE PEMULUSAN DATA Weny Indah Kusumawati Program Studi Sistem Komputer, Institut Bisnis dan Informatika Stikom Surabaya email: weny@stikom.edu Abstrak

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 KONSEP DASAR PERAMALAN Definisi forecasting sendiri sebenarnya beragam, berikut beberapa difinisi tentang forecasting: 1. Perkiraan munculnya sebuah kejadian di masa depan, berdasarkan

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH

BAB 3 LANGKAH PEMECAHAN MASALAH 49 BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Standar Optimasi Dasar evaluasi untuk mengoptimalkan supply chain management pada Honda Tebet (PT. Setianita Megah Motor) dari proses bisnis perusahaan

Lebih terperinci

Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif

Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif Bab 3-4 Peramalan Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif Berdasarkan metode yang subjektif Metode kuantitatif Berdasarkan

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan

PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER 3 disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan Disusun Oleh :. Ilani Agustina M00037 2. Intan Purnomosari M00042

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),

Lebih terperinci

PENENTUAN JUMLAH PERENCANAAN PERMINTAAN CAT UNTUK MENINGKATKAN TINGKAT AKURASI PERAMALAN BERDASARKAN PERAMALAN PERMINTAAN CAT PADA PT.

PENENTUAN JUMLAH PERENCANAAN PERMINTAAN CAT UNTUK MENINGKATKAN TINGKAT AKURASI PERAMALAN BERDASARKAN PERAMALAN PERMINTAAN CAT PADA PT. ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 2017 Page 1067 PENENTUAN JUMLAH PERENCANAAN PERMINTAAN CAT UNTUK MENINGKATKAN TINGKAT AKURASI PERAMALAN BERDASARKAN PERAMALAN PERMINTAAN

Lebih terperinci

Enter the Problem (Masukkan Permasalahan)

Enter the Problem (Masukkan Permasalahan) FORECASTING PENGANTAR SISTEM PENDUKUNG KEPUTUSAN FORECASTING Program ini mempraktekkan time series forecasting dan linear regresi. Metode time series meliputi simple average, moving average, dengan atau

Lebih terperinci

BAB I PENDAHULUAN. untuk membuat prediksi tersebut disebut peramalan (Bowerman, 1993).

BAB I PENDAHULUAN. untuk membuat prediksi tersebut disebut peramalan (Bowerman, 1993). BAB I PENDAHULUAN 1.1 Latar Belakang Prediksi terhadap kejadian di masa depan disebut ramalan, dan tindakan untuk membuat prediksi tersebut disebut peramalan (Bowerman, 1993). Peramalan diperlukan untuk

Lebih terperinci

Febriyanto, S.E., M.M.

Febriyanto, S.E., M.M. METODE PERAMALAN PERMINTAAN Metode bebas (freehand method) Metode setengah ratarata (semi average method) Metode ratarata bergerak (moving average method) Metode kwadrat terkecil (least quares method)

Lebih terperinci

PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG

PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG Siti Rohana Nasution 1, Temotius Agung Lukito 2 1,2) Jurusan Teknik Industri Fakultas Teknik Universitas Pancasila 1) nasutionana@yahoo.co.id,

Lebih terperinci

BAB I PENDAHULUAN. Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para

BAB I PENDAHULUAN. Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para pimpinan suatu perusahaan atau para pelaku bisnis harus menemukan cara untuk terus

Lebih terperinci

PROGRAM STUDI SISTEM INFORMASI FAKULTAS TEKNOLOGI INFORMASI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

PROGRAM STUDI SISTEM INFORMASI FAKULTAS TEKNOLOGI INFORMASI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PROGRAM STUDI SISTEM INFORMASI FAKULTAS TEKNOLOGI INFORMASI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PEMBUATAN APLIKASI PERAMALAN JUMLAH PERMINTAAN PRODUK DENGAN METODE TIME SERIES EXPONENTIAL SMOOTHING HOLTS

Lebih terperinci

Membuat keputusan yang baik

Membuat keputusan yang baik Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi masa yang akan datang

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 TINJAUAN TEORITIS 2.1. Pengertian pengertian Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang

Lebih terperinci

BAB I PENDAHULUAN. Dugaan atau perkiraan mengenai kejadian atau peristiwa pada waktu yang

BAB I PENDAHULUAN. Dugaan atau perkiraan mengenai kejadian atau peristiwa pada waktu yang BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dugaan atau perkiraan mengenai kejadian atau peristiwa pada waktu yang akan datang disebut ramalan dan tindakan dalam membuat dugaan atau perkiraan tersebut

Lebih terperinci

PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL MERPATI

PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL MERPATI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 251 258. PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL

Lebih terperinci

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING SKRIPSI Disusun oleh: DANI AL MAHKYA 24010210141025 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN 2301-9115 FORECASTING FITNESS GYM MEMBERSHIP PADA PUSAT KEBUGARAN THE BODY ART FITNESS, AEROBIC & POOL MENGGUNAKAN METODE EXPONENTIAL SMOOTHING

Lebih terperinci

BAB II LANDASAN TEORI. saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan

BAB II LANDASAN TEORI. saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan BAB II LANDASAN TEORI 2.1 Pengertian Sistem Menurut Amsyah (2005), definisi sistem adalah elemen-elemen yang saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan kerja dari prosedur

Lebih terperinci

PERAMALAN PENJUALAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING PADA TOKO OBAT BINTANG GEURUGOK

PERAMALAN PENJUALAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING PADA TOKO OBAT BINTANG GEURUGOK PERAMALAN PENJUALAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING PADA TOKO OBAT BINTANG GEURUGOK Sayed Fachrurrazi, S.Si., M.Kom Program Studi Teknik Informatika, Universitas Malikussaleh Reuleut,

Lebih terperinci

PENENTUAN JUMLAH PERENCANAAN PERMINTAAN PELUMAS UNTUK MEMINIMASI TINGKAT KESALAHAN PERAMALAN BERDASARKAN PERAMALAN PERMINTAAN PELUMAS PADA PT.

PENENTUAN JUMLAH PERENCANAAN PERMINTAAN PELUMAS UNTUK MEMINIMASI TINGKAT KESALAHAN PERAMALAN BERDASARKAN PERAMALAN PERMINTAAN PELUMAS PADA PT. ISSN : 2355-9365 e-proceeding of Engineering : Vol.3, No.2 Agustus 2016 Page 3022 PENENTUAN JUMLAH PERENCANAAN PERMINTAAN PELUMAS UNTUK MEMINIMASI TINGKAT KESALAHAN PERAMALAN BERDASARKAN PERAMALAN PERMINTAAN

Lebih terperinci

Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing

Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) Vol.11, No.1, Februari 2017 ISSN: 0852-730X Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian terhadap populasi yang sangat besar, kita perlu melakukan suatu penarikan sampel. Hal ini dikarenakan tidak selamanya kita dapat

Lebih terperinci

BAB 1 PENDAHULUAN. Indonesia, mengharuskan para pelaku bisnis melihat peluang yang ada dalam. memenuhi permintaan konsumen yang beragam.

BAB 1 PENDAHULUAN. Indonesia, mengharuskan para pelaku bisnis melihat peluang yang ada dalam. memenuhi permintaan konsumen yang beragam. BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berkembangnya persaingan bisnis yang semakin ketat di Indonesia, mengharuskan para pelaku bisnis melihat peluang yang ada dalam meningkatkan

Lebih terperinci

Universitas Gunadarma PERAMALAN

Universitas Gunadarma PERAMALAN PERAMALAN PERAMALAN Kebutuhan Peramalan dalam Manajemen Produksi dan Operasi Manajemen Operasi/produksi menggunakan hasil-hasil peramalan dalam pembuatan keputusan-keputusan yang menyangkut pemilihan proses,

Lebih terperinci

BAB 3 PERANCANGAN PROGRAM. 3.1 Alasan digunakan Metode Exponential Smoothing. Banyak metode peramalan yang dapat digunakan dalam memprediksi tingkat

BAB 3 PERANCANGAN PROGRAM. 3.1 Alasan digunakan Metode Exponential Smoothing. Banyak metode peramalan yang dapat digunakan dalam memprediksi tingkat BAB 3 PERANCANGAN PROGRAM 3.1 Alasan digunakan Metode Exponential Smoothing Banyak metode peramalan yang dapat digunakan dalam memprediksi tingkat penjualan untuk beberapa periode ke depan. Biasanya untuk

Lebih terperinci

Analisis Hubungan Deret Waktu untuk Peramalan

Analisis Hubungan Deret Waktu untuk Peramalan Analisis Hubungan Deret Waktu untuk Peramalan Author: Junaidi Junaidi Ramalan (forecast) merupakan dugaan atau perkiraan mengenai terjadinya suatu kejadian atau peristiwa di waktu yang akan datang. Ramalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Sedangkan ramalan adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

PERENCANAAN PRODUKSI

PERENCANAAN PRODUKSI PERENCANAAN PRODUKSI Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi

Lebih terperinci

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Definisi Peramalan Peramalan adalah suatu proses dalam menggunakan data historis yang telah dimiliki untuk diproyeksikan ke dalam suatu model peramalan. Dengan model peramalan

Lebih terperinci

U K D W BAB I PENDAHULUAN

U K D W BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam pengelolaan suatu minimarket tidak pernah lepas dari yang namanya persediaan barang. Persediaan barang menjadi bagian yang sangat vital dalam tumbuh kembangnya

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di: ISSN: 2339-254 JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 205, Halaman 957-966 Online di: http://ejournal-s.undip.ac.id/index.php/gaussian PREDIKSI NILAI KURS DOLLAR AMERIKA MENGGUNAKAN EXPONENTIAL SMOOTHING

Lebih terperinci

BAB III METODE PENELITIAN. untuk memahami, memecahkan dan mengantisipasi masalah. adalah penelitian secara deskriptif dan komparatif.

BAB III METODE PENELITIAN. untuk memahami, memecahkan dan mengantisipasi masalah. adalah penelitian secara deskriptif dan komparatif. BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif dan komparatif. Melalui penelitian, manusia dapat menggunakan hasilnya, secara

Lebih terperinci

PERAMALAN (FORECASTING) #2

PERAMALAN (FORECASTING) #2 #4 - Peramalan (Forecasting) #2 1 PERAMALAN (FORECASTING) #2 EMA302 Manajemen Operasional Model Trend Linear Multiplicative 2 Kecenderungan (trend). Komponen musiman (seasonal): rasio untuk model trend.

Lebih terperinci

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA SISTEM PENDUKUNG KEPUTUSAN PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA Alda Raharja - 5206 100 008! Wiwik Anggraeni, S.Si, M.Kom! Retno

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi merupakan suatu kegiatan yang dikerjakan untuk menambah nilai guna suatu benda baru sehingga lebih bermanfaat dalam memenuhi kebutuhan. Produksi jahe

Lebih terperinci

BAB III PERAMALAN. Praktikum Sistem Produksi ATA 2014/2015

BAB III PERAMALAN. Praktikum Sistem Produksi ATA 2014/2015 BAB III PERAMALAN 3.1 Landasan Teori Peramalan merupakan suatu bentuk usaha untuk meramalkan keadaan di masa mendatang melalui pengujian keadaan di masa lalu. Esensi peramalan adalah perkiraan peristiwa-peristiwa

Lebih terperinci

KATA PENGANTAR. Malang, Mei Penyusun

KATA PENGANTAR. Malang, Mei Penyusun KATA PENGANTAR Puji syukur penyusun panjatkan kepada Tuhan Yang Maha Esa karena atas karunia-nya penyusun dapat menyelesaikan laporan Kuliah Kerja Nyata - Praktik (KKN-P) ini dengan baik. Laporan KKN-P

Lebih terperinci

KATA PENGANTAR. Puji Syukur peneliti sampaikan kehadirat Tuhan Yang Maha Esa atas segala

KATA PENGANTAR. Puji Syukur peneliti sampaikan kehadirat Tuhan Yang Maha Esa atas segala KATA PENGANTAR Puji Syukur peneliti sampaikan kehadirat Tuhan Yang Maha Esa atas segala berkat, tuntunan, inspirasi, dan pendampingan-nya sehingga peneliti dapat menyelesaikan skripsi dalam bentuk dan

Lebih terperinci

BAB III PERAMALAN 3.1 Landasan Teori Peramalan

BAB III PERAMALAN 3.1 Landasan Teori Peramalan BAB III PERAMALAN 3.1 Landasan Teori Peramalan Menurut Gaspersz (2004), aktivitas peramalan merupakan suatu fungsi bisnis yang berusaha memperkirakan permintaan dan penggunaan produk sehingga produk-produk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 1.1 Landasan Teori 1.1.1 Prediksi Prediksi adalah sama dengan ramalan atau perkiraan. Menurut kamus besar bahasa indonesia, prediksi adalah hasil dari kegiatan memprediksi atau

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1. Metode Time Series 3.1.1. Definisi Peramalan dan Time Series Peramalan (forecasting)adalah kegiatan memperkirakan apa yang terjadi pada masa yang akan datang berdasarkan data

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Manajemen Operasional Menurut Jay Heizer dan Barry Render (2010 : 4), manajemen operasi adalah serangkaian aktivitas yang menghasilkan nilai dalam bentuk barang dan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 19 3.1 Diagram Alir Penelitian BAB 3 METODOLOGI PENELITIAN MULAI Pengajuan Surat Survei PT. Bangkit Sukses Mandiri (BSM) Diterima? Tidak Ya Observasi Perusahaan Wawancara dengan Direktur PT. BSM Pengamatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA digilib.uns.ac.id BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Executive Information System (EIS) Executive Information System (EIS) adalah sebuah sistem penunjang keputusan yang dibangun secara khusus

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan adalah alat bantu yang penting dalam perencanaan yang efektif dan efisien (Makridakis,1991). Peramalan merupakan studi terhadap data historis untuk menemukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

STK511 Analisis Statistika. Pertemuan - 1

STK511 Analisis Statistika. Pertemuan - 1 STK511 Analisis Statistika Pertemuan - 1 PERKULIAHAN 1. Dosen : Anang Kurnia (anangk@apps.ipb.ac.id) 2. Asisten : Septian Rahardiantoro 3. Waktu : Rabu > 08.00 09.40 Jumat > 08.00 10.00 4. Office Hours

Lebih terperinci

ANGGA NUR ARDYANSAH NIM

ANGGA NUR ARDYANSAH NIM Akurasi Metode Exponential Smoothing dan Metode Autoregressive Integrated Moving Average (ARIMA) untuk Meramalkan Lama Proses Pengerjaan Tugas Akhir Mahasiswa Pendidikan Matematika FKIP Universitas Jember

Lebih terperinci

APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING ABSTRACT

APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING ABSTRACT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 605-614 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA

Lebih terperinci

PERAMALAN OPT PERKEBUNAN DENGAN MENGGUNAKAN SPSS Oleh : Arif Ashari, S.Si (Statistisi Ahli Pertama - BBPPTP Surabaya)

PERAMALAN OPT PERKEBUNAN DENGAN MENGGUNAKAN SPSS Oleh : Arif Ashari, S.Si (Statistisi Ahli Pertama - BBPPTP Surabaya) PERAMALAN OPT PERKEBUNAN DENGAN MENGGUNAKAN SPSS Oleh : Arif Ashari, S.Si (Statistisi Ahli Pertama - BBPPTP Surabaya) I. PENDAHULUAN Pengolahan dan analisis data serangan Organisme Pengganggu Tumbuhan

Lebih terperinci

APLIKASI PERAMALAN DALAM PEMESANAN LAPANGAN FUTSAL DI RRI SOOCER ZONE MALANG

APLIKASI PERAMALAN DALAM PEMESANAN LAPANGAN FUTSAL DI RRI SOOCER ZONE MALANG APLIKASI PERAMALAN DALAM PEMESANAN LAPANGAN FUTSAL DI RRI SOOCER ZONE MALANG Indra Dharma W 1, Yunior Fajar Triandi 2, Eng Cahya Rahmad 3 Program Studi Teknik Informatika, Jurusan Teknologi Informasi,Politeknik

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

ANALISIS PERAMALAN PENJUALAN DAN KAITANNYA DALAM PERAMALAN LABA PADA PD. RAMATEX. Nama : Desty Trisnayannis NPM :

ANALISIS PERAMALAN PENJUALAN DAN KAITANNYA DALAM PERAMALAN LABA PADA PD. RAMATEX. Nama : Desty Trisnayannis NPM : ANALISIS PERAMALAN PENJUALAN DAN KAITANNYA DALAM PERAMALAN LABA PADA PD. RAMATEX Nama : Desty Trisnayannis NPM : 21210860 Latar Belakang Dalam dunia usaha, perusahaan harus memperkirakan hal-hal yang terjadi

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Konsep Permintaan III KERANGKA PEMIKIRAN Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi?

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? a. Ada ketidak-pastian aktivitas produksi di masa yag akan datang b. Kemampuan & sumber daya perusahaan

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan BAB 2 LADASA TEORI 2.1 Pengertian Peramalan (Forecasting) Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan terjadi pada masa mendatang. Peramalan penjualan adalah peramalan

Lebih terperinci

ANGGA NUR ARDYANSAH NIM

ANGGA NUR ARDYANSAH NIM Akurasi Metode Exponential Smoothing dan Metode Autoregressive Integrated Moving Average (ARIMA) untuk Meramalkan Lama Proses Pengerjaan Tugas Akhir Mahasiswa Pendidikan Matematika FKIP Universitas Jember

Lebih terperinci