METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN"

Transkripsi

1

2 METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN

3 Peramalan kuantitatif hanya dapat digunakan apabila terdapat tiga kondisi sebagai berikut: Adanya informasi tentang keadaan yang lain. Informasi tersebut dapat dikuantifikasikan dalam bentuk data. Dapat diasumsikan bahwa pola yang lalu akan berkelanjutan pada masa yang akan datang.

4 Prosedur umum yang digunakan dalam peramalan kuantitatif adalah: 1. Definisikan tujuan peramalan. 2. Pembuatan diagram pencar. 3. Pilih minimal dua metode peramalan yang dianggap sesuai. 4. Hitung parameter parameter fungsi peramalan. 5. Hitung kesalahan setiap metode peramalan. 6. Pilih metode yang terbaik, yaitu yang memiliki kesalahan terkecil. 7. Lakukan verifikasi peramalan.

5 Empat komponen utama yang mempengaruhi analisis ini, yaitu : a. Pola Siklis (Cycle) Komponen siklis ini sangat berguna dalam peramalan jangka menengah. Pola data ini terjadi bila data memiliki kecendrungan untuk naik atau turun terusmenerus. Pola data dalam bentuk trend ini digambarkan sebagai berikut:

6 Biaya Waktu

7 Perkataan musim menggambarkan pola penjualan yang berulang setiap periode. Komponen musim dapat dijabarkan ke dalam faktor cuaca, libur, atau kecenderungan perdagangan. Pola musiman berguna dalam meramalkan penjualan dalam jangka pendek. Pola data ini terjadi bila nilai data sangat dipengaruhi oleh musim. Selama musim

8 Biaya Waktu

9 Pola data ini terjadi apabila nilai data Berfluktuasi di sekitar nilai rata-rata. Biaya Waktu

10 Pola data ini terjadi bila data memiliki kecenderungan untuk naik atau turun terus menerus. Biaya Waktu

11 Metode Peramalan Kuantitatif dapat dikelompokkan dua jenis : (1) model seri waktu / metode deret berkala (time series) metode yang dipergunakan untuk menganalisis serangkaian data yang merupakan fungsi dari waktu, (2) model / metode kausal (causal/explanatory model), mengasumsikan variabel yang diramalkan menunjukkan adanya hubungan sebab akibat dengan satu atau beberapa variabel bebas (independent variable).

12 ANALISIS TIME SERIES MERUPAKAN HUBUNGAN ANTARA VARIABEL YANG DICARI (DEPENDENT) DENGAN VARIABEL YANG MEMPENGARUHI-NYA (INDEPENDENT VARIABLE), YANG DIKAITKAN DENGAN WAKTU SEPERTI MINGGUAN, BULAN, TRIWULAN, CATUR WULAN, SEMESTER ATAU TAHUN. PERAMALAN TIME SERIES : PERAMALAN BERDASARKAN PERILAKU DATA MASA LAMPAU UNTUK DIPROYEKSIKAN KE MASA DEPAN DENGAN MEMANFAATKAN PERSAMAAN MATEMATIKA DAN STATISTIKA.

13 DATA TIME SERIES : DATA DERET WAKTU YAITU SEKUMPULAN DATA PADA SATU PERIODE WAKTU TERTENTU

14 A. SIMPLE MOVING AVARAGE UNTUK MENGATASI MASALAH MENGGUNAKAN RATA-RATA SEDERHANA (SIMPLE AVERAGE) TEKNIK MOVING AVERAGE MENGHASILKAN PERKIRAAN MASA DEPAN DENGAN RATA-RATA PERMINTAAN SEBENARNYA HANYA UNTUK N PERIODE WAKTU TERAKHIR(N SERING PADA KISARAN 4-7). SETIAP DATA YANG LEBIH DARI N, MAKA DIABAIKAN. NILAI YANG DIPILIH UNTUK N HARUS MENJADI PILIHAN TERBAIK UNTUK DATA HISTORIS YANG TERSEDIA.

15 Rata-Rata Bergerak Sederhana (simple moving averages) : bermanfaat jika diasumsikan bahwa permintaan pasar tetap stabil : Rata-rata Bergerak = Permintaan data n periode sebelumnya n ATAU DALAM MATEMATISNYA ADALAH

16 Secara matematis, persamaan moving average adalah: F t = Peramalan untuk periode mendatang (periode t) n = Jumlah periode yang dirata-ratakan A t-1= Jumlah aktual periode sebelumnya hingga periode n

17 CONTOH : PERMINTAAN BARANG X ADALAH SEBAGAI BERIKUT BULAN JUMLAH PERTANYAAN : PREDIKSIKAN PERMINTAAN BARANG PADA BULAN KE 4?

18 JAWABAN: F 4 = A t-1 + A t-2 + A t-3 3 F 4 = F 4 =2.048 = 682,67 3

19 PERMINTAAN LAPTOP DI KOTA MALANG ADALAH SEBAGAI BERIKUT BULAN JUMLAH PERTANYAAN : PREDIKSIKAN PERMINTAAN BARANG PADA BULAN KE 6?

20 WMA n n i 1 W D i i W D i W i i the weight for period demand in period i 1.00 i (0-100%)

21 Bulan Pesanan Januari 120 Pebuari 90 Maret 100 April 75 Mei 110 Juni 50 Juli 75 Agustus 130 September 110 Oktober 90 Dari laporan pesanan barang selama 10 bulan perusahaan A sebagai berikut :Perusahaan A menginginkan menghitung suatu rata-rata bergerak 3 bulanan dengan bobot 50 % untuk data bulan Oktober, 33% untuk data bulan september dan 17 % untuk data bulan Agustus. Bobot-bobot tersebut mencerminkan keinginan perusahaan bahwa sebagian besar data saat ini mempengaruhi secara kuat sebagian besar peramalannya

22 WMA n 3 WiD i 1 i (0.50)(90) (0.33)(110) (0.17)(130) pesanan

23 Error = Riil Ramalan Ada 3 perhitungan, yaitu: 1. Deviasi Rata-rata Absolut (Mean Absolute Deviation MAD). 2. Kesalahan Rata-rata Kuadrat (Mean Squared Error MSE). 3. Kesalahan Persen Rata-rata Absolut (Mean Absolute Percent Error MAPE).

24 A t = Permintaan aktualperiode ke-t F t = Nilai peramalan periode ke-t n = Jumlah periode t t = Periode

25 MAD yang ideal adalah nol (=0), yang berarti tidak ada kesalahan peramalan. Semakin besar hasil nilai MAD, menunjukkan model yang dihasilkan yang kurang tepat.

26 BULAN PENJUALAN FORECASTING ERROR (DEVIASI) At - Ft ABSOLUTE ERROR (DEVIASI) TOTAL

27 MAD = MAD = 72,08

28 Merupakan selisih kuadrat antara nilai yang diramalkan dan yang diamati A t = Permintaan aktualperiode ke-t F t = Nilai peramalan periode ke-t n = Jumlah periode t t = Periode

29 BULAN PENJUAL AN FORECASTI NG ERROR (DEVIASI) At - Ft ABSOLUTE ERROR (DEVIASI) ABSOLUTE SQUARE ERROR (At-Ft) TOTAL

30 MSE = MSE =5.697,92

31 Masalah yang terjadi dengan MAD dan MSE adalah bahwa nilai kesalahan tergantung pada besarnya unsur yang diramal, jika unsurnya dalam satuan ribuan, maka nilai kesalahan bisa menjadi sangat besar. MAPE digunakan untuk menghindari masalah tersebut, yang dihitung sebagai rata-rata diferensiasi absolut antara nilai yang diramal dan aktual, yang dinyatakan dalam Persentase nilai aktual.

32 A t = Permintaan aktualperiode ke-t F t = Nilai peramalan periode ke-t n = Jumlah periode t t = Periode

33 BULAN PENJUAL AN FORECASTI NG ERROR (DEVIASI) At - Ft ABSOLUTE ERROR (DEVIASI) 100x ABSOLUTE SQUARE ERROR /AKTUAL % % % % TOTAL ,52%

34 MAPE = MAPE = 11,63%

35 Pada teknik ini dilakukan penghitungan ratarata bergerak sebanyak dua kali kemudian dilanjutkan dengan meramal menggunakan suatu persamaan tertentu.

36 F t = A t-1 + A t A t-n n F t = F t -1 + F t F t -n n a t = 2F t- F t b t = 2 (F t- F t ) n-1 Ŷ t+p = a t + b t (p) p = jumlah periode peramalan

37 Bulan (t) Omzet (Yt) Moving Ave. 3t(Ft) Double Moving Average (F t) Nilai at Nilai bt Forcast a+b(p); p=1 Juni Juli Agustus ,286,666,667 September Oktober ,266,666,667 1,274,444,444 1,258,889-0,77778 Nopember ,275,555,556 1,304,444 1,444,444 1,251,111 Desember ,303,333,333 1,286,666, ,666,667 1,318,889 Januari ,313,333,333 1,302,222,222 1,324,444 1,111,111 1,336,667 Februari ,336,666,667 1,317,777,778 1,355,556 1,888,889 1,335,556 Maret ,336,666,667 1,383,333 2,333,333 1,374,444 April ,376,666,667 1,357,777,778 1,395,556 1,888,889 1,406,667 Mei ,372,222,222 1,387,778 0, ,414,444 Juni ,385,555,556 1,414,444 1,444,444 1,395,556 Juli ,428,889 Agustus ,423,333,333 1,414,444,444 1,432,222 0, September ,423,333,333 1,422,222,222 1,424,444 0, ,441,111 Oktober ,428,888,889 1,451,111 1,111,111 1,425,556 Nopember ,476,666,667 1,446,666,667 1,506, ,462,222 Desember ,506,666,667 1,474,444,444 1,538,889 3,222,222 1,536,667 Januari ,571,111

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern

Lebih terperinci

PERAMALAN (FORECASTING)

PERAMALAN (FORECASTING) #3 - Peramalan (Forecasting) #1 1 PERAMALAN (FORECASTING) EMA302 Manajemen Operasional Pengertian (1) 2 Oxford Dictionary, Forecast is a statement about what will happen in the future, based on information

Lebih terperinci

Pembahasan Materi #7

Pembahasan Materi #7 1 EMA402 Manajemen Rantai Pasokan Pembahasan 2 Pengertian Moving Average Alasan Tujuan Jenis Validitas Taksonomi Metode Kualitatif Metode Kuantitatif Time Series Metode Peramalan Permintaan Weighted Woving

Lebih terperinci

EMA302 Manajemen Operasional

EMA302 Manajemen Operasional 1 PERAMALAN (FORECASTING) EMA302 Manajemen Operasional Pengertian (1) 2 Oxford Dictionary, Forecast is a statement about what will happen in the future, based on information that is available now. (Peramalan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

Manajemen Operasional. PERAMALAN (Forecasting)

Manajemen Operasional. PERAMALAN (Forecasting) Manajemen Operasional PERAMALAN (Forecasting) Putri Irene Kanny Putri_irene@staff.gunadarma.ac.id Sub Pokok bahasan pertemuan ke-3 Prediksi dan Peramalan Jenis-jenis Metode Peramalan Metode deret berkala

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH

BAB 3 LANGKAH PEMECAHAN MASALAH 49 BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Standar Optimasi Dasar evaluasi untuk mengoptimalkan supply chain management pada Honda Tebet (PT. Setianita Megah Motor) dari proses bisnis perusahaan

Lebih terperinci

SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)

SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS) SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS) Mahasiswa mampu melakukan perencanaan untuk memastikan kelancaran operasi rantai pasok 1. Peramalan dalam organisasi 2. Pola permintaan 3. Metode peramalan

Lebih terperinci

PERAMALAN (FORECASTING) #2

PERAMALAN (FORECASTING) #2 PERAMALAN (FORECASTING) #2 Materi #4 EMA302 Manajemen Operasional Model Simple Linear Regression (1) 2 Model simple linear regression berusaha untuk menyesuaikan garis melalui berbagai data dari waktu

Lebih terperinci

Febriyanto, S.E., M.M.

Febriyanto, S.E., M.M. METODE PERAMALAN PERMINTAAN Metode bebas (freehand method) Metode setengah ratarata (semi average method) Metode ratarata bergerak (moving average method) Metode kwadrat terkecil (least quares method)

Lebih terperinci

BAB III PERAMALAN 3.1 Landasan Teori Peramalan

BAB III PERAMALAN 3.1 Landasan Teori Peramalan BAB III PERAMALAN 3.1 Landasan Teori Peramalan Menurut Gaspersz (2004), aktivitas peramalan merupakan suatu fungsi bisnis yang berusaha memperkirakan permintaan dan penggunaan produk sehingga produk-produk

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit tanaman pada lahan yang telah disediakan, pemupukan dan perawatan sehingga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

Matakuliah : Ekonomi Produksi Peternakan Tahun : Oleh. Suhardi, S.Pt.,MP

Matakuliah : Ekonomi Produksi Peternakan Tahun : Oleh. Suhardi, S.Pt.,MP Matakuliah : Ekonomi Produksi Peternakan Tahun : 2014 Oleh. Suhardi, S.Pt.,MP 1 Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menunjukkan jenis Peramalan Menggunakan Metode Peramalan Kuantitatif

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Peramalan (forecasting) 2.1.1. Hubungan Forecast dengan Rencana Forecast adalah peramalan apa yang akan terjadi pada waktu yang akan datang, sedang rencana merupakan penentuan apa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan sering dipandang sebagai seni dan ilmu dalam memprediksikan kejadian yang mungkin dihadapi pada masa yang akan datang. Secara teoritis peramalan

Lebih terperinci

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi?

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? a. Ada ketidak-pastian aktivitas produksi di masa yag akan datang b. Kemampuan & sumber daya perusahaan

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS BAB 2 LANDASAN TEORITIS 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksikan apa yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

Lebih terperinci

BAB III PERAMALAN. Praktikum Sistem Produksi ATA 2014/2015

BAB III PERAMALAN. Praktikum Sistem Produksi ATA 2014/2015 BAB III PERAMALAN 3.1 Landasan Teori Peramalan merupakan suatu bentuk usaha untuk meramalkan keadaan di masa mendatang melalui pengujian keadaan di masa lalu. Esensi peramalan adalah perkiraan peristiwa-peristiwa

Lebih terperinci

ANALISIS PERAMALAN PENJUALAN DAN KAITANNYA DALAM PERAMALAN LABA PADA PD. RAMATEX. Nama : Desty Trisnayannis NPM :

ANALISIS PERAMALAN PENJUALAN DAN KAITANNYA DALAM PERAMALAN LABA PADA PD. RAMATEX. Nama : Desty Trisnayannis NPM : ANALISIS PERAMALAN PENJUALAN DAN KAITANNYA DALAM PERAMALAN LABA PADA PD. RAMATEX Nama : Desty Trisnayannis NPM : 21210860 Latar Belakang Dalam dunia usaha, perusahaan harus memperkirakan hal-hal yang terjadi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian terhadap populasi yang sangat besar, kita perlu melakukan suatu penarikan sampel. Hal ini dikarenakan tidak selamanya kita dapat

Lebih terperinci

Analisis Peramalan Penjualan Boneka dengan Menggunakan Metode Moving Avarage dan Weight Moving Avarage pada CV.BAAC ABADI.

Analisis Peramalan Penjualan Boneka dengan Menggunakan Metode Moving Avarage dan Weight Moving Avarage pada CV.BAAC ABADI. Analisis Peramalan Penjualan Boneka dengan Menggunakan Metode Moving Avarage dan Weight Moving Avarage pada CV.BAAC ABADI. Nama :Eri Putra Deva NPM :12212518 Jurusan :Manajemen Pembimbing :Dr. Dra. Peni

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),

Lebih terperinci

SALES FORECASTING UNTUK PENGENDALIAN PERSEDIAAN

SALES FORECASTING UNTUK PENGENDALIAN PERSEDIAAN BAB IV SALES FORECASTING UNTUK PENGENDALIAN PERSEDIAAN A. Identifikasi Peramalan Penjualan oleh UD. Jaya Abadi Dari hasil wawancara yang menyebutkan bahwa setiap pengambilan keputusan untuk estimasi penjualan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. estimasi data yang akan datang. Peramalan atau Forecasting merupakan bagian

BAB II TINJAUAN PUSTAKA. estimasi data yang akan datang. Peramalan atau Forecasting merupakan bagian BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Peramalan Peramalan adalah data di masa lalu yang digunakan untuk keperluan estimasi data yang akan datang. Peramalan atau Forecasting merupakan bagian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya kesenjaan waktu

Lebih terperinci

PERAMALAN PENJUALAN TIKET PESAWAT PADA CV. VIDO JAYA TOUR DAN TRAVEL

PERAMALAN PENJUALAN TIKET PESAWAT PADA CV. VIDO JAYA TOUR DAN TRAVEL PERAMALAN PENJUALAN TIKET PESAWAT PADA CV. VIDO JAYA TOUR DAN TRAVEL Nama : Awalludin Ma rifatullah Idhofi NPM : 11212269 Jurusan : Manajemen Pembimbing : Dr. Dra. Peni Sawitri, MM PENDAHULUAN Latar Belakang

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan meramalkan atau memprediksi apa yang akan terjadi dimasa yang akan datang dengan waktu tenggang (lead time) yang relative lama,

Lebih terperinci

BAB II LANDASAN TEORI. saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan

BAB II LANDASAN TEORI. saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan BAB II LANDASAN TEORI 2.1 Pengertian Sistem Menurut Amsyah (2005), definisi sistem adalah elemen-elemen yang saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan kerja dari prosedur

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Pengumpulan Data Pengumpulan data yang dilakukan dengan cara pengamatan dari dokumen perusahaan. Data yang di perlukan meliputi data penjualan produk Jamur Shiitake,

Lebih terperinci

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis

Lebih terperinci

UNIVERSITAS WINAYA MUKTI TEKNIK PROYEKSI BISNIS DODI TISNA AMIJAYA SE.,MM METODA METODA -- METODA PERAMALAN METODA PERAMALAN

UNIVERSITAS WINAYA MUKTI TEKNIK PROYEKSI BISNIS DODI TISNA AMIJAYA SE.,MM METODA METODA -- METODA PERAMALAN METODA PERAMALAN UNIVERSITAS WINAYA MUKTI TEKNIK PROYEKSI BISNIS DODI TISNA AMIJAYA SE.,MM METODA - METODA PERAMALAN PADA DASARNYA METODA PERAMALAN DAPAT DIKELOMPOKKAN KE DALAM 3 KELOMPOK YAITU : 1. METODA KUALITATIF YANG

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Sedangkan ramalan adalah

Lebih terperinci

ANALISIS PERAMALAN PENJUALAN KANTOR PERCETAKAN DAN PERDAGANGAN UMUM CV AGUNG BEKASI TIMUR

ANALISIS PERAMALAN PENJUALAN KANTOR PERCETAKAN DAN PERDAGANGAN UMUM CV AGUNG BEKASI TIMUR ANALISIS PERAMALAN PENJUALAN KANTOR PERCETAKAN DAN PERDAGANGAN UMUM CV AGUNG BEKASI TIMUR NAMA : GALANG INDRAS SUWANTO NPM : 12210908 JURUSAN : MANAJEMEN PEMBIMBING : SUPRIYO HARTADI, W. SE. MM LATAR BELAKANG

Lebih terperinci

BAB III METODE PENELITIAN. untuk memahami, memecahkan dan mengantisipasi masalah. adalah penelitian secara deskriptif dan komparatif.

BAB III METODE PENELITIAN. untuk memahami, memecahkan dan mengantisipasi masalah. adalah penelitian secara deskriptif dan komparatif. BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif dan komparatif. Melalui penelitian, manusia dapat menggunakan hasilnya, secara

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan BAB 2 LADASA TEORI 2.1 Pengertian Peramalan (Forecasting) Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan terjadi pada masa mendatang. Peramalan penjualan adalah peramalan

Lebih terperinci

PERAMALAN PRODUKSI SARUNG TENUN DENGAN MENGGUNAKAN METODE PEMULUSAN DATA

PERAMALAN PRODUKSI SARUNG TENUN DENGAN MENGGUNAKAN METODE PEMULUSAN DATA PERAMALAN PRODUKSI SARUNG TENUN DENGAN MENGGUNAKAN METODE PEMULUSAN DATA Weny Indah Kusumawati Program Studi Sistem Komputer, Institut Bisnis dan Informatika Stikom Surabaya email: weny@stikom.edu Abstrak

Lebih terperinci

BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA

BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA Forecasting adalah suatu peramalan nilai sebuah atau sekumpulan variabel pada satu titik waktu di masa depan. Dalam melakukan perhitungan peramalan pertumbuhan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Defenisi Peramalan Peramalan adalah suatu kegiatan dalam memperkirakan atau kegiatan yang meliputi pembuatan perencanaan di masa yang akan datang dengan menggunakan data masa lalu

Lebih terperinci

ANALISIS PERAMALAN PENDAPATAN JASA WARUNG INTERNET KALFIN.NET NAMA : IMAN ARIF HIDAYAT NPM :

ANALISIS PERAMALAN PENDAPATAN JASA WARUNG INTERNET KALFIN.NET NAMA : IMAN ARIF HIDAYAT NPM : ANALISIS PERAMALAN PENDAPATAN JASA WARUNG INTERNET KALFIN.NET NAMA : IMAN ARIF HIDAYAT NPM : 12209674 Latar Belakang Usaha dibidang warnet sangatlah menjanjikan, karena seiring perkembangan zaman daya

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 KONSEP DASAR PERAMALAN Definisi forecasting sendiri sebenarnya beragam, berikut beberapa difinisi tentang forecasting: 1. Perkiraan munculnya sebuah kejadian di masa depan, berdasarkan

Lebih terperinci

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Ni Kadek Sukerti STMIK STIKOM Bali Jl. Raya Puputan

Lebih terperinci

BAB II KAJIAN PUSTAKA Definisi dan Tujuan Forecasting. yang belum terjadi (Pangestu S, 1986:1). Forecasting atau peramalan

BAB II KAJIAN PUSTAKA Definisi dan Tujuan Forecasting. yang belum terjadi (Pangestu S, 1986:1). Forecasting atau peramalan BAB II KAJIAN PUSTAKA 2.1 Forecasting 2.1.1 Definisi dan Tujuan Forecasting Forecasting adalah peramalan (perkiraan) mengenai sesuatu yang belum terjadi (Pangestu S, 1986:1). Forecasting atau peramalan

Lebih terperinci

PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL MERPATI

PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL MERPATI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 251 258. PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL

Lebih terperinci

BAB 2 LANDASAN TEORI. future. Forecasting require historical data retrieval and project into the

BAB 2 LANDASAN TEORI. future. Forecasting require historical data retrieval and project into the BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Forecasting is the art and science of predicting the events of the future. Forecasting require historical data retrieval and project into the future with some

Lebih terperinci

PERAMALAN (Forecasting)

PERAMALAN (Forecasting) Manajemen Operasional PERAMALAN (Forecasting) Putri Irene Kanny Putri_irene@staff.gunadarma.ac.id Sub Pokok bahasan pertemuan ke-3 Prediksi dan Peramalan Jenis-jenis Metode Peramalan Metode deret berkala

Lebih terperinci

SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING

SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING Afni Sahara (0911011) Mahasiswa Program Studi Teknik Informatika,

Lebih terperinci

BAB 3 METODE PENELITIAN. Dalam skripsi yang penulis lakukan ini menggunakan analisa forecasting dari

BAB 3 METODE PENELITIAN. Dalam skripsi yang penulis lakukan ini menggunakan analisa forecasting dari BAB 3 METODE PENELITIAN 3.1 Desain Penelitan Dalam skripsi yang penulis lakukan ini menggunakan analisa forecasting dari PT. Honda Dunia Motorindo. Setelah itu dengan analisa tersebut, penulis berusaha

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1 Teori Dunia industri biasanya tak lepas dari suatu peramalan, hal ini disebabkan bahwa peramalan dapat memprediksi kejadian di masa yang akan datang untuk mengambil keputusan

Lebih terperinci

Universitas Gunadarma PERAMALAN

Universitas Gunadarma PERAMALAN PERAMALAN PERAMALAN Kebutuhan Peramalan dalam Manajemen Produksi dan Operasi Manajemen Operasi/produksi menggunakan hasil-hasil peramalan dalam pembuatan keputusan-keputusan yang menyangkut pemilihan proses,

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Definisi Peramalan Peramalan adalah suatu proses dalam menggunakan data historis yang telah dimiliki untuk diproyeksikan ke dalam suatu model peramalan. Dengan model peramalan

Lebih terperinci

TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI.

TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI. TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI. PENERAPAN TEKNIK Keakuratan data yang dimiliki Asumsi yang disepakati bersama Kondisi perusahaan yang terdiri dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. bidang manufaktur, suatu peramalan (forecasting) sangat diperlukan untuk

BAB II TINJAUAN PUSTAKA. bidang manufaktur, suatu peramalan (forecasting) sangat diperlukan untuk BAB II TINJAUAN PUSTAKA 2.1. Peramalan 2.1.1 Pengertian Peramalan Di dalam melakukan suatu kegiatan dan analisis usaha atau produksi bidang manufaktur, suatu peramalan (forecasting) sangat diperlukan untuk

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Definisi dan Tujuan Peramalan Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah sesuatu pada waktu yang akan datang berdasarkan data pada masa

Lebih terperinci

Peramalan (Forecasting)

Peramalan (Forecasting) Peramalan (Forecasting) Peramalan (forecasting) merupakan suatu proses perkiraan keadaan pada masa yang akan datang dengan menggunakan data di masa lalu (Adam dan Ebert, 1982). Awat (1990) menjelaskan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

PENERAPAN LEAST SQUARE METHOD UNTUK PERAMALAN PENJUALAN DI HIJABSTORY BANDUNG

PENERAPAN LEAST SQUARE METHOD UNTUK PERAMALAN PENJUALAN DI HIJABSTORY BANDUNG PENERAPAN LEAST SQUARE METHOD UNTUK PERAMALAN PENJUALAN DI HIJABSTORY BANDUNG Wendi Wirasta, Muhamad Luthfi Ashari 2 Program Studi Teknik Informatika, STMIK & Ilmu Komputer LPKIA Jl. Soekarno Hatta 456,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 20 BAB 2 LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah pemikiran terhadap suatu besaran, misalnya permintaan terhadap satu atau beberapa produk pada periode yang akan datang.

Lebih terperinci

(FORECASTING ANALYSIS):

(FORECASTING ANALYSIS): ANALISIS KUANTITATIF ANALISIS PERAMALAN Hand-out ke-3 ANALISIS PERAMALAN (FORECASTING ANALYSIS): Contoh-contoh sederhana PRODI AGRIBISNIS UNEJ, 2017 PROF DR IR RUDI WIBOWO, MS Contoh aplikasi tehnik peramalan

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH. Kriteria optimasi yang digunakan dalam menganalisis kebutuhan produksi pada

BAB 3 LANGKAH PEMECAHAN MASALAH. Kriteria optimasi yang digunakan dalam menganalisis kebutuhan produksi pada BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Kriteria optimasi yang digunakan dalam menganalisis kebutuhan produksi pada PT Dinamika Indonusa Prima terkait dengan jumlah permintaan akan

Lebih terperinci

ANALISIS PERAMALAN PENJUALAN PRODUK KECAP PADA PERUSAHAAN KECAP MANALAGI DENPASAR BALI.

ANALISIS PERAMALAN PENJUALAN PRODUK KECAP PADA PERUSAHAAN KECAP MANALAGI DENPASAR BALI. ANALISIS PERAMALAN PENJUALAN PRODUK KECAP PADA PERUSAHAAN KECAP MANALAGI DENPASAR BALI Ni Putu Lisna Padma Yanti 1, I.A Mahatma Tuningrat 2, A.A.P. Agung Suryawan Wiranatha 2 1 Mahasiswa Jurusan Teknologi

Lebih terperinci

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya kesenjangan waktu

Lebih terperinci

BAB III METODOLOGI. Jenis data Data Cara pengumpulan Sumber data 1. Jenis dan jumlah produk yang dihasilkan

BAB III METODOLOGI. Jenis data Data Cara pengumpulan Sumber data 1. Jenis dan jumlah produk yang dihasilkan BAB III METODOLOGI 3.1 Waktu dan Lokasi Penelitian Kegiatan penelitian ini dilaksanakan pada Bulan April 2011 sampai Mei 2011 di PT. Pindo Deli Pulp and Paper di bagian Paper machine 12. Lokasi Industri

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH. Seiring dengan meningkatknya pangsa pasar, permintaan konsumen juga menjadi

BAB 3 LANGKAH PEMECAHAN MASALAH. Seiring dengan meningkatknya pangsa pasar, permintaan konsumen juga menjadi BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Seiring dengan meningkatknya pangsa pasar, permintaan konsumen juga menjadi semakin sulit untuk diperkirakan. Selama ini, manajer PT. Focus

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Desain Penelitian Dari uraian latar belakang masalah, penelitian ini dikategorikan ke dalam penelitian kasus dan penelitian lapangan. Menurut Rianse dan Abdi dalam Surip (2012:33)

Lebih terperinci

PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG

PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG Siti Rohana Nasution 1, Temotius Agung Lukito 2 1,2) Jurusan Teknik Industri Fakultas Teknik Universitas Pancasila 1) nasutionana@yahoo.co.id,

Lebih terperinci

APLIKASI PERAMALAN PENGADAAN BARANG DENGAN METODE TREND PROJECTION DAN METODE SINGLE EXPONENTIAL SMOOTHING (STUDI KASUS DI TOKO PIONIR JAYA)

APLIKASI PERAMALAN PENGADAAN BARANG DENGAN METODE TREND PROJECTION DAN METODE SINGLE EXPONENTIAL SMOOTHING (STUDI KASUS DI TOKO PIONIR JAYA) APLIKASI PERAMALAN PENGADAAN BARANG DENGAN METODE TREND PROJECTION DAN METODE SINGLE EXPONENTIAL SMOOTHING (STUDI KASUS DI TOKO PIONIR JAYA) Evi Dewi Sri Mulyani 1, Egi Badar Sambani 2, Rian Cahyana 3

Lebih terperinci

PERAMALAN (FORECASTING) #2

PERAMALAN (FORECASTING) #2 #4 - Peramalan (Forecasting) #2 1 PERAMALAN (FORECASTING) #2 EMA302 Manajemen Operasional Model Trend Linear Multiplicative 2 Kecenderungan (trend). Komponen musiman (seasonal): rasio untuk model trend.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Bisnis pada berbagai kegiatannya selalu melakukan suatu perencanaan untuk kedepannya. Untuk melakukan perencanaan suatu kegiatan yang akan disusun dan dilakukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian dan Peranan Peramalan Aktivitas manajerial khususnya dalam proses perencanaan, seringkali membutuhkan pengetahuan tentang kondisi yang akan datang. Pengetahuan

Lebih terperinci

ANALISIS PERAMALAN PENJUALAN PAKAIAN PADA TOKO KARTINI BUSANA. Nama : SUCI MUTIARA NPM : Kelas : 3 EA 14

ANALISIS PERAMALAN PENJUALAN PAKAIAN PADA TOKO KARTINI BUSANA. Nama : SUCI MUTIARA NPM : Kelas : 3 EA 14 ANALISIS PERAMALAN PENJUALAN PAKAIAN PADA TOKO KARTINI BUSANA Nama : SUCI MUTIARA NPM : 16210708 Kelas : 3 EA 14 LATAR BELAKANG Persaingan usaha dewasa ini menuntut pengusaha agar lebih peka terhadap keinginan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Peramalan Dalam melakukan analisa ekonomi atau analisa kegiatan perusahaan, haruslah diperkirakan apa yang akan terjadi dalam bidang ekonomi atau dunia usaha pada masa yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

Dian Kristanti 1) 1 Prodi Pendidikan Matematika, STKIP Bina Bangsa Meulaboh.

Dian Kristanti 1) 1 Prodi Pendidikan Matematika, STKIP Bina Bangsa Meulaboh. PERAMALAN JUMLAH PENDISTRIBUSIAN BAHAN BAKAR MINYAK DI PT. PERTAMINA (PERSERO) REGION III DEPOT MALANG MENGGUNAKAN METODE WINTER DAN METODE DEKOMPOSISI Dian Kristanti 1) 1 Prodi Pendidikan Matematika,

Lebih terperinci

BAB V ANALISA HASIL Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type. menganalisa produk MC Tire IRC Tube Type, sebagai berikut :

BAB V ANALISA HASIL Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type. menganalisa produk MC Tire IRC Tube Type, sebagai berikut : BAB V ANALISA HASIL 5.1. Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type Berdasarkan hasil pengolahan data, maka dapat dibandingkan seluruh ukuran kesalahan peramalan atas metode peramalan yang

Lebih terperinci

PERAMALAN PERSEDIAAN BARANG MENGGUNAKAN METODE WEIGHTED MOVING AVERAGE DAN METODE DOUBLE EXPONENTIAL SMOOTHING

PERAMALAN PERSEDIAAN BARANG MENGGUNAKAN METODE WEIGHTED MOVING AVERAGE DAN METODE DOUBLE EXPONENTIAL SMOOTHING Jurnal PILAR Nusa Mandiri Vol. 13, No. 2, September 2017 217 PERAMALAN PERSEDIAAN BARANG MENGGUNAKAN METODE WEIGHTED MOVING AVERAGE DAN METODE DOUBLE EXPONENTIAL SMOOTHING Ratih Yulia Hayuningtyas Teknik

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Dalam penelitian ini dilakukan beberapa tahapan yang diawali dengan inisiasi yang berupa identifikasi masalah yang ada pada objek penelitian, kemudian dilakukan studi literatur

Lebih terperinci

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Author: Junaidi Junaidi Terdapat berbagai jenis model/metode peramalan hubungan deret waktu. Diantaranya adalah: 1) Model Linear; 2) Model Quadratic;

Lebih terperinci

Analisis Deret Waktu

Analisis Deret Waktu Analisis Deret Waktu Jenis Data Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time

Lebih terperinci

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI MODUL VIII ( TIME SERIES FORECASTING

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI MODUL VIII ( TIME SERIES FORECASTING FAKULTAS TEKNOLOGI INDUSTRI PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL VIII TIME SERIES FORECASTING I. Pendahuluan A. LatarBelakang (Min. 1 halaman)

Lebih terperinci

V. ANALISA DAN PEMBAHASAN. A. Analisa Penentuan Pemesanan Biro Fajar Antang. sehingga mengakibatkan timbulnya return yang masih tinggi.

V. ANALISA DAN PEMBAHASAN. A. Analisa Penentuan Pemesanan Biro Fajar Antang. sehingga mengakibatkan timbulnya return yang masih tinggi. 77 V. ANALISA DAN PEMBAHASAN A. Analisa Penentuan Pemesanan Biro Fajar Antang Dari hasil wawancara dengan manager Sirkulasi dan pimpinan Biro Fajar Antang, selama ini Biro Fajar Antang melakukan pemesanan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. PengertianPeramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Dalam usaha mengetahui atau melihat perkembangan di masa depan,

Lebih terperinci

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA SISTEM PENDUKUNG KEPUTUSAN PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA Alda Raharja - 5206 100 008! Wiwik Anggraeni, S.Si, M.Kom! Retno

Lebih terperinci

KATA PENGANTAR. Malang, Mei Penyusun

KATA PENGANTAR. Malang, Mei Penyusun KATA PENGANTAR Puji syukur penyusun panjatkan kepada Tuhan Yang Maha Esa karena atas karunia-nya penyusun dapat menyelesaikan laporan Kuliah Kerja Nyata - Praktik (KKN-P) ini dengan baik. Laporan KKN-P

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa. situasi dan kondisi di masa yang akan datang.

BAB 2 LANDASAN TEORI. Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa. situasi dan kondisi di masa yang akan datang. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan ramalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Persediaan 2.1.1 Pengertian Persediaan Keberadaan persediaan dalam suatu unit usaha perlu diatur sedemikian rupa sehingga kelancaran pemenuhan kebutuhan pemakai dapat dijamin

Lebih terperinci

Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya. Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya

Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya. Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya Rudy Adipranata 1, Tanti Octavia 2, Andi Irawan 1 Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya Pendahuluan Pentingnya

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

PERAMALAN (Forecast) Disajikan oleh: Bernardus Budi Hartono. Teknik Informatika [Gasal ] FTI - Universitas Stikubank Semarang

PERAMALAN (Forecast) Disajikan oleh: Bernardus Budi Hartono. Teknik Informatika [Gasal ] FTI - Universitas Stikubank Semarang PERAMALAN (Forecast) Disajikan oleh: Bernardus Budi Hartono Web : http://pakhartono.wordpress.com E-mail: pakhartono at gmail dot com budihartono at acm dot org Teknik Informatika [Gasal 2009 2010] FTI

Lebih terperinci

Membuat keputusan yang baik

Membuat keputusan yang baik Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi masa yang akan datang

Lebih terperinci

ANALISIS DAN PERAMALAN PRODUKSI TANAMAN TEH DENGAN MENGGUNAKAN METODE INDEKS MUSIM

ANALISIS DAN PERAMALAN PRODUKSI TANAMAN TEH DENGAN MENGGUNAKAN METODE INDEKS MUSIM ANALISIS DAN PERAMALAN PRODUKSI TANAMAN TEH DENGAN MENGGUNAKAN METODE INDEKS MUSIM Alfa Kenedi Mainassy ), Sri Yulianto Joko Prasetyo 2), Alz Danny Wowor 3),2,3) Fakultas Teknologi Informasi Universitas

Lebih terperinci

APLIKASI TRIPLE EXPONENTIAL SMOOTHING UNTUK FORECASTING JUMLAH PENDUDUK MISKIN

APLIKASI TRIPLE EXPONENTIAL SMOOTHING UNTUK FORECASTING JUMLAH PENDUDUK MISKIN APLIKASI TRIPLE EXPONENTIAL SMOOTHING UNTUK FORECASTING JUMLAH PENDUDUK MISKIN Fakultas Keguruan dan Ilmu Pendidikan Universitas PGRI Yogyakarta padrul.jana@upy.ac.id Abstract This study aims to predict

Lebih terperinci

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati ( )

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati ( ) TUGAS AKHIR PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati (1207 100 031) Dosen Pembimbing: Drs. I G Ngurah Rai Usadha, M.Si Dra. Nuri

Lebih terperinci

ANALISIS PERAMALAN VOLUME PENJUALAN UD. AMER DENGAN METODE SMOOTHING NAMA : MUHAMMAD IQBAL NPM : KELAS : 3EA01 JURUSAN : MANAJEMEN

ANALISIS PERAMALAN VOLUME PENJUALAN UD. AMER DENGAN METODE SMOOTHING NAMA : MUHAMMAD IQBAL NPM : KELAS : 3EA01 JURUSAN : MANAJEMEN ANALISIS PERAMALAN VOLUME PENJUALAN UD. AMER DENGAN METODE SMOOTHING NAMA : MUHAMMAD IQBAL NPM : 11209226 KELAS : 3EA01 JURUSAN : MANAJEMEN LATAR BELAKANG MASALAH Perkembangan usaha dalam bidang sandang

Lebih terperinci

PERANCANGAN APLIKASI PERAMALAN JUMLAH CALON MAHASISWA BARU YANG MENDAFTAR MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOTHING

PERANCANGAN APLIKASI PERAMALAN JUMLAH CALON MAHASISWA BARU YANG MENDAFTAR MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOTHING PERANCANGAN APLIKASI PERAMALAN JUMLAH CALON MAHASISWA BARU YANG MENDAFTAR MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOTHING (Studi Kasus : Fakultas Agama Islam UISU) Agustinawati Purba Mahasiswa Teknik Informatika

Lebih terperinci

PERENCANAAN PRODUKSI

PERENCANAAN PRODUKSI PERENCANAAN PRODUKSI Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci