BAB II STUDI PUSTAKA. Propagated wave area. Shallow water. Area of study. Gambar II-1. Ilustrasi Tsunami

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II STUDI PUSTAKA. Propagated wave area. Shallow water. Area of study. Gambar II-1. Ilustrasi Tsunami"

Transkripsi

1 BAB II STUDI PUSTAKA II.1 Rambatan Tsunami Gelombang tsunami terbentuk akibat adanya pergesaran vertikal massa air. Pergeseran ini bisa terjadi oleh gempa, letusan gunung berapi, runtuhan gunung es, dan meteor yang jatuh di laut. Tsunami, Ilustration Zone 1 Zone Dislocation Deep sea Shallow water Propagated wave area Flooded area Has been studied widely Area of study Gambar II-1. Ilustrasi Tsunami Gelombang tsunami dapat dikategorikan sebagai gelombang di laut dangkal (d/l<0.05, d = kedalaman laut, L = panjang gelombang) karena panjang gelombangnya yang sangat panjang. Panjang gelombangnya mencapai ratusan kilometer dengan amplitudo ± 1 meter ketika merambat di laut dalam. Gelombang ini biasanya merambat dengan kecepatan ± km/jam, periode 5-90 menit. II-1

2 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami Gambar II-. Panjang Gelombang dan Kecepatan Tsunami Terhadap Kedalaman (Hamzah,006) Hubungan antara cepat rambat gelombang dan kedalaman adalah: Dimana C: Cepat rambat gelombang g: Gravitasi d: Kedalaman C = gd...( II-1 ) Ketika memasuki daerah perairan dangkal, tsunami akan mengalami perlambatan. Akibatnya, gelombang yang berada di depan akan bertumpuk dengan gelombang yang dibelakangnya, sehinggat gelombang yang tadinya hanya memiliki amplitudo 1 meter, akan membesar hingga mencapai ± 30 meter. Rambatan gelombang tsunami di laut dangkal dapat dibagi ke dalam dua zona. Zona pertama adalah zona dimana gelombang yang terjadi diakibatkan oleh energi dari gelombang yang datang dari laut, sedangkan pada zona kedua adalah zona dimana gelombang yang terjadi akibat adanya gravitasi. Pada zona kedua ini, gelombang yang terjadi mirip dengan aliran air pada saat banjir. Pada kedua zona tersebut, gelombang dipengaruhi oleh friksi, kekasaran dasar. II-

3 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami II. Gelombang Gambar II-3. Parameter Gelombang Potongan memanjang perambatan gelombang pada kedalaman tetap di elevasi z=0 ditunjukkan pada gambar diatas. Dasar saluran berada pada koordinat z = -d, dengan kedalaman d. Profil gelombang (η) merupakan perubahan koordinat z terhadap jarak dan waktu. Profil gelombang memiliki cepat rambat sebesar C, dengan panjang gelombang L dan tinggi gelombang H. Periode gelombang dinyatakan dalam T, dimana dalam satu periode, gelombang akan menempuh jarak sebesar L. Hal ini berarti bahwa C=:L/T. Beberapa parameter gelombang: k = π / L (wave number)...( II- ) σ = π / T (wave angular frequency)...( II-3 ) Persamaan Laplace untuk aliran dua dimensi umum digunakan untuk menggambarkan pergerakan gelombang: φ φ + = 0 z...( II-4 ) Syarat batas ditetapkan untuk dasar dan permukaan. Syarat batas di dasar adalah sebagai berikut: II-3

4 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami w = φ = 0 pada z = d...( II-5 ) z Syarat batas kinematik di permukaan: η η w = + u pada z = η...( II-6 ) Syarat batas dinamik di permukaan: p φ ( u + w ) + gz + + = 0 1 ρ...( II-7 ) Pada permukaan dimana tekanan tidak ada, maka syarat batas dinamik menjadi: φ ( u + w ) + g + = 0 1 η pada z = η...( II-8 ) Solusi dari persamaan laplace yang digunakan harus memenuhi syarat-syarat batas yang digunakan. Syarat batas di dasar memiliki bentuk linear, akan tetapi syarat batas kinematik dan dinamik di permukaan tidak. Dengan asumsi bahwa tinggi gelombang relatif kecil dibandingkan dengan kedalaman, maka syarat-syarat batas diatas dapat diterapkan pada level muka air normal. Kinematik: w = η pada z = 0...( II-9 ) t Dinamik: + φ gη = 0 pada z = 0...( II-10 ) t Solusi analitik persamaan laplace yang memenuhi syarat batas diatas adalah: Bentuk kecepatan potensial ( d + z) gh cosh k φ = sin( kx σt) σ cosh kd...( II-11 ) II-4

5 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami Profil permukaan Dengan memasukkan kecepatan potensial dengan syarat batas dinamik linier dan z = 0: atau H η = cos( kx σt)...( II-1 ) H x η = cos π L t T...( II-13 ) Cepat Rambat Gelombang Dengan mengkombinasikan syarat batas dinamik dan kinematik: φ φ + g = 0 z pada z = 0...( II-14 ) dengan memasukkan kecepatan potensial, persamaan diatas dapat ditulis dalam bentuk: σ = gk tan kd...( II-15 ) atau g C = σ = tanh kd...( II-16 ) k k Dengan menggunakan hubungan C = L / T, persamaan di atas menjadi gt πd C = tanh...( II-17 ) π L dan gt πd L = tanh...( II-18 ) π L Teori gelombang diatas hanya berlaku jika kedalaman air relatif cukup dalam dan pengaruh dasar laut diabaikan. Persamaan aliran dinamik digunakan untuk kondisi kedalaman dimana efek dari dasar laut tidak dapat lagi diabaikan. II-5

6 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami II..1 Klasifikasi Gelombang Berdasarkan Kedalaman Relatif Pada saat geombang merambat dari laut dalam hingga ke laut dangkal, panjang gelombangnya akan berkurang. Akan tetapi, kedalaman air akan berubah lebih cepat sehingga, rasio kedalaman terhadap panjang gelombang (d/l) akan terus berkurang. Berdasarkan rasio ini, kedalaman dapat diklasifikan menjadi, laut dalam, laut peralihan dan laut dangkal. 1. d/l > 0.5, laut dalam. 0.05< d/l < 0.5, laut peralihan 3. d/l < 0.05, laut dangkal Apabila kedalaman relatif untuk gelombang lebih besar dari 0.5 maka disebut laut dalam. Persamaannya adalah gl0 C 0 =...( II-19 ) π gt C 0 =...( II-0 ) π dan gt L 0 =...( II-1 ) π Apabila kedalaman relatif kurang dari 0.5 maka disebut intermediate range. Persamaannya adalah C C 0 L πd = = tanh...( II- ) L L 0 Apabila kedalaman relatif kurang dari 0.05 maka disebut shallow water. Persamaannya adalah C = gd...( II-3 ) II-6

7 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami sehingga kecepatan gelombang, dan hubungan antara perioda gelombang dengan panjang gelombang adalah L = CT atau II.. Gelombang Pecah L = gdt...( II-4 ) Gelombang pecah terjadi ketika kecepatan partikel gelombang mendekati atau sama dengan cepat rambat gelombangnya. Mekanisme keruntuhan gelombang sangat kompleks, mencakup interaksi kestabilan profil gelombang, puncak gelombang dan bentuk asimetris dari gelombang. Pada umumnya gelombang pecah dapat dikategorikan menjadi 4, yaitu: Spilling Plunging Collapsing Surging II-7

8 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami Gambar II-4. Profil Gelombang Pecah Semua tipe gelombang pecah tersebut dapat terjadi di area shallow water. Tapi hanya spilling dan plunging yang muncul di laut dalam. Berdasarkan definisi dari Horikawa (1988), perbandingan tinggi gelombang dengan kedalaman air dapat dijadikan batasan untuk spilling, plunging dan surging. Spilling H/d = Plunging H/d = 1 1. Collapsing H/d > 1. II-8

9 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami II.3 Run Up Pada saat rambatan berada di zona dua aliran yang terjadi diakibatkan oleh run up gelombang datang. Tinggi run up maksimum akan bergantung kepada besarnya gelombang datang, kedalaman air normal dan kemiringan pantai. Solusi analitis untuk aproksimasi nonlinear besarnya tinggi Run Up untuk solitary wave (nonbreaking) diberikan oleh Synolakis (1986). Rs ho H =.831 cot β ho 5/4...( II-5 ) Dengan Rs h0 H β = maksimum run up = kedalaman air normal = tinggi gelombang = sudut kemiringan shore line Salah satu permasalahan dalam pemodelan run up adalah batasan wet/dry. Titiktitik grid di darat yang semula kering (h,u,v = 0) akan berubah basah akibat run up yang terjadi. Pemodelan batasan wet/dry dengan menggunakan perbandingan elevasi dasar di titik kering dengan elevasi air di titik sebelumnya diberikan oleh Synolakis (1986). Ying Li (00) memodelkan batasan ini dengan menetapkan posisi shoreline sebagai fungsi waktu. Lynett (00) mengambil nilai ekstrapolasi (h,u,v) dari titik titik di sebelumnya. Batasan wet/dry dengan menetapkan nilai batas kedalaman minimum diterapkan oleh Tawatchai Tingsanchal (1999) untuk pemodelan dambreak. Semua metode diatas telah dikomparasi dengan data eksperimen dan menunjukkan hasil yang baik. II.4 Persamaan Gerak Aliran D Persamaan gerak aliran yang umum digunakan untuk memodelkan gelombang adalah persamaan St.Venant dan persamaan Boussinesq. Persamaan St.Venant: II-9

10 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami dimana : h + ( uh) ( vh) + y Uh + U h + UVh + gh y Vh + UVh + V h + gh y = S...( II-6 ) ( h + z) ( h + z) = ghs fx...( II-7 ) = ghs fy...( II-8 ) u dan v h S fx, S fy = kecepatan arah x dan y = kedalaman air = kemiringan energi arah x dan y Persamaan St. Venant tersebut pada umumnya berlaku di laut dangkal. Berdasarkan definisi dari Robert M. Sorensen (1993), tsunami merupakan gelombang panjang dengan d/l<0.05 (laut dangkal). Salah satu contoh penerapan persamaan St.Venant pada pemodelan rambatan gelombang tsunami adalah pemodelan oleh Vasily V Titov dan Costas Emmanuel Synolakis (1997) untuk kasus The Hokkaido-Nansei-Oki Tsunami dengan menggunakan persamaan pengatur St. Venant tanpa adanya friksi dasar (Sf=0) dan tidak membedakan zona rambatan. Pemodelan mencakup dari mulai terbentuknya gelombang hingga merambat di darat. Hasil pemodelan menunjukkan komparasi hasil yang cukup baik dalam skala besar. Persamaan gerak dalam bentuk lain yang juga dapat digunakan untuk memodelkan gelombang adalah persamaan Boussinesq. Perbedaan mendasar antara persamaan ini dengan persamaan St.Venant adalah adanya suku dispersi pada persamaan Boussinesq. Selain itu, persamaan boussinesq tidak memasukkan adanya pengaruh kemiringan dan kekasaran dasar. Aliran yang terjadi sangat dipengaruhi oleh kedalaman. Persamaan Boussinesq sendiri memiliki beberapa bentuk. Pada umumnya persamaan Boussinesq yang digunakan untuk pemodelan diberikan oleh Madsen Sorensen (199) dan Nwogu (1993) Persamaan Boussinesq oleh Nwogu (1993) II-10

11 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami z h α h ηt +. ( h+ η) u + h (. u) + zα + h (.( hu) ) = 0...( II-9 ) 6 zα ut + g η + ( u. ) u+ zα (. ut) + (.( hut )) = 0...( II-30 ) Dimana: u = kecepatan (u,v) η = elevasi muka air h = kedalaman = ( /, / y) g = gravitasi Bentuk standar (Peregrine, 1967) dari persamaan tersebut diperoleh dengan memasukkan nilai Zα/h = -1/ dan berlaku pada daerah laut dangkal. Nwogu (1993) memberikan Zα/h = yang membuat persamaan ini berlaku untuk domain yang lebih luas, yaitu laut dalam hingga laut dangkal. Pemodelan rambatan gelombang dengan menggunakan persamaan ini telah dilakukan oleh Wei dan Kirby (1995) untuk kasus rambatan gelombang pada suatu saluran datar (tidak ada kemiringan dasar) dan memberikan komparasi yang sangat baik dengan data dari model fisik. Persamaan Boussinesq oleh Madsen Sorensen (199) S P + Q = 0...( II-31 ) t + x y P PQ P t gds + ψ1 = 0 x...( II-3 ) d d y x Q PQ Q t gds + ψ = 0 y...( II-33 ) d d x y 1 P Q 3 1 ψ 1 h + h ( Pxxt + Qxyt )...( II-34 ) 6 h xxt h xyt II-11

12 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami 1 Q P 3 1 ψ h + h ( Qyyt + Pxyt )...( II-35 ) 6 h yyt h xyt dimana indeks x, y, dan t adalah simbol differensial untuk ruang dan waktu, d adalah kedalaman aliran total, h adalah kedalaman aliran, S adalah elevasi permukaan, P dan Q adalah komponen-komponen depth-integrated velocity, dan ψ 1 dan ψ adalah bentuk-bentuk Boussinesq. Persamaan tersebut telah digunakan untuk memodelkan transformasi gelombang akibat adanya struktur terendam oleh Nita Yunita (001) dan menunjukkan komparasi yang baik dengan model serupa. II.5 Metode Numerik Pemodelan numerik dapat dilakukan dengan pendekatan beda hingga (finite difference) ataupun volume hingga (finite Volume). Perbedaan paling mendasar dari kedua metode tersebut adalah bentuk grid. Pada metode beda hingga, bentuk grid terbatas kotak. Sedangkan pada metode volume hingga, bentuk grid lebih fleksibel (quadrangular). Penerapan metode beda hingga untuk aliran permukaan telah diterapkan oleh Dantje Kardana N,et.al., (005) dan M. Syahril B.K, et al (006) dan memberikan hasil yang baik. Pada penyelesaian persamaan diferensial numerik dengan metode beda hingga terdapat 3 macam skema yang dapat diterapkan, yaitu 1. Forward Difference Scheme Pada skema ini, nilai turunan pada suatu titik didekati dengan menggunakan nilai di titik tersebut dan nilai di titik sesudahnya. f ( x) f( x+δx) f( x) =...( II-36 ) Δx Penyelesaian yang diperoleh dari skema ini memiliki ketelitian orde 1. Backward Difference Scheme Pada skema ini, nilai turunan pada suatu titik didekati dengan menggunakan nilai di titik tersebut dan nilai di titik sebelumnya. II-1

13 Pemodelan Aliran Permukaan D Pada Suatu Lahan Akibat Rambatan Tsunami f ( x) f( x) f( x Δ x) =...( II-37 ) Δx Penyelesaian yang diperoleh dari skema ini memiliki ketelitian orde 1 3. Central Difference Scheme Pada skema ini, nilai turunan pada suatu titik didekati dengan menggunakan nilai di titik tersebut dan nilai di titik sebelumnya. f ( x) f( x+δx) f( x Δ x) =...( II-38 ) Δx Penyelesaian yang diperoleh dari skema ini memiliki ketelitian orde. Gambar II-5. Pendekatan Numerik dengan Metode Beda Hingga II-13

BAB IV PEMODELAN DAN ANALISIS

BAB IV PEMODELAN DAN ANALISIS BAB IV PEMODELAN DAN ANALISIS Pemodelan dilakukan dengan menggunakan kontur eksperimen yang sudah ada, artificial dan studi kasus Aceh. Skenario dan persamaan pengatur yang digunakan adalah: Eksperimental

Lebih terperinci

KESIMPULAN DAN SARAN

KESIMPULAN DAN SARAN BAB V KESIMPULAN DAN SARAN V.1 Kesimpulan Dari pemodelan yang telah dilakukan, ada beberapa kesimpulan yang dapat diambil. 1. Pemodelan rambatan gelombang dilakukan dengan menggunakan 2 persamaan pengatur

Lebih terperinci

BAB III DESKRIPSI MODEL

BAB III DESKRIPSI MODEL BAB III DESKRIPSI MODEL III.1 Konsep Model Dan Pendekatan Model yang dikembangkan merupakan model rambatan tsunami di perairan dangkal hingga ke darat. Berdasarkan deinisi tsunami oleh Hamzah (2006), daerah

Lebih terperinci

Pemodelan Aliran Permukaan 2 D Pada Suatu Lahan Akibat Rambatan Tsunami. Gambar IV-18. Hasil Pemodelan (Kasus 4) IV-20

Pemodelan Aliran Permukaan 2 D Pada Suatu Lahan Akibat Rambatan Tsunami. Gambar IV-18. Hasil Pemodelan (Kasus 4) IV-20 Gambar IV-18. Hasil Pemodelan (Kasus 4) IV-2 IV.7 Gelombang Menabrak Suatu Struktur Vertikal Pemodelan dilakukan untuk melihat perilaku gelombang ketika menabrak suatu struktur vertikal. Suatu saluran

Lebih terperinci

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan...

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan... DAFTAR ISI Halaman HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSEMBAHAN... ii PERNYATAAN... iv PRAKATA... v DAFTAR ISI...viii DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv DAFTAR

Lebih terperinci

BAB II TINJAUAN PUSTAKA. bersumber dari ledakan besar gunung berapi atau gempa vulkanik, tanah longsor, atau

BAB II TINJAUAN PUSTAKA. bersumber dari ledakan besar gunung berapi atau gempa vulkanik, tanah longsor, atau BAB II TINJAUAN PUSTAKA 2.1 Tsunami Tsunami biasanya berhubungan dengan gempa bumi. Gempa bumi ini merupakan proses terjadinya getaran tanah yang merupakan akibat dari sebuah gelombang elastis yang menjalar

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk II. TINJAUAN PUSTAKA 2.1. WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk mempresentasikan data kecepatan angin dalam bentuk mawar angin sebagai

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

Tinjauan Pustaka. Banjir pada dasarnya adalah surface runoff yang merupakan salah satu bagian dari siklus hidrologi. The Hydrologic Cycle

Tinjauan Pustaka. Banjir pada dasarnya adalah surface runoff yang merupakan salah satu bagian dari siklus hidrologi. The Hydrologic Cycle Bab II Tinjauan Pustaka II.1 Banjir di Perkotaan Banjir pada dasarnya adalah surface runoff yang merupakan salah satu bagian dari siklus hidrologi. The Hydrologic Cycle Sun Rain Clouds Rain Formation PRECIPITATION

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

Gb 2.5. Mekanisme Tsunami

Gb 2.5. Mekanisme Tsunami TSUNAMI Karakteristik Tsunami berasal dari bahasa Jepang yaitu dari kata tsu dan nami. Tsu berarti pelabuhan dan nami berarti gelombang. Istilah tersebut kemudian dipakai oleh masyarakat untuk menunjukkan

Lebih terperinci

Hasil dan Analisis. Simulasi Banjir Akibat Dam Break

Hasil dan Analisis. Simulasi Banjir Akibat Dam Break Bab IV Hasil dan Analisis IV. Simulasi Banjir Akibat Dam Break IV.. Skenario Model yang dikembangkan dikalibrasikan dengan model yang ada pada jurnal Computation of The Isolated Building Test Case and

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Gambaran Umum Obyek Penelitian Beberapa istilah tentang kepantaian yang di iginakan adalah sebagai berikut : Pantai adalah daerah perbatasan antara daratan dan lautan yang dipengaruhi

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Ada dua istilah tentang kepantaian dalam bahasa Indonesia yang sering rancu

BAB II TINJAUAN PUSTAKA. Ada dua istilah tentang kepantaian dalam bahasa Indonesia yang sering rancu BAB II TINJAUAN PUSTAKA 2.1 Pantai Ada dua istilah tentang kepantaian dalam bahasa Indonesia yang sering rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan tentang hal ini dapat dilihat

Lebih terperinci

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30) 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT Jundana Akhyar 1 dan Muslim Muin 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi

Lebih terperinci

ANALISIS KARAKTERISTIK GELOMBANG PECAH DI PANTAI NIAMPAK UTARA

ANALISIS KARAKTERISTIK GELOMBANG PECAH DI PANTAI NIAMPAK UTARA ANALISIS KARAKTERISTIK GELOMBANG PECAH DI PANTAI NIAMPAK UTARA Ratna Parauba M. Ihsan Jasin, Jeffrey. D. Mamoto Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi Manado email : Parauba_ratna@yahoo.co.id

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

BAB II TEORI TERKAIT

BAB II TEORI TERKAIT II. TEORI TERKAIT BAB II TEORI TERKAIT 2.1 Pemodelan Penjalaran dan Transformasi Gelombang 2.1.1 Persamaan Pengatur Berkenaan dengan persamaan dasar yang digunakan model MIKE, baik deskripsi dari suku-suku

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal Bab 2 LANDASAN TEORI 2.1 Penurunan Persamaan Air Dangkal Persamaan air dangkal atau Shallow Water Equation (SWE) berlaku untuk fluida homogen yang memiliki massa jenis konstan, inviscid (tidak kental),

Lebih terperinci

Mekanika Fluida II. Karakteristik Saluran dan Hukum Dasar Hidrolika

Mekanika Fluida II. Karakteristik Saluran dan Hukum Dasar Hidrolika Mekanika Fluida II Karakteristik Saluran dan Hukum Dasar Hidrolika 1 Geometri Saluran 1.Kedalaman (y) - depth 2.Ketinggian di atas datum (z) - stage 3.Luas penampang A (area cross section area) 4.Keliling

Lebih terperinci

Model Refraksi-Difraksi Gelombang Air oleh Batimetri dengan Mengerjakan Persamaan Kekekalan Energi

Model Refraksi-Difraksi Gelombang Air oleh Batimetri dengan Mengerjakan Persamaan Kekekalan Energi Hutahaean ISSN 853-98 Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil Model Refraksi-Difraksi Gelombang Air oleh Batimetri dengan Mengerjakan Persamaan Kekekalan Energi Syawaluddin Hutahaean Kelompok

Lebih terperinci

TEKANAN TANAH LATERAL

TEKANAN TANAH LATERAL TEKANAN TANAH LATERAL Tekanan lateral tanah adalah tekanan oleh tanah pada bidang horizontal. Contoh aplikasi teori tekanan lateral adalah untuk desain-desain seperti dinding penahan tanah, dinding basement,

Lebih terperinci

PEMODELAN ALIRAN PERMUKAAN 2 D PADA SUATU LAHAN AKIBAT RAMBATAN TSUNAMI TESIS MOHAMMAD BAGUS ADITYAWAN NIM :

PEMODELAN ALIRAN PERMUKAAN 2 D PADA SUATU LAHAN AKIBAT RAMBATAN TSUNAMI TESIS MOHAMMAD BAGUS ADITYAWAN NIM : PEMODELAN ALIRAN PERMUKAAN 2 D PADA SUATU LAHAN AKIBAT RAMBATAN TSUNAMI TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung Oleh MOHAMMAD BAGUS ADITYAWAN

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA 5 BAB II 2.1 TINJAUAN UMUM Dalam suatu perencanaan dibutuhkan pustaka yang dijadikan sebagai dasar perencanaan agar terwujud spesifikasi yang menjadi acuan dalam perhitungan dan pelaksanaan pekerjaan di

Lebih terperinci

PROSES DI SHORE APPROACH

PROSES DI SHORE APPROACH BAB 3 PROSES DI SORE APPROAC 3.1 Pendahuluan Dalam disain stabilitas pipa (on-bottom stability) yang sebelumnya telah disinggung bahwa untuk dapat menghitung stabilitas pipa maka perlu diketahui beberapa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 13 BAB II TINJAUAN PUSTAKA 2. 1 Pantai 2.1.1. Pengertian Pantai Pengertian pantai berbeda dengan pesisir. Tidak sedikit yang mengira bahwa kedua istilah tersebut memiliki arti yang sama, karena banyak

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

Analisis Transformasi Gelombang Di Pantai Matani Satu Minahasa Selatan

Analisis Transformasi Gelombang Di Pantai Matani Satu Minahasa Selatan Analisis Transformasi Gelombang Di Pantai Matani Satu Minahasa Selatan Hansje J. Tawas Jurusan Teknik Sipil, Fakultas Teknik, Universitas Sam Ratulangi ABSTRAK Mundurnya garis pantai pada Pantai Matani

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

Transformasi Gelombang pada Batimetri Ekstrim dengan Model Numerik SWASH Studi Kasus: Teluk Pelabuhan Ratu, Sukabumi

Transformasi Gelombang pada Batimetri Ekstrim dengan Model Numerik SWASH Studi Kasus: Teluk Pelabuhan Ratu, Sukabumi Reka Racana Jurusan Teknik Sipil Vol. 3 No.1 Jurnal Online Institut Teknologi Nasional Maret 2017 Transformasi Gelombang pada Batimetri Ekstrim dengan Model Numerik SWASH Studi Kasus: Teluk Pelabuhan Ratu,

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 Latar Belakang Pemasangan Struktur di Pantai Kerusakan Pantai pengangkutan Sedimen Model

Lebih terperinci

Gambar 2.1. Definisi Daerah Pantai Sumber: Triatmodjo (1999)

Gambar 2.1. Definisi Daerah Pantai Sumber: Triatmodjo (1999) BAB II TINJAUAN PUSTAKA 2.1 Morfologi Pantai Daerah daratan adalah daerah yang terletak di atas dan dibawah permukaan darat dimulai dari batas garis pasang tertinggi. Daerah lautan adalah daerah yang terletak

Lebih terperinci

DAFTAR ISI Hasil Uji Model Hidraulik UWS di Pelabuhan PT. Pertamina RU VI

DAFTAR ISI Hasil Uji Model Hidraulik UWS di Pelabuhan PT. Pertamina RU VI DAFTAR ISI ALAMAN JUDUL... i ALAMAN PENGESAAN... ii PERSEMBAAN... iii ALAMAN PERNYATAAN... iv KATA PENGANTAR... v DAFTAR ISI... vi DAFTAR TABEL... x DAFTAR GAMBAR... xi DAFTAR LAMBANG... xiii INTISARI...

Lebih terperinci

Pengaruh Perubahan Layout Breakwater Terhadap Kondisi Tinggi Gelombang di Pelabuhan Perikanan Nusantara Brondong

Pengaruh Perubahan Layout Breakwater Terhadap Kondisi Tinggi Gelombang di Pelabuhan Perikanan Nusantara Brondong Pengaruh Perubahan Layout Breakwater Terhadap Kondisi Tinggi Gelombang di Pelabuhan Perikanan Nusantara Brondong Faddillah Prahmadana R. (NRP. 4308 100 050) Dosen Pembimbing: Haryo Dwito Armono, S.T.,

Lebih terperinci

Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal

Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal Matematika LAPORAN AKHIR PENELITIAN PENGUATAN PROGRAM STUDI Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal Oleh: Mohammad Jamhuri, M.Si NIP. 1981050 00501 1004 FAKULTAS SAINS DAN

Lebih terperinci

SOBEK Hidrodinamik 1D2D (modul 2C)

SOBEK Hidrodinamik 1D2D (modul 2C) SOBEK Hidrodinamik 1D2D (modul 2C) 1 Konten Mengapa pemodelan? Gelombang Aspek aliran 1 dimensi di Sobek Aspek numerik Aspek aliran 2 dimensi di Sobek 2 (mengapa?) pemodelan 3 Mengapa pemodelan? - Tidak

Lebih terperinci

Bab III Metode Penelitian

Bab III Metode Penelitian Bab III Metode Penelitian 3.1 Tahapan Penelitian Studi penelitian yang telah dilakukan bersifat eksperimental di Kolam Gelombang Laboratorium Lingkungan dan Energi Laut, Jurusan Teknik Kelautan FTK, ITS

Lebih terperinci

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 4 Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method Yulian Fauzi 1, Jose Rizal 1, Fachri Faisal 1, Pepi

Lebih terperinci

Kinematika. Gerak Lurus Beraturan. Gerak Lurus Beraturan

Kinematika. Gerak Lurus Beraturan. Gerak Lurus Beraturan Kinematika Gerak Lurus Beraturan KINEMATIKA adalah Ilmu gerak yang membicarakan gerak suatu benda tanpa memandang gaya yang bekerja pada benda tersebut (massa benda diabaikan). Jadi jarak yang ditempuh

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

Karakteristik Gelombang terhadap Struktur

Karakteristik Gelombang terhadap Struktur II LABORATORIUM GELOMBANG PROGRAM STUDI TEKNIK KELAUTAN FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG 2013 Daftar Isi Daftar Isi... i Daftar Gambar... iii Daftar Tabel Daftar Gambar i

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Studi Daerah yang menjadi objek dalam penulisan Tugas Akhir ini adalah pesisir Kecamatan Muara Gembong yang terletak di kawasan pantai utara Jawa Barat. Posisi geografisnya

Lebih terperinci

METODE FLOATING OBJECT UNTUK PENGUKURAN ARUS MENYUSUR PANTAI

METODE FLOATING OBJECT UNTUK PENGUKURAN ARUS MENYUSUR PANTAI Jurnal Riset dan Teknologi Kelautan (JRTK) Volume 10, Nomor 2, Juli - Desember 2012 METODE FLOATING OBJECT UNTUK PENGUKURAN ARUS MENYUSUR PANTAI Hasdinar Umar Jurusan Teknik Perkapalan - Fakultas Teknik

Lebih terperinci

TEORI GELOMBANG AMPLITUDO KECIL DAN PERAMALAN GELOMBANG

TEORI GELOMBANG AMPLITUDO KECIL DAN PERAMALAN GELOMBANG Bahan Ajar TEORI GELOMBANG AMPLITUDO KECIL DAN PERAMALAN GELOMBANG Ahmad Zakaria,Ph.D. JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS LAMPUNG Januari 2009 Kata Pengantar Bahan Ajar ini dibuat dengan

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN Pada bab pendahuluan dijelaskan mengenai latar belakang yang mendasari penelitian ini yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang

Lebih terperinci

Reflektor Gelombang Berupa Serangkaian Balok

Reflektor Gelombang Berupa Serangkaian Balok Bab 4 Reflektor Gelombang Berupa Serangkaian Balok Setelah kita mengetahui bagaimana pengaruh dan dimensi optimum dari 1 balok terendam sebagai reflektor gelombang maka pada bab ini akan dibahas bagaimana

Lebih terperinci

BAB II TINJAUAN PUSTAKA. rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai

BAB II TINJAUAN PUSTAKA. rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai BAB II TINJAUAN PUSTAKA 2.1. Definisi Pantai Ada dua istilah tentang kepantaian dalam bahasa indonesia yang sering rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai kepantaian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Uraian Umum Abutmen merupakan bangunan yang berfungsi untuk mendukung bangunan atas dan juga sebagai penahan tanah. Adapun fungsi abutmen ini antara lain : Sebagai perletakan

Lebih terperinci

BAB V ANALISIS PERAMALAN GARIS PANTAI

BAB V ANALISIS PERAMALAN GARIS PANTAI 79 BAB V ANALISIS PERAMALAN GARIS PANTAI 5.1 Penggunaan Program GENESIS Model yang digunakan untuk mengevaluasi perubahan morfologi pantai adalah program GENESIS (Generalized Model for Simulating Shoreline

Lebih terperinci

Model Refraksi-Difraksi Gelombang Air Oleh Batimetri

Model Refraksi-Difraksi Gelombang Air Oleh Batimetri Hutahaean ISSN 0853-98 Jurnal Teoretis dan Terapan idang Rekaasa Sipil Model Refraksi-Difraksi Gelombang ir Oleh atimetri Sawaluddin Hutahaean Pusat Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan

Lebih terperinci

Program Interaktif berbasis Web untuk menghitung Panjang Gelombang dan Pasang Surut

Program Interaktif berbasis Web untuk menghitung Panjang Gelombang dan Pasang Surut seri komputasi pantai Dasar Teori dan Aplikasi Program Interaktif berbasis Web untuk menghitung Panjang Gelombang dan Pasang Surut (Edisi Pertama) Ahmad Zakaria Magister Teknik Sipil Universitas Lampung

Lebih terperinci

BAB II KAJIAN PUSTAKA. pelabuhan, fasilitas pelabuhan atau untuk menangkap pasir. buatan). Pemecah gelombang ini mempunyai beberapa keuntungan,

BAB II KAJIAN PUSTAKA. pelabuhan, fasilitas pelabuhan atau untuk menangkap pasir. buatan). Pemecah gelombang ini mempunyai beberapa keuntungan, BAB II KAJIAN PUSTAKA 2.1 Tinjauan Umum Bangunan tanggul pemecah gelombang secara umum dapat diartikan suatu bangunan yang bertujuan melindungi pantai, kolam pelabuhan, fasilitas pelabuhan atau untuk menangkap

Lebih terperinci

PEMODELAN NUMERIK RESPON DINAMIK STRUKTUR TURBIN ANGIN AKIBAT PEMBEBANAN GELOMBANG AIR DAN ANGIN

PEMODELAN NUMERIK RESPON DINAMIK STRUKTUR TURBIN ANGIN AKIBAT PEMBEBANAN GELOMBANG AIR DAN ANGIN PEMODELAN NUMERIK RESPON DINAMIK STRUKTUR TURBIN ANGIN AKIBAT PEMBEBANAN GELOMBANG AIR DAN ANGIN Medianto NRP : 0321050 Pembimbing : Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

MODEL NUMERIK DUA-DIMENSI TRANSFORMASI GELOMBANG DENGAN PERSAMAAN BOUSSINESQ TESIS MAGISTER. Oleh : ALWAFI PUJIRAHARJO N.I.M.

MODEL NUMERIK DUA-DIMENSI TRANSFORMASI GELOMBANG DENGAN PERSAMAAN BOUSSINESQ TESIS MAGISTER. Oleh : ALWAFI PUJIRAHARJO N.I.M. MODEL NUMERIK DUA-DIMENSI TRANSFORMASI GELOMBANG DENGAN PERSAMAAN BOUSSINESQ TESIS MAGISTER Oleh : ALWAFI PUJIRAHARJO N.I.M. : 25099004 PENGUTAMAAN REKAYASA SUMBER DAYA AIR DEPARTEMEN TEKNIK SIPIL PROGRAM

Lebih terperinci

Program Interaktif berbasis Web untuk menghitung Panjang Gelombang dan Pasang Surut

Program Interaktif berbasis Web untuk menghitung Panjang Gelombang dan Pasang Surut seri komputasi pantai Dasar Teori dan Aplikasi Program Interaktif berbasis Web untuk menghitung Panjang Gelombang dan Pasang Surut (Edisi Pertama) Ahmad Zakaria Penerbit Magister Teknik Sipil Universitas

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN Hasil simulasi model penjalaran gelombang ST-Wave berupa gradien stress radiasi yang timbul sebagai akibat dari adanya perubahan parameter gelombang yang menjalar memasuki perairan

Lebih terperinci

RESPONS DINAMIK JACKET STEEL PLATFORM AKIBAT GELOMBANG LAUT DENGAN RIWAYAT WAKTU

RESPONS DINAMIK JACKET STEEL PLATFORM AKIBAT GELOMBANG LAUT DENGAN RIWAYAT WAKTU RESPONS DINAMIK JACKET STEEL PLATFORM AKIBAT GELOMBANG LAUT DENGAN RIWAYAT WAKTU Hans Darwin Yasin NRP : 0021031 Pembimbing : Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN IV.1 Perhitungan Beban Benda Uji Langkah awal dalam perhitungan benda uji adalah mengetahui kekakuan pada pegas, L pada pegas pada waktu di darat = 50cm. Adapun massa foil

Lebih terperinci

BAB II STUDI PUSTAKA 2.1 Tinjauan Umum

BAB II STUDI PUSTAKA 2.1 Tinjauan Umum 4 BAB II STUDI PUSTAKA 2.1 Tinjauan Umum PPI Logending Pantai Ayah Kabupaten Kebumen menggunakan bangunan pengaman berupa pemecah gelombang dengan bentuk batuan buatan hexapod (Gambar 2.1). Pemecah gelombang

Lebih terperinci

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1)

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1) DAFTAR NOTASI A : sebuah konstanta, pada Persamaan (5.1) a c a m1 / 3 a m /k s B : Koefisien-koefisien yang membentuk elemen matrik tridiagonal dan dapat diselesaikan dengan metode eliminasi Gauss : amplitudo

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS BESAR PROGRAM PENGAJARAN (GBPP) MATA KULIAH : REKAYASA PANTAI KOPEL : SPL 442 / 2 (2 0) DOSEN PENGASUH : Ir. Ahmad Zakaria, Ph.D. DESKRIPSI SINGKAT : Mata kuliah Rekayasa Pantai merupakan mata kuliah

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 4 II. TINJAUAN PUSTAKA A. Garis Pantai Garis pantai merupakan batas pertemuan antara daratan dengan bagian laut saat terjadi air laut pasang tertinggi. Garis ini bisa berubah karena beberapa hal seperti

Lebih terperinci

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menentukan solusi persamaan gerak jatuh bebas berdasarkan pendekatan

Lebih terperinci

PETA DASAR ZONASI TINGKAT PERINGATAN TSUNAMI DAERAH BANYUWANGI

PETA DASAR ZONASI TINGKAT PERINGATAN TSUNAMI DAERAH BANYUWANGI PETA DASAR ZONASI TINGKAT PERINGATAN TSUNAMI DAERAH BANYUWANGI Dalam rangka upaya peringatan dini untuk bencana tsunami, beragam peta telah dibuat oleh beberapa instansi pemerintah, LSM maupun swasta.

Lebih terperinci

Pemodelan Perambatan Gelombang Tsunami di Perairan Teluk Palu dengan Metode Transformasi Koordinat Bola

Pemodelan Perambatan Gelombang Tsunami di Perairan Teluk Palu dengan Metode Transformasi Koordinat Bola JIMT Vol. 9 No. Juni 0 (Hal. 5) Jurnal Ilmiah Matematika dan Terapan ISSN : 450 766X Pemodelan Perambatan Gelombang Tsunami di Perairan Teluk Palu dengan Metode Transformasi Koordinat Bola Gusni, A.I.

Lebih terperinci

PERHITUNGAN GAYA LATERAL DAN MOMEN YANG BEKERJA PADA JACKET PLATFORM TERHADAP GELOMBANG AIRY DAN GELOMBANG STOKES

PERHITUNGAN GAYA LATERAL DAN MOMEN YANG BEKERJA PADA JACKET PLATFORM TERHADAP GELOMBANG AIRY DAN GELOMBANG STOKES PERHITUNGAN GAYA LATERAL DAN MOMEN YANG BEKERJA PADA JACKET PLATFORM TERHADAP GELOMBANG AIRY DAN GELOMBANG STOKES Selvina NRP: 1221009 Pembimbing: Olga Catherina Pattipawaej, Ph.D. ABSTRAK Aktivitas bangunan

Lebih terperinci

USAHA DAN ENERGI. W = F.s Satuan usaha adalah joule (J), di mana: 1 joule = (1 Newton).(1 meter) atau 1 J = 1 N.m

USAHA DAN ENERGI. W = F.s Satuan usaha adalah joule (J), di mana: 1 joule = (1 Newton).(1 meter) atau 1 J = 1 N.m USAHA DAN ENERGI Usaha (W) yang dilakukan pada sebuah benda oleh suatu gaya tetap (tetap dalam besar dan arah) didefinisikan sebagai perkalian antara besar pergeseran (s) dengan komponen gaya (F) yang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dinamika bentuk dan struktur bumi dijabarkan dalam berbagai teori oleh para ilmuwan, salah satu teori yang berkembang yaitu teori tektonik lempeng. Teori ini

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

STABILITAS STRUKTUR PELINDUNG PANTAI AKIBAT PEMANASAN GLOBAL

STABILITAS STRUKTUR PELINDUNG PANTAI AKIBAT PEMANASAN GLOBAL STABILITAS STRUKTUR PELINDUNG PANTAI AKIBAT PEMANASAN GLOBAL Sinatra 1 dan Olga Pattipawaej 1 Program Studi Double Degrre, Teknik Sipil-Sistem Informasi, Universitas Kristen Maranatha, Jl. Prof. drg. Suria

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN

Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN A. URAIAN MATERI: Suatu benda dikatakan bergerak jika benda tersebut kedudukannya berubah setiap saat terhadap titik acuannya (titik asalnya).

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga

Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga J. Math. and Its Appl. ISSN: 1829-605X Vol. 2, No. 2, Nov 2005, 93 101 Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga Lukman Hanafi, Danang Indrajaya Jurusan Matematika FMIPA ITS Kampus

Lebih terperinci

BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI

BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI 145 BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI 6.1. Perhitungan Struktur Revetment dengan Tumpukan Batu Perhitungan tinggi dan periode gelombang signifikan telah dihitung pada Bab IV, data yang didapatkan

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal.

Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal. Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal. Setelah membaca modul dan membuat latihan mahasiswa a memahami bahwa apabila menggunakan kecepatan rata-rata

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

BAB IV KRITERIA DESAIN

BAB IV KRITERIA DESAIN BAB IV KRITERIA DESAIN 4.1 PARAMETER DESAIN Merupakan langkah yang harus dikerjakan setelah penentuan type penanggulangan adalah pembuatan desain. Desain penanggulangan mencangkup perencanaan, analisa

Lebih terperinci

BAB 2 DATA DAN METODA

BAB 2 DATA DAN METODA BAB 2 DATA DAN METODA 2.1 Pasut Laut Peristiwa pasang surut laut (pasut laut) adalah fenomena alami naik turunnya permukaan air laut secara periodik yang disebabkan oleh pengaruh gravitasi bendabenda-benda

Lebih terperinci

TUGAS BAHASA INDONESIA

TUGAS BAHASA INDONESIA TUGAS BAHASA INDONESIA Nama : Wahyu Abadi NIS : 7484 Kelas : XI TKJ 2 Sekolah : SMK Negeri 1 Sumenep TEKNIK KOMPUTER & JARINGAN SMK NEGERI 1 SUMENEP 2016/2017 1. Carilah teks eksplansi kompleks! Selanjutnya

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton III.1 Stress dan Strain Salah satu hal yang penting dalam pengkonstruksian model proses deformasi suatu fluida adalah

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

Bab IV Analisa Kapasitas Ultimate

Bab IV Analisa Kapasitas Ultimate Bab IV Analisa Kapasitas Ultimate IV. Pendahuluan Eksploitasi minyak di lepas pantai telah berlangsung sekitar setengah abad. Platform baja pertama dibangun di teluk Meksiko pada tahun 97. Hanya dalam

Lebih terperinci

2). Besaran Dasar Gelombang Y arah rambat ( v) A P T 0 Q S U. * Hubungan freakuensi (f) dengan pereode (T).f = n/t n = f.t dan T = t/n n = t/t

2). Besaran Dasar Gelombang Y arah rambat ( v) A P T 0 Q S U. * Hubungan freakuensi (f) dengan pereode (T).f = n/t n = f.t dan T = t/n n = t/t Modul Pembelajaran Fisika XII-IPA 1 BAB 1 GEJALA GELOMBANG A. Persamaan Dasar Gelombang 1). Pengertian Gelombang Gelombang adalah usikan yang merambat secara terus menerus. Medium yang dilalui gelombang

Lebih terperinci

PERENCANAAN BANGUNAN PENGAMAN PANTAI PADA DAERAH PANTAI KIMA BAJO KABUPATEN MINAHASA UTARA

PERENCANAAN BANGUNAN PENGAMAN PANTAI PADA DAERAH PANTAI KIMA BAJO KABUPATEN MINAHASA UTARA PERENCANAAN BANGUNAN PENGAMAN PANTAI PADA DAERAH PANTAI KIMA BAJO KABUPATEN MINAHASA UTARA Injilia Christy Mamanua Tommy Jansen, A. K. T. Dundu Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi Email

Lebih terperinci

BAB IV ANALISIS. 4.1 Data Teknis Data teknis yang diperlukan berupa data angin, data pasang surut, data gelombang dan data tanah.

BAB IV ANALISIS. 4.1 Data Teknis Data teknis yang diperlukan berupa data angin, data pasang surut, data gelombang dan data tanah. BAB IV ANALISIS Perencanaan Pengembangan Pelabuhan Perikanan Samudra Cilacap ini memerlukan berbagai data meliputi : data peta topografi, oceanografi, data frekuensi kunjungan kapal dan data tanah. Data

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

II. TINJAUAN PUSTAKA. permukaan air laut yang membentuk kurva/ grafik sinusoidal. Salah satunya

II. TINJAUAN PUSTAKA. permukaan air laut yang membentuk kurva/ grafik sinusoidal. Salah satunya II. TINJAUAN PUSTAKA A. Gelombang Gelombang adalah pergerakan naik dan turunnya air dengan arah tegak lurus permukaan air laut yang membentuk kurva/ grafik sinusoidal. Salah satunya gelombang laut yang

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Metode Penelitian Metode penelitian yang digunakan adalah deskriptif analitis, yaitu penjelasan dan analisis melalui simulasi pemodelan tsunami dengan memperhitungkan nilai

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1. Definisi Pantai dan Batasan Pantai. Muka air tinggi Muka air rendah. Sempadan. Pantai Perairan pantai Laut.

BAB II DASAR TEORI. Gambar 2.1. Definisi Pantai dan Batasan Pantai. Muka air tinggi Muka air rendah. Sempadan. Pantai Perairan pantai Laut. BAB II DASAR TEORI.1 Tinjauan Umum Pembangunan pada hakekatnya merupakan rangkaian perubahan menuju kemajuan. Pembangunan bangunan pantai lebih ditujukan kepada terciptanya suatu sistem bangunan di pantai

Lebih terperinci