Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman"

Transkripsi

1 Lampiran 1. Data Tingkat Hunian Hotel di Propinsi DIY Tahun

2 49 Lampiran 1 Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun , Tahun Bulan Wisman , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,30

3 50 Lanjutan Lampiran 1 Tahun Bulan Wisman , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,90

4 51 Lanjutan Lampiran 1 Tahun Bulan Wisman , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,76

5 52 Lanjutan Lampiran 1 Tahun Bulan Wisman , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,47

6 53 Lanjutan Lampiran 1 Tahun Bulan Wisman , , , , , , , , , , , ,30

7 54 Lampiran 2. Hasil Pemulusan dengan Model Exponential Smoothing Holt-Winter

8 55 Lampiran 2 Hasil Pemulusan Data Jumlah Tingkat Hunian Hotel di Propinsi DIY Tahun Periode (t) Jumlah Penghuni Hotel LEVE1 TREN1 SEAS1 FITS1 RESI ,69 14,7731 0, ,57 0, ,37 35,3641 0, ,41 471, ,7 24,7603 0, ,12-244, ,61 35,2757 0, ,88 237, ,09 24,0959 0, ,12-265, ,84 19,7609 1, ,89-116, ,78 11,3786 1, ,32-238, ,61 4,4236 1, ,78-182, ,31-2,0478 1, ,86-163, ,88-11,2868 1, ,2-238, ,9-4,3558 0, ,94 166, ,38 6,7282 1, ,05 299, ,05-3,4784 0, ,1-245, ,76 17,4409 0, ,01 483, ,92-2,0873 0, ,17-447, ,26 8,0553 0, ,12 229, ,63 2,6873 0, ,59-126, ,77-5,8681 1, ,19-230, ,66-5,7919 1, ,84 2, ,93 3,5139 1, ,33 243, ,06 4,7758 1, ,16 31, ,19-2,7889 1, ,04-194, ,62-3,7666 0, ,51-23, ,88 4,1359 1, ,91 215, ,91-1,7751 0, ,16-141, ,95-5,8934 0, ,28-96, ,46 6,3475 0, ,62 277, ,68 12,3339 0, ,61 136, ,26 17,1587 0, ,54 113, ,93 37,51 1, ,96 545, ,81 39,1471 1, ,65 46, ,79 50,9305 1, ,96 310, ,92 34,3499 1, ,65-418, ,48 17,6711 1, ,1-426, ,67 23,1236 0, ,94 131, ,53 16,5971 1, ,36-178,364

9 56 Lanjutan Lampiran 2 Hasil Pemulusan Data Jumlah Tingkat Hunian Hotel di Propinsi DIY Tahun Periode (t) Jumlah Penghuni Hotel LEVE1 TREN1 SEAS1 FITS1 RESI ,45 16,7289 0, ,86 3, ,88 5,0996 0, ,27-271, ,81 20,3822 0, ,5 348, ,56 6,1189 0, ,95-325, ,81 6,832 0, ,19 16, ,36 6,8038 1, ,76-0, ,38 5,2256 1, ,71-44, ,45-3,8905 1, ,09-241, ,2-0,2255 1, ,15 91, ,97 11,9735 1, ,78 309, ,01 6,4798 0, ,38-132, ,73 7,1039 1, ,99 17, ,39 13,3602 0, ,05 148, ,69-10,4463 0, ,25-552, ,07-10,5635 0, ,69-2, ,1-19,8038 0, ,75-209, ,84 12,3497 0, ,81 758, ,18 17,1496 1, ,24 129, ,61 15,6771 1, ,69-41, ,52-1,6992 1, ,52-457, ,1-4,7716 1, ,13-77, ,79 13,6742 1, ,82 470, ,8715 0, ,68-397, ,02-7,7828 1, ,86-133, ,03-27,103 0, ,28-461, ,94-43,3022 0, ,43-371, ,88-48,378 0, ,54-116, ,69-36,7592 0, ,49 262, ,96-18,8559 0, ,61 428, ,49-3,8178 1, ,59 407, ,21 5,9359 1, ,05 275, ,31 13,8529 1, ,25 206, ,9 19,5259 1, ,79 142, ,94 11,8781 1, ,57-196, ,06 13,8024 0, ,11 45, ,87 13,6024 1, ,44-5,44

10 57 Lanjutan Lampiran 2 Hasil Pemulusan Data Jumlah Tingkat Hunian Hotel di Propinsi DIY Tahun Periode (t) Jumlah Penghuni Hotel LEVE1 TREN1 SEAS1 FITS1 RESI ,64 6,4199 0, ,78-169, ,01 28,3143 0, ,46 497, ,4 22,6223 0, ,31-130, ,43 1,1633 0, ,95-487, ,91-18,4053 0, ,66-472, ,44-3,6115 1, ,17 403, ,13 5,4187 1, ,3 256, ,86 8,8497 1, ,07 89, ,33 8,2115 1, ,04-16, ,65 9,0219 1, ,25 20, ,78 25,3335 0, ,67 389, ,83 21,4047 1, ,81-106, ,28 3,1088 0, ,01-431, ,74-2,6553 0, ,26-132, ,96-10,6678 0, ,97-182, ,86-5,3117 0, ,45 120, ,08-25,3587 0, ,42-479, ,51-51,1791 1, ,88-709, ,16-40,9964 1, ,31 290, ,37-41,1755 1, ,7-4, ,19-32,8761 1, ,47 208, ,46-16,2612 1, ,35 425, ,46-10,4351 0, ,94 140, ,39-19,699 1, ,43-251, ,37-7,8312 0, ,79 277, ,27 10,7419 0, ,99 425, ,79 22,1199 0, ,18 258, ,39 24,6683 0, ,5 57, ,32 23,0937 0, ,27-37, ,62 8,4148 1, ,67-397, ,9 6,0008 1, ,3-69, ,31 18,342 1, ,02 323, ,7 29,9465 1, ,07 292, ,41 30,723 1, ,93 20, ,17 40,5271 0, ,6 236, ,78 23,0349 1, ,37-472,37

11 58 Lanjutan Lampiran 2 Hasil Pemulusan Data Jumlah Tingkat Hunian Hotel di Propinsi DIY Tahun Periode (t) Jumlah Penghuni Hotel LEVE1 TREN1 SEAS1 FITS1 RESI ,37 37,9909 0, ,5 351, ,33 22,8879 0, ,76-348, ,47 18,7124 0, ,49-95, ,52 17,6467 0, ,08-24, ,18 12,4479 0, ,96-122, ,95 12,7797 1, ,08 8, ,59 3,4663 1, ,06-267, ,67 0,2273 1, ,52-85, ,52 4,5894 1, ,32 110, ,04 11,6825 1, ,62 183, ,44 19,0551 0, ,49 178, ,47 0,052 1, ,2-509, ,18 5,4177 0, ,1 126, ,37-34,0045 0, ,36-904, ,95-31,9461 0, ,01 46, ,9-33,9567 0, ,4-45, ,08-33,4431 0, ,88 12, ,38-38,5684 1, ,89-137, ,87-40,1632 1, ,54-45, ,97-43,8367 1, ,85-96, ,46-48,2036 1, ,02-111, ,05-43,7247 1, ,85 116, ,05-43,2517 0, ,51 11, ,86-28,3455 1, ,99 396, ,4-16,0579 0, ,7 291, ,31 3,6389 0, ,03 442, ,59 25,9033 0, ,23 508, ,17 6,6707 0, ,85-433, ,27 9,6138 0, ,53 69, ,27 8,5529 1, ,47-28, ,13-3,2171 1, ,8-335, ,85-6,9227 1, ,5-97, ,18-8,3976 1, ,4-37, ,58-17,2177 1, ,32-229, ,43-45,8113 0, ,72-694, ,71-36,6017 1, ,28 246,718

12 59 Lampiran 3. PlotTime Series Data Tingkat Hunian Hotel di Propinsi DIY Tahun a. Plot Time Series 3b. Grafik ACF 3c. Grafik PACF

13 60 Lampiran 3a. Plot Time Series Time Series Plot of Wisman Wisman Year Month Year Jan 1991 Jan 1992 Jan 1993 Jan 1994 Jan 1995 Jan 1996 Jan 1997 Jan 1998 Jan 1999 Jan 2000 Jan 2001 Jan 2002 Jan 2003 Lampiran 3b. Grafik ACF Autocorrelation Function for Wisman (with 5% significance limits for the autocorrelations) Autocorrelation 1,0 0,8 0,6 0,4 0,2 0,0-0,2-0,4-0,6-0,8-1, Lag

14 61 Autocorrelation Function: Wisman Lag ACF T LBQ 1 0, ,47 56,93 2 0, ,32 89,74 3 0, ,62 104,83 4 0, ,80 112,59 5 0, ,75 120,31 6 0, ,52 126,44 7 0, ,24 130,64 8 0, ,44 131,18 9 0, ,77 132, , ,17 136, , ,53 143, , ,74 166, , ,22 171, , ,73 173, , ,21 173, , ,45 174, , ,64 175, , ,32 176, , ,38 176, , ,62 178, , ,08 178, , ,01 178, , ,01 181, , ,58 191,50 Lampiran 3c. Grafik PACF Partial Autocorrelation Function for Wisman (with 5% significance limits for the partial autocorrelations) Partial Autocorrelation 1,0 0,8 0,6 0,4 0,2 0,0-0,2-0,4-0,6-0,8-1, Lag

15 62 Partial Autocorrelation Function: Wisman Lag PACF T 1 0, ,47 2 0, ,84 3-0, ,26 4 0, ,05 5 0, ,29 6 0, ,38 7-0, ,15 8-0, ,46 9 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,16

16 63 Lampiran 4. Model Exponential Smoothing Holt-Winter 4a. Grafik Peramalan Data Tingkat Hunian Hotel dengan modelexponential Smoothing Holt-Winter 4b. Hasil Peramalan Tingkat Hunian Hotel dengan modelexponential Smoothing Holt-Winter

17 64 Lampiran 4a. Grafik Peramalan Data Tingkat Hunian Hotel di Propinsi DIY Dengan Model Exponential Smoothing Holt-Winter Winters' Method Plot for Wisman Multiplicative Method Wisman Variable Actual Fits Forecasts 95,0% PI Smoothing Constants Alpha (level) 0,4 Gamma (trend) 0,1 Delta (seasonal) 0,1 Accuracy Measures MAPE 7,81869 MAD 2,25500 MSD 8, Index Lampiran 4b. Hasil Peramalan Tingkat Hunian Hotel dengan ModelExponential Smoothing Holt-Winter Winters' Method for Wisman Multiplicative Method Data Wisman Length 156 Smoothing Constants Alpha (level) 0,4 Gamma (trend) 0,1 Delta (seasonal) 0,1 Accuracy Measures MAPE 7,81869 MAD 2,25500 MSD 8,14488

18 65 Forecasts Period Forecast Lower Upper , , , , , , , , , , , , , , , , , , , , , , , , ,4686 9, , ,4637 9, , ,6575 6, , ,0671 8, ,6850

19 66 Lampiran 5. Model SARIMA 5a. Output Estimasi dan Uji Signifikansi dengan SARIMA (1,0,0)(0,0,1) 12 5b. Grafik ACF for RESI1 5c. Grafik Probability Plot of RESI1 5d. Output Hasil Peramalan Tingkat Hunian Hotel dengan model SARIMA(1,0,0)(0,0,1) 12 Tahun e. Output Nilai Error Model Exponential Smoothing Holt- Winter dan Model SARIMA

20 67 Lampiran 5a.Output Estimasi dan Uji Signifikansi SARIMA (1,0,0)(0,0,1) 12 ARIMA Model: Wisman Estimates at each iteration Iteration SSE Parameters ,01 0,100 0,100 26, ,67 0,242-0,050 22, ,24 0,366-0,200 18, ,80 0,492-0,350 15, ,75 0,623-0,488 11, ,22 0,640-0,514 10, ,01 0,643-0,522 10, ,99 0,644-0,525 10, ,99 0,644-0,526 10, ,99 0,644-0,526 10,511 Relative change in each estimate less than 0,0010 Final Estimates of Parameters Type Coef SE Coef T P AR 1 0,6443 0, ,41 0,000 SMA 12-0,5261 0,0756-6,96 0,000 Constant 10,5113 0, ,78 0,000 Mean 29,547 1,064 Number of observations: 156 Residuals: SS = 1480,25 (backforecasts excluded) MS = 9,67 DF = 153 Modified Box-Pierce (Ljung-Box) Chi-Square statistic Lag Chi-Square 10,3 26,9 42,0 54,5 DF P-Value 0,330 0,174 0,135 0,157 Forecasts from period % Limits Period Forecast Lower Upper Actual , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,2692

21 68 Lampiran 5b. Grafik ACF for RESI1 ACF of Residuals for Wisman (with 5% significance limits for the autocorrelations) Autocorrelation 1,0 0,8 0,6 0,4 0,2 0,0-0,2-0,4-0,6-0,8-1, Lag Lampiran 5c. Grafik Probability Plot of RESI1 Probability Plot of RESI1 Normal Percent 99, Mean -6,440 StDev 286,2 N 156 KS 0,037 P-Value >0, , RESI

22 69 Lampiran 5d. Output Hasil Peramalan Tingkat Hunian Hotel dengan SARIMA(1,0,0)(0,0,1) 12 Forecasts from period % Limits Period Forecast Lower Upper Actual , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,2692

23 70 Lampiran 6. 6a. Output Nilai Error Model Exponential Smoothing Holt- Winter dan Model SARIMA 6b. Grafik Time Series Data Ramalan dan Data Asli Tahun 2004 Model Exponential Smoothing Holt-Winter dan Model SARIMA

24 71 Lampiran 6a. Output Nilai Error Model Exponential Smoothing Holt-Winter dan Model SARIMA Output Model Exponential Smothing Holt Winter Bulan (n) Ramalan (F i ) Data Asli (X i ) Selisih (X i -F i ) Januari 26, ,52 4,2575 Februari 22, ,89 3,0279 Maret 22, ,08 1,1391 April 25, ,66-0,6487 Mei 24, ,51 3,4338 Juni 25, ,90 2,5499 Juli 27, ,32 3,9425 Agustus 25, ,99 3,6067 September 25, ,69 3,2214 Oktober 25, ,82-0,6437 November 25, ,77 3,1125 Desember 28, ,89 1,8229 Jumlah 31,4066 Perhitungan Error 31,4066 2, Output Model SARIMA Bulan (n) Ramalan (F i ) Data Asli (X i ) Selisih (X i -F i ) Januari 20, ,52-1,5312 Februari 18, ,89-0,8712 Maret 18, ,08-2,4163 April 18, ,66-7,7234 Mei 19, ,51-2,1891 Juni 21, ,90-1,1795 Juli 22, ,32-0,7277 Agustus 20, ,99-1,7258 September 19, ,69-3,0115 Oktober 19, ,82-6,2467 November 17, ,77-4,3917 Desember 20, ,89-6,4065 Jumlah 38,4206

25 72 Perhitungan Error 38,4206 3, b. Grafik Time Series Data Ramalan dan Data Asli Tahun 2004 Model Exponential Smoothing Holt-Winter dan Model SARIMA Plot Time Series Data Ramalan dan Data Asli model Exponential Smoothing Holt-Winter Time Series Plot of Data Asli; Ramalan Variable Data Asli Ramalan Data Index

26 73 Plot Time Series Data Ramalan dan Data Asli model SARIMA Time Series Plot of Data Asli; Ramalan 28 Variable Data Asli Ramalan Data Index

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut :

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut : 4 BAB IV HASIL PEMBAHASAN DAN EVALUASI Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtut waktu. Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data harga

Lebih terperinci

LAMPIRAN. Langkah-Langkah Penggunaan Program Minitab: nama kolom tepat diantara C1 dan angka penjualan pertama Jakarta Muscat

LAMPIRAN. Langkah-Langkah Penggunaan Program Minitab: nama kolom tepat diantara C1 dan angka penjualan pertama Jakarta Muscat L1 LAMPIRAN Langkah-Langkah Penggunaan Program Minitab: 1. Aktifakan program minitab kemudian copy yang diinginkan pada kolom C1. Beri nama kolom tepat diantara C1 dan angka penjualan pertama Jakarta Muscat

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA OLEH : 1. Triyono ( M0107086 ) 2. Nariswari S ( M0108022 ) 3. Ayunita C ( M0180034 ) 4. Ibnuhardi F.Ihsan ( M0108045 ) 5. Marvina P (

Lebih terperinci

Diagnostik Model. Uji Ljung-Box-Pierce (modified Box-Pierce)

Diagnostik Model. Uji Ljung-Box-Pierce (modified Box-Pierce) Diagnostik Model Analisis Sisaan Sisaan = Nilai Aktual Nilai Prediksi Apabila model ARIMA(p, d, q) benar dan dugaan parameter sangat dekat ke nilai yang sebenarnya maka sisaan akan memiliki sifat seperti

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS Oleh : Agustini Tripena ABSTRACT In this paper, forecasting the consumer price index data and inflation. The method

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

iii Universitas Sumatera Utara

iii Universitas Sumatera Utara no bulan tahun suhu 1 JAN 2002 26.3 2 FEB 2002 26.7 3 MAR 2002 27.4 4 APR 2002 26.6 5 MEI 2002 27.6 6 JUN 2002 26.7 7 JUL 2002 27.4 8 AGTS 2002 27.6 9 SEP 2002 25.7 10 OKT 2002 26.4 11 NOV 2002 25.8 12

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA

ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA FATHIN FAHIMAH 226133 DOSEN PEMBIMBING Prof. Ir. Gamantyo Hendrantoro, M.Eng.

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

BAB SIMULASI PERHITUNGAN HARGA BARANG. Bab 4 Simulasi Perhitungan Harga barang berisikan :

BAB SIMULASI PERHITUNGAN HARGA BARANG. Bab 4 Simulasi Perhitungan Harga barang berisikan : BAB SIMULASI PERHITUNGAN HARGA BARANG Bab Simulasi Perhitungan Harga barang berisikan :.. Simulasi peramalan nilai Indeks Harga Konsumen (IHK) melalui metode ARIMA.. Prediksi nilai inflasi tahun 0.3. Prediksi

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

As ad 36, I Made Tirta 37, YulianiSetiaDewi 38

As ad 36, I Made Tirta 37, YulianiSetiaDewi 38 PERAMALAN PERTUMBUHAN PENDUDUK KABUPATEN SITUBONDO DENGAN MODEL ARIMA, DERET ARITMATIK, DERET GEOMETRI DAN DERET EKSPONENSIAL THE FORECASTING GROWTH OF THE POPULATION IN SITUBONDO BY USING ARIMA, ARITMATICS,

Lebih terperinci

BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT

BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT Pada bab ini, penulis akan membandingkan hasil peramalan menggunakan model ARIMA dan model VAR yang telah

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON (MODELS OF ARIMA TO PREDICT RISING SEA AND ITS IMPACT FOR THE WIDESPREAD DISTRIBUTION OF ROB

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan

PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) TERTINGGI BULAN DESEMBER 3 disusun untuk memenuhi Tugas Lapangan Mata Kuliah Metode Peramalan Disusun Oleh :. Ilani Agustina M00037 2. Intan Purnomosari M00042

Lebih terperinci

STK511 Analisis Statistika. Pertemuan - 1

STK511 Analisis Statistika. Pertemuan - 1 STK511 Analisis Statistika Pertemuan - 1 PERKULIAHAN 1. Dosen : Anang Kurnia (anangk@apps.ipb.ac.id) 2. Asisten : Septian Rahardiantoro 3. Waktu : Rabu > 08.00 09.40 Jumat > 08.00 10.00 4. Office Hours

Lebih terperinci

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya)

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya) Peramalan Permintaan Pengujian di Lab. Kimia dan Fisika (Aneke Rintiasti, Erna Hartati, Nunun Hilyatul M.) Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika Baristand Industri Surabaya

Lebih terperinci

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE Data yang digunakan adalah data M2Trend.wf1 (buku rujukan pertama, bab-8). Model analisisnya adalah Xt = M2 diregresikan dengan t = waktu. Model yang akan

Lebih terperinci

Peramalan Harga Beras di Perum BULOG Divre Jatim

Peramalan Harga Beras di Perum BULOG Divre Jatim Peramalan Harga Beras di Perum BULOG Divre Jatim Disusun oleh : Woro Morphi H (1309030010) Dosen Pembimbing : Dr. Suhartono, S.Si, M.Sc Pendahuluan Latar Belakang, Perumusan Masalah,Tujuan Penelitian,

Lebih terperinci

Volume 9 Nomor 1 Maret 2015

Volume 9 Nomor 1 Maret 2015 Volume Nomor Maret 2 Jurnal Ilmu Matematika dan Terapan Maret 2 Volume Nomor Hal. 4 - PERAMALAN JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS PATTIMURA AMBON MENGGUNAKAN METODE DEKOMPOSISI S. Yuni, Mozart

Lebih terperinci

99.9. Percent maka H 0 diterima, berarti residual normal

99.9. Percent maka H 0 diterima, berarti residual normal Uji residual white noise 2 Lag Q P value 6 3.5 9.49 0.5330 2 6.6 8.3 0.803 8 9.8 26.30 0.9059 24 9.3 33.92 0.6374 K p q Uji residual berdistribusi normal Percent 99.9 99 95 90 80 70 60 50 40 30 20 0 5

Lebih terperinci

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami) Vol., No., Juli 7, Hal. 52-57 p-issn: 25-4596; e-issn: 25-4X Halaman 52 Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Lebih terperinci

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan SEMINAR PROPOSAL TUGAS AKHIR Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan OLEH: NAMA : MULAZIMATUS SYAFA AH NRP : 13.11.030.021 DOSEN PEmbimbing: Dr.

Lebih terperinci

Prediksi Harga Saham dengan ARIMA

Prediksi Harga Saham dengan ARIMA Prediksi Harga Saham dengan ARIMA Peramalan harga saham merupakan sesuatu yang ditunggu-tunggu oleh para investor. Munculnya model prediksi yang baru yang bisa meramalkan harga saham secara tepat merupakan

Lebih terperinci

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) SIDANG TUGAS AKHIR KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) Disusun oleh : Ratna Evyka E.S.A NRP 1206.100.043 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

model Seasonal ARIMA

model Seasonal ARIMA Jurnal Sains Matematika dan Statistika, Vol. No. i ISSN - Peramalan Wisatawan Mancanegara Ke Provinsi Riau Melalui Kota Pekanbaru Menggunakan Metode Seasonal ARIMA Ropita Munawaroh dan M. M. Nizam, Jurusan

Lebih terperinci

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Author: Junaidi Junaidi Terdapat berbagai jenis model/metode peramalan hubungan deret waktu. Diantaranya adalah: 1) Model Linear; 2) Model Quadratic;

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA y (x 3,y 3 ) d 3 (x 5,y 5 ) d 5 d 2 (x 2,y 2 ) d (x 1 1,y 1 ) d 4 (x 4,y 4 ) x Definisi: Dari semua kurva pendekatan terhadap satu set data, kurva yang memenuhi sifat bahwa nilai

Lebih terperinci

Analisis Deret Waktu

Analisis Deret Waktu Analisis Deret Waktu Jenis Data Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN Puji Rahayu 1), Rohmah Nur Istiqomah 2), Eminugroho Ratna Sari 3) 1)2)3) Matematika

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

Analisa Performansi Dan Peramalan Call Center PT.INDOSAT, Tbk dengan Menggunakan Formula Erlang C

Analisa Performansi Dan Peramalan Call Center PT.INDOSAT, Tbk dengan Menggunakan Formula Erlang C Analisa Performansi Dan Peramalan Call Center PT.INDOSAT, Tbk dengan Menggunakan Formula Erlang C Oleh: Rara Karismawati NRP.7207040019 1 Pembimbing: Mike Yuliana, ST, MT NIP. 197811232002122009 Reni Soelistijorini,

Lebih terperinci

ANALISIS DERET WAKTU

ANALISIS DERET WAKTU ANALISIS DERET WAKTU JENIS DATA Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time

Lebih terperinci

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING Nama : Zahroh Atiqoh NRP : 1205 100 021 Dosen Pembimbing : 1. Dra. Nuri Wahyuningsih, MKes 2. Drs. Sulistiyo,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia Oleh : Pomi Kartin Yunus 1306030040 Latar Belakang Industri manufaktur yang berkembang pesat

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. dalam Rancang Bangun Penentuan Persediaan Berdasarkan Peramalan Volume

BAB III ANALISIS DAN PERANCANGAN SISTEM. dalam Rancang Bangun Penentuan Persediaan Berdasarkan Peramalan Volume BAB III ANALISIS DAN PERANCANGAN SISTEM Pada bab ini akan dibahas tentang analisis dan perancangan aplikasi dalam Rancang Bangun Penentuan Persediaan Berdasarkan Peramalan Volume Permaan pada UD. Adi Jaya

Lebih terperinci

Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD

Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD Charisma Arianti, Arief Wibowo Departemen Biostatistika dan Kependudukan Fakultas Kesehatan Masyarakat Universitas Airlangga Surabaya Alamat Korespondensi:

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 9 menguji kelayakan model sehingga model sementara tersebut cukup memadai. Salah satu caranya adalah dengan menganalisis galat (residual). Galat merupakan selisih antara data observasi dengan data hasil

Lebih terperinci

Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif

Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif Bab 3-4 Peramalan Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif Berdasarkan metode yang subjektif Metode kuantitatif Berdasarkan

Lebih terperinci

TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI.

TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI. TEKNIK PERAMALAN KUANTITATIF (TEKNIK STATISTIK) Astrid Lestari Tungadi, S.Kom., M.TI. PENERAPAN TEKNIK Keakuratan data yang dimiliki Asumsi yang disepakati bersama Kondisi perusahaan yang terdiri dari

Lebih terperinci

Sabrina Hudani Dosen Pembimbing: Prof. Dr. Ir. Suparno, MSIE. Your Ihr Logo

Sabrina Hudani Dosen Pembimbing: Prof. Dr. Ir. Suparno, MSIE. Your Ihr Logo Optimasi Pengadaan Beras dengan Menggunakan Linear Programming dan Mempertimbangkan Hasil Panen (Studi Kasus: Perum BULOG Sub Divisi Regional I Surabaya Utara) Sabrina Hudani 2507100056 Dosen Pembimbing:

Lebih terperinci

BAB IV STUDI KASUS. Data yang digunakan adalah data jumlah pengunjung objek wisata Kebun

BAB IV STUDI KASUS. Data yang digunakan adalah data jumlah pengunjung objek wisata Kebun BAB IV STUDI KASUS 4.1 Plot Data Data yang digunakan adalah data jumlah pengunjung objek wisata Kebun Raya Cibodas dari bulan Januari 2005 hingga Desember 2009. Data selengkapnya dapat dilihat pada Tabel

Lebih terperinci

PEMBUATAN APLIKASI PENDUKUNG KEPUTUSAN UNTUK PERAMALAN PERSEDIAAN BAHAN BAKU PRODUKSI PLASTIK BLOWING DAN INJECT MENGGUNAKAN METODE ARIMA

PEMBUATAN APLIKASI PENDUKUNG KEPUTUSAN UNTUK PERAMALAN PERSEDIAAN BAHAN BAKU PRODUKSI PLASTIK BLOWING DAN INJECT MENGGUNAKAN METODE ARIMA PEMBUATAN APLIKASI PENDUKUNG KEPUTUSAN UNTUK PERAMALAN PERSEDIAAN BAHAN BAKU PRODUKSI PLASTIK BLOWING DAN INJECT MENGGUNAKAN METODE ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE) DI CV. ASIA AMIRA HERWINDYANI

Lebih terperinci

BAB 5 HASIL DAN PEMBAHASAN. Tabel 5.1 Total Hasil Penjualan

BAB 5 HASIL DAN PEMBAHASAN. Tabel 5.1 Total Hasil Penjualan BAB 5 HASIL DAN PEMBAHASAN 5. Penyajian Data Tabel 5. Total Hasil Penjualan Total Hasil Penjualan Bulan (dalam jutaan rupiah) Jan-04 59.2 Feb-04 49.2 Mar-04 57.7 Apr-04 53.2 May-04 56.3 Jun-04 60.2 Jul-04

Lebih terperinci

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING SKRIPSI Disusun oleh: DANI AL MAHKYA 24010210141025 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: NURKHOIRIYAH 1205100050 Dosen Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. 1 Latar

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA

BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA BAB 3 FORECASTING DAN PENGAMATAN TRAFIK DATA Forecasting adalah suatu peramalan nilai sebuah atau sekumpulan variabel pada satu titik waktu di masa depan. Dalam melakukan perhitungan peramalan pertumbuhan

Lebih terperinci

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer OLEH : DWI LISTYA NURINI 1311 105 021 DOSEN PEMBIMBING : DR. BRODJOL SUTIJO SU, M.SI Bursa saham atau Pasar

Lebih terperinci

JSIKA Vol. 5, No. 9, Tahun 2016 ISSN X

JSIKA Vol. 5, No. 9, Tahun 2016 ISSN X Analisis Peramalan Harga Saham Perusahaan Properti Dengan Metode (Studi Kasus Ciputra Property CTRP.JK) Asdi Atmin Fildananto 1) Sulistiowati 2) Tegar Heru Susilo 3) Program Studi/Jurusan Sistem Informasi

Lebih terperinci

Perbandingan Metode ARIMA (Box Jenkins) dan Metode Winter dalam Peramalan Jumlah Kasus Demam Berdarah Dengue

Perbandingan Metode ARIMA (Box Jenkins) dan Metode Winter dalam Peramalan Jumlah Kasus Demam Berdarah Dengue Perbandingan Metode ARIMA (Box Jenkins) dan Metode Winter dalam Peramalan Jumlah Kasus Demam Berdarah Dengue Metta Octora dan Kuntoro Departemen Biostatistika dan Kependudukan FKM UNAIR Fakultas Kesehatan

Lebih terperinci

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Oleh : Dwi Listya Nurina 1311105022 Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Air Bersih BUMN Penyediaan air bersih untuk masyarakat mempunyai peranan yang sangat penting dalam meningkatkan kesehatan

Lebih terperinci

METODE MOVING AVERAGE DAN METODE WINTER DALAM PERAMALAN ABSTRACT

METODE MOVING AVERAGE DAN METODE WINTER DALAM PERAMALAN ABSTRACT METODE MOVING AVERAGE DAN METODE WINTER DALAM PERAMALAN Widya Risnawati Siagian 1, Sigit Sugiarto 2, M.D.H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika FMIPA Universitas Riau 2 Dosen Fakultas Matematika

Lebih terperinci

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman.

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Definisi Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Musiman berarti kecenderungan mengulangi pola tingkah gerak dalam periode musim, biasanya satu tahun untuk data bulanan. Karena

Lebih terperinci

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN Ryan Putranda Kristianto 1), Ema Utami 2), Emha Taufiq Lutfi 3) 1, 2,3) Magister Teknik informatika STMIK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim TE 091399 TUGAS AKHIR- 4 SKS PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA Oleh Nur Hukim Dosen Pembimbing Prof. Ir. Gamantyo Hendrantoro, M.Eng. Ph.D Ir. Achmad

Lebih terperinci

JURNAL OSEANOGRAFI. Volume 4, Nomor 1, Tahun 2015, Halaman Online di :

JURNAL OSEANOGRAFI. Volume 4, Nomor 1, Tahun 2015, Halaman Online di : JURNAL OSEANOGRAFI. Volume 4, Nomor 1, Tahun 215, Halaman 28-34 Online di : http://ejournal-s1.undip.ac.id/index.php/jose PERAMALAN NILAI MSL BERDASARKAN DATA PASANG SURUT DENGAN METODE ADMIRALTY DAN AUTOREGRESSIVE

Lebih terperinci

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi?

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? a. Ada ketidak-pastian aktivitas produksi di masa yag akan datang b. Kemampuan & sumber daya perusahaan

Lebih terperinci

APLIKASI ALGORITMA GENETIKA UNTUK MERAMALKAN KONSUMSI PREMIUM KOTA DENPASAR

APLIKASI ALGORITMA GENETIKA UNTUK MERAMALKAN KONSUMSI PREMIUM KOTA DENPASAR E-Jurnal Matematika Vol. 3 (4), November 2014, pp. 10-17 ISSN: 2303-171 APLIKASI ALGORITMA GENETIKA UNTUK MERAMALKAN KONSUMSI PREMIUM KOTA DENPASAR Victor Mallang 1, Ketut Jayanegara 2, Made Asih 3, I

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) I. PENDAHULUAN II. METODOLOGI

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) I. PENDAHULUAN II. METODOLOGI JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 Implementasi Metode Time Series Arima Berbasis Java Desktop Application untuk Memperkirakan Jumlah Permintaan Busana Muslim Anak di Perusahaan Habibah Busana

Lebih terperinci

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran OUTLINE Pendahuluan Tinjauan Pustaka Metodologi Penelitian Analisis dan Pembahasan Kesimpulan dan Saran LATAR BELAKANG Listrik elemen terpenting dalam kehidupan manusia Penelitian Sebelumnya Masyarakat

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA (S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA Jimmy Ludin Mahasiswa Program Magister Jurusan Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI

PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI TUGAS AKHIR - ST 1325 PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI I G B ADI SUDIARSANA NRP 1303100058 Dosen Pembimbing Ir. Dwiatmono Agus Widodo,

Lebih terperinci

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017.

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017. BAB III PEMBAHASAN Data yang digunakan dalam bab ini diasumsikan sebagai data perkiraan harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017. Dengan demikian dapat disusun model Fuzzy

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI. Oleh: IRLIZANTY YULYANTIKA RAHADI

PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI. Oleh: IRLIZANTY YULYANTIKA RAHADI PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI Oleh: IRLIZANTY YULYANTIKA RAHADI 6 4 Dosen Pembimbing : Dra. Nuri Wahyuningsih, MKes Abstrak Indeks harga saham merupakan suatu indikator yang

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap Berlaku mulai: Genap/2010 MATA KULIAH : TEKNIK PERAMALAN KODE MATA KULIAH/ SKS : 410103096 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

PENDEKATAN RANTAI MARKOV WAKTU DISKRIT DALAM PERENCANAAN KEBUTUHAN TEMPAT TIDUR RUMAH SAKIT

PENDEKATAN RANTAI MARKOV WAKTU DISKRIT DALAM PERENCANAAN KEBUTUHAN TEMPAT TIDUR RUMAH SAKIT PENDEKATAN RANTAI MARKOV WAKTU DISKRIT DALAM PERENCANAAN KEBUTUHAN TEMPAT TIDUR RUMAH SAKIT Nama Mahasiswa : Enjela Puspadewi NRP : 1207 100 026 Jurusan : Matematika FMIPA Dosen Pembimbing : Dra. Laksmi

Lebih terperinci

STUDI PERAMALAN (FORECASTING) KURVA BEBAN HARIAN LISTRIK JANGKA PENDEK MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE(ARIMA)

STUDI PERAMALAN (FORECASTING) KURVA BEBAN HARIAN LISTRIK JANGKA PENDEK MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE(ARIMA) Vol: 2 No.1 Maret 213 ISSN : 232-2949 STUDI PERAMALAN (FORECASTING) KURVA BEBAN HARIAN LISTRIK JANGKA PENDEK MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE(ARIMA) Syafii, dan Edyan Noveri

Lebih terperinci

HASIL DAN PEMBAHASAN Eksplorasi Data Suhu Udara Rata-rata

HASIL DAN PEMBAHASAN Eksplorasi Data Suhu Udara Rata-rata suhu 18 20 22 24 26 28 30 32 ragam, maka dilakukan transformasi Box-Cox. d. Mengidentifikasi model. Dalam tahap ini akan didapat model-model sementara, dengan melihat plot ACF dan PACF. e. Pendugaan parameter

Lebih terperinci

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer TUGAS AKHIR Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer Oleh : Fani Felani Farid (1306 100 047) Pembimbing : Drs. Kresnayana Yahya M.Sc Latar Belakang

Lebih terperinci

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER M. Insanil Kamil 0 0 0 m.insanil_kml@yahoo.com Dosen pembimbing:

Lebih terperinci

Dian Kristanti 1) 1 Prodi Pendidikan Matematika, STKIP Bina Bangsa Meulaboh.

Dian Kristanti 1) 1 Prodi Pendidikan Matematika, STKIP Bina Bangsa Meulaboh. PERAMALAN JUMLAH PENDISTRIBUSIAN BAHAN BAKAR MINYAK DI PT. PERTAMINA (PERSERO) REGION III DEPOT MALANG MENGGUNAKAN METODE WINTER DAN METODE DEKOMPOSISI Dian Kristanti 1) 1 Prodi Pendidikan Matematika,

Lebih terperinci

PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO

PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO Skripsi Diajukan Untuk Memenuhi Sebagian Syarat Mencapai Gelar Sarjana Strata Satu (S-1) Oleh : ROSIANA NOVITA

Lebih terperinci

DAFTAR PUSTAKA. Harjito, Agus,D.,2003, Pengujian Efisiensi Pasar Bentuk Lemah Di Bursa Saham Kuala Lumpur,Jurnal Siasat Bisnis,No.8 Vol.1.

DAFTAR PUSTAKA. Harjito, Agus,D.,2003, Pengujian Efisiensi Pasar Bentuk Lemah Di Bursa Saham Kuala Lumpur,Jurnal Siasat Bisnis,No.8 Vol.1. DAFTAR PUSTAKA Fakhruddin, M dan M Sopian Hadianto. 2001. Perangkat dan Model Analisis Investasi di Pasar Modal. Jakarta: PT. Elex Media Komputindo Kelompok Gramedia. Harjito, Agus,D.,2003, Pengujian Efisiensi

Lebih terperinci

PERAMALAN PERMINTAAN RUANG RAWAT INAP SEBAGAI ACUAN DALAM PENENTUAN KAPASITAS DI RSUP Dr MOHAMMAD HOESIN PALEMBANG FRIANKA ANINDEA

PERAMALAN PERMINTAAN RUANG RAWAT INAP SEBAGAI ACUAN DALAM PENENTUAN KAPASITAS DI RSUP Dr MOHAMMAD HOESIN PALEMBANG FRIANKA ANINDEA 1 PERAMALAN PERMINTAAN RUANG RAWAT INAP SEBAGAI ACUAN DALAM PENENTUAN KAPASITAS DI RSUP Dr MOHAMMAD HOESIN PALEMBANG FRIANKA ANINDEA DEPARTEMEN MANAJEMEN FAKULTAS EKONOMI DAN MANAJEMEN INSTITUT PERTANIAN

Lebih terperinci

METODE PEMULUSAN EKSPONENSIAL WINTER UNTUK PERAMALAN ABSTRACT

METODE PEMULUSAN EKSPONENSIAL WINTER UNTUK PERAMALAN ABSTRACT METODE PEMULUSAN EKSPONENSIAL WINTER UNTUK PERAMALAN Arganata Manurung 1, Bustami 2, M.D.H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

JURNAL MATEMATIKA MANTIK Edisi: Oktober Vol. 02 No. 01 ISSN: E-ISSN:

JURNAL MATEMATIKA MANTIK Edisi: Oktober Vol. 02 No. 01 ISSN: E-ISSN: ISSN: 25273159 EISSN: 25273167 PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH KLAIM DI BPJS KESEHATAN PAMEKASAN Faisol 1, Sitti Aisah 2 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA

PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA UJM 6 (1) (2017) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA Tias Safitri, Nurkaromah

Lebih terperinci

Jurnal EKSPONENSIAL Volume 8, Nomor 1, Mei 2017 ISSN

Jurnal EKSPONENSIAL Volume 8, Nomor 1, Mei 2017 ISSN Jurnal EKSPONENSIAL Volume 8, Nomor, Mei 07 ISSN 085-789 Peramalan dengan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) di Bidang Ekonomi (Studi Kasus: Inflasi Indonesia) Forecasting

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 737-745 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERAMALAN DAYA LISTRIK BERDASARKAN JUMLAH PELANGGAN PLN MENGGUNAKAN

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

Evelina Padang, Gim Tarigan, Ujian Sinulingga

Evelina Padang, Gim Tarigan, Ujian Sinulingga Saintia Matematika Vol. 1, No. 2 (2013), pp. 161 174. PERAMALAN JUMLAH PENUMPANG KERETA API MEDAN-RANTAU PRAPAT DENGAN METODE PEMULUSAN EKSPONENSIAL HOLT-WINTERS Evelina Padang, Gim Tarigan, Ujian Sinulingga

Lebih terperinci