BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB TINJAUAN PUSTAKA Getaran banyak dipakai sebagai alat untuk melakukan analisis terhadap mesin-mesin, baik gerak rotasi maupun translasi. Pengetahuan akan getaran dan data-data yang dihasilkan sangat penting untuk perawatan maupun troubleshooting. Kemampuan ini bisa membantu perusahaan mereduksi terjadinya down time dan dapat meningkatkan keuntungan baik dari segi produksi maupun dari umur mesin (yang lebih panjang)..1. Analisa Getaran.1.1. Getaran Getaran secara teknik didefenisikan sebagai gerak osilasi dari suatu objek terhadap posisi awalnya Pain (005), karakteristik getaran adalah: 1. Frekuensi, digunakan untuk menggambarkan getaran.. Perpindahan, mengindikasikan berapa jauh suatu objek bergetar. 3. Kecepatan, mengindikasikan berapa cepat objek bergetar. 4. Percepatan, mengindikasikan suatu objek bergetar terkait dengan gaya penyebabnya. 5. Phase, mengindikasikan suatu bagian bergetar relatif terhadap bagian yang lain. Tingkat getaran dan jenis persoalan secara analisis: 1. Tingkat getaran secara menyeluruh dapat berubah dengan beban dan kecepatan, sehingga dapat memberikan gambaran yang salah tentang kondisi mesin. Analisis spektrum getaran akan mengarahkan kepada

2 pengambilan kesimpulan tentang terjadinya persoalan serius, sehingga tindakan yang tepat terhadap mesin dapat dilakukan.. Dalam operasionalnya tidak mudah menghentikan suatu mesin tanpa mengganggu proses produksi. Oleh karena itu sangatlah penting untuk mengetahui parah tidaknya suatu persoalan. Analisis dapat menentukan apakah suatu mesin dapat tetap dijalankan sampai jadwal pemberhentian pabrik berikutnya. 3. Dengan analisis getaran waktu perbaikan dapat diperkecil karena jenis permasalahannya telah diketahui. Suku cadang dapat dibeli atau disediakan sebelum mesin dibongkar. Analisa getaran merupakan cara yang paling handal untuk mendeteksi awal gejala kerusakan mekanik, elektrikal pada peralatan, sehingga analisa getaran saat ini menjadi pilihan teknologi predictive maintenance yang paling sering digunakan (Scheffer, 004). Suatu peralatan yang berputar sebaiknya memiliki suatu nilai getaran standar (ASTM D ) dan batasan getaran yang diperbolehkan (dibuat oleh pabrik) sehingga apabila nilai getaran yang terjadi diluar batasan yang diizinkan maka peralatan tersebut harus menjalani tindakan perawatan. Semua mesin memiliki tiga sifat fundamental yang berhubungan untuk menentukan bagaimana mesin akan bereaksi terhadap kekuatan-kekuatan yang menyebabkan getaran-getaran, seperti sistem pegas-massa yaitu: 1. Massa (m): merupakan inersia untuk tetap dalam keadaan semula atau gerak. Sebuah gaya mencoba untuk membawa perubahan dalam keadaan istirahat atau gerak, yang ditentang oleh massa dan satuannya dalam kg.. Kekakuan/stiffness (k): ada kekuatan tertentu yang dipersyaratkan membengkokkan atau membelokkan struktur dengan jarak tertentu. Ini

3 mengukur gaya yang diperlukan untuk memperoleh defleksi tertentu disebut kekakuan, satuannya dalam N / m. 3. Damping/redaman (c): setelah memaksa set bagian atau struktur ke dalam gerakan, bagian atau struktur akan memiliki mekanisme inherent untuk memperlambat gerak (kecepatan). Karakteristik ini untuk mengurangi kecepatan gerakan disebut redaman, satuannya dalam N /(m/s). Sebagaimana disebutkan di atas, efek gabungan untuk menahan pengaruh kekuatan karena massa, kekakuan dan redaman menentukan bagaimana suatu sistem akan merespon yang diberikan kekuatan eksternal. Sederhananya, cacat dalam mesin membawa gerakan getaran. Massa, kekakuan dan redaman mencoba untuk melawan getaran yang disebabkan oleh cacat. Jika getaran akibat cacat jauh lebih besar daripada tiga karakteristik tersebut maka getaran yang dihasilkan akan lebih tinggi dan cacat dapat terdeteksi, seperti Gambar.1. berikut ini: Bantalan Keausan poros Gambar.1. Kerusakan akibat getaran.1.. Karakteristik Getaran Getaran secara teknik didefenisikan sebagai gerak osilasi dari suatu objek terhadap posisi objek awal/diam, seperti yang ditunjukkan pada Gambar..

4 Gambar.. Sistem Getaran Sederhana (Mobley, 008) Kondisi suatu mesin dan masalah-masalah mekanik yang terjadi dapat diketahui dengan mengukur karakteristik getaran pada mesin tersebut. Karakteristik getaran yang penting antara lain adalah (Pain, 005): 1. Frekuensi adalah karakteristik dasar yang digunakan untuk mengukur dan menggambarkan getaran.. Perpindahan mengindikasikan berapa jauh suatu objek bergetar. 3. Kecepatan mengindikasikan berapa cepat objek bergetar. 4. Percepatan mengindikasikan suatu objek bergetar terkait dengan gaya penyebab getaran. 5. Phase mengindikasikan bagaimana suatu bagian bergetar relatif terhadap bagian yang lain, atau untuk menentukan posisi suatu bagian yang bergetar pada suatu saat, terhadap suatu referensi atau terhadap bagian lain yang bergetar dengan frekuensi yang sama. Dengan mengacu pada gerakan pegas, kita dapat mempelajari karakteristik suatu getaran dengan memetakan gerakan dari pegas tersebut terhadap fungsi waktu. Gerakan bandul pegas dari posisi netral ke batas atas dan kembali lagi ke posisi netral dan dilanjutkan ke batas bawah dan kembali lagi ke posisi netral, disebut satu siklus getaran (satu periode). Setiap karakteristik ini menggambarkan tingkat getaran, hubungan karakteristik ini dapat dilihat pada

5 Gambar.3 dan.4. Sedangkan satuan untuk tiap karaktristik dapat dilihat pada Tabel.1. Gambar.3. Hubungan Antara Perpindahan, Kecepatan dan Percepatan Getaran (Mobley, 008) Gambar.4. Skematik Phase Getaran (Mobley, 008)

6 Tabel.1. Satuan yang digunakan Tiap Karakteristik Karateristik Getaran Perpindahan Satuan Metrik microns peak to peak ( 1 µm = mm ) British mils peak to peak (0.001 in ) Kecepatan mm/s in/s Tabel.1. Lanjutan Karateristik Getaran Percepatan Satuan Metrik G ( lg = 980 cm/s ) British G ( lg = 5386 in/s ) Frekuensi cpm, cps, Hz cpm, cps, Hz Pase derajat derajat (Sumber : Maintenance Engineering Handbook, Mobley, 008).1.3. Gerak Harmonik Getaran dari sebuah mesin merupakan resultan dari sejumlah getaran individu komponen yang muncul dari gerak atau gaya pada komponen mekanikal, proses pada mesin ataupun sistem yang saling terkait. Setiap komponen individu yang bergetar ini memiliki gerak periodik. Gerakan akan berulang pada periode waktu tertentu. Waktu pengulangan T dimana getaran berulang disebut perioda osilasi biasanya diukur dalam satuan waktu yaitu detik dan kebalikannya adalah frekuensi (Scheffer, 004). Setiap frekuensi komponen mesin dapat dihitung dengan rumus berikut ini: 1 f... (.1.)

7 dan frekuensi lingkaran atau kecepatan sudut dapat dihitung dengan rumus: 1 f... (..) Besaran ω biasanya diukur dalam radian per detik atau rps. Bentuk sederhana dari gerak periodik adalah gerak harmonik, pada gerak harmonik, hubungan antara perpindahan maksimum dan waktu dapat dinyatakan oleh: x Asin t (.3.) Amplitudo getaran dapat dinyatakan dalam tiga istilah dasar yaitu perpindahan, kecepatan, dan percepatan. Kecepatan dalam gerak harmonik berdasarkan persamaan (.3) dapat diperoleh dari hasil diferensial perpindahan terhadap waktu, yaitu: dx dt x Acos t... (.4.) Sedangkan percepatan harmonik dapat diturunkan dari persamaan (.4) sehingga: d x dt x Asin t... (.5.).1.4. Gerak Periodik Gerak yang berulang dalam selang waktu yang sama disebut gerak periodik. Gerak periodik ini selalu dapat dinyatakan dalam fungsi sinus atau cosinus, oleh sebab itu gerak periodik disebut gerak harmonik. Jika gerak yang periodik ini bergerak bolak-balik melalui lintasan yang sama disebut getaran atau osilasi. Getaran mesin pada umumnya memiliki beberapa frekuensi yang muncul bersama-sama. Gerak periodik dapat dihasilkan oleh getaran bebas sistem dengan banyak derajat kebebasan, dimana getaran pada tiap frekuensi natural memberi sumbangan. Getaran semacam ini menghasilkan bentuk gelombang komplek yang diulang secara periodik seperti ditunjukkan pada Gambar.5.

8 Gambar.5. Gerak Periodik Gelombang Sinyal Segi empat dan Gelombang Pembentukannya Dalam Domain Waktu (Scheffer, 004) Dari Gambar.5. diatas dapat dijelaskan bahwa: 1. Gelombang pertama yang harus kita amati adalah gelombang (1). Hal ini diwakili oleh satu siklus. Sebagai skala waktu adalah 1 s yang memiliki frekuensi 1 Hz.. Gelombang berikutnya untuk dipertimbangkan adalah gelombang (3). Hal ini dapat dilihat bahwa gelombang tersebut memiliki tiga siklus pada periode yang sama dari gelombang pertama. Jadi gelombang tersebut memiliki frekuensi 3 Hz. 3. Ketiga adalah gelombang (5). Berikut lima siklus dapat ditelusuri, dan tentunya memiliki frekuensi dari 5 Hz. 4. Berikutnya adalah gelombang (7) dan gelombang tersebut memiliki tujuh siklus dan karena itu frekuensi 7 Hz.

9 5. Gelombang (9) adalah berikutnya dengan sembilan siklus dan akan memiliki frekuensi 9 Hz. Gerak periodik pada Gambar.5. dapat dinyatakan dalam deretan sinus dan cosinus yang dihubungkan secara harmonik. Jika x(t) adalah fungsi periodik dengan periode τ, maka fungsi ini dapat dinyatakan oleh deret Fourier (Pain, 005) sebagai: 1 x( t) a0 a1 cos 1t... an cos nt b1 sin 1t... bn sin nt... (.6) Dimana: 1 ; n 1 Pada gelombang segiempat berlaku x(t) = ±A pada t = 0, dan t = τ, dan seterusnya. Deret ini menunjukkan nilai rata-rata dari fungsi yang diskontinu Getaran Bebas (Free Vibration) Dalam gerak translasi, perpindahan didefinisikan sebagai jarak linier, dalam gerak rotasi, perpindahan didefinisikan sebagai gerakan sudut (Harris dan Piersol, 00), seperti terlihat pada Gambar.6. di bawah ini: x U F k -F Gambar.6. Pegas Linier (Harris dan Piersol, 00) Pada Gambar.6 menunjukan perubahan panjang pegas proporsional dengan gaya yang bekerja sepanjang-panjangnya, atau: F k( x u)... (.7) Pegas dianggap tidak memiliki massa, sehingga gaya yang bekerja pada salah satu ujungnya sama dan berlawanan dengan gaya yang bekerja pada ujung yang

10 lain sehingga konstanta proporsional adalah konstan. Benda Tegar dan Regangan dapat dilihat pada Gambar.7. dan.8. berikut: x F m Gambar.7 Benda Tegar (Harris dan Piersol, 00) Massa adalah benda tegar (Gambar.7) dengan percepatan x, menurut hukum kedua Newton sebanding dengan resultan semua gaya yang bekerja pada massa. F mx... (.8) x u F c -F Gambar.8 Redaman (Harris dan Piersol, 00) Konstanta c adalah koefisien redaman, redaman yang ideal dianggap tidak memiliki massa sehingga besarnya gaya pada kedua ujungnya sama namun arahnya berlawanan, sehingga dapat dirumuskan: F c( x u)... (.9) Free vibration tanpa redaman dapat dilihat pada Gambar.9. di bawah ini:

11 x X m k X Gambar.9. Sistem 1 DOF Tanpa Redaman (Harris dan Piersol, 00) Persamaan Newton untuk massa. Gaya mx yang diberikan oleh massa dan pegas massa yang berlawanan dengan gaya kx diterapkan oleh pegas pada massa. m x kx 0... (.10) dimana x = 0 karena posisi kesetimbangan massa. Sehingga solusi untuk penyelesaian diatas adalah: k k x Asin t Bcos t... (.11) m m dimana k m adalah sudut frekuensi natural. k n rad /sec... (.1) m Osilasi sinusoida massa berulang terus menerus, dan interval waktu untuk menyelesaikan satu siklus periode: T... (.13) n Dan kebalikan periode adalah frekuensi natural. f n 1 n 1 k 1 kg... (.14) T m W Sedangkan free vibration dengan redaman dapat dilihat seperti Gambar.10. di bawah ini:

12 Gambar.10. Sistem Pegas Massa dan Diagram Benda Bebas (Harris dan Piersol, 00) Hukum Newton kedua adalah dasar untuk meneliti gerak sistem, pada Gambar.10 perubahan bentuk pegas pada posisi kesetimbangan adalah Δ dan gaya pegas kδ adalah sama dengan gaya gravitasi w yang bekerja pada massa m. k w mg... (.15) Hukum Newton kedua untuk gerak diterapkan pada massa m: dan karena kδ = w, diperoleh: m x F w k( x)... (.16) m x kx... (.17) k frekuensi lingkaran ; sehingga persamaan dapat ditulis: m x x 0... (.18) sehingga persamaan umum dari persamaan diferensial linier orde kedua yang homogen: x Asin t Bcos t 0... (.19) Perioda natural osilasi dibentuk dari ω n τ = π; atau

13 m... (.0) k dan frekuensi natural adalah: f n 1 m... (.1) k Persamaan homogen untuk Gambar.9 adalah: m x cx kx 0... (.) dan koefisien redaman kritis adalah: C c km m... (.3) sehingga rasio redaman adalah: c... (.4) C c Sehingga: c m.1.6 Getaran paksa (Force vibration) Cc... (.5) m Force vibration tanpa redaman dapat dilihat pada Gambar.11. berikut: x F m k Gambar.11. Sistem Teraksitasi Akibat Gaya Tanpa Redaman (Harris dan Piersol 00)

14 Getaran yang terjadi karena rangsangan gaya luar disebut getaran paksa seperti pada Gambar.11. Eksitasi ini biasanya dihasilkan oleh ketidak seimbangan pada mesin-mesin yang berputar. m x kx F sin t... (.6) 0 Sedangkan untuk force vibration dengan redaman dapat dilihat pada Gambar.1. di bawah ini: F m k c x Gambar.1. Sistem Teraksitasi Akibat Gaya dengan Redaman (Harris dan Piersol, 00) Gambar.1 diatas sistem yang teredam karena kekentalan dengan eksitasi harmonik, persamaan diferensial geraknya adalah: m x cx kx F sin t... (.7) 0 Solusi khusus persamaan diatas adalah keadaan tunak (steady state) dengan frekuensi ω yang sama dengan frekuensi eksitasi, sehingga dapat diasumsikan menjadi: x Asin( t )... (.8) x Asin t Bcos t... (.9) dengan A adalah amplitudo osilasi dan ф adalah beda fase simpangan terhadap gaya eksitasi, maka diperoleh:

15 A F 0... (.30) ( k m ) ( c ) dan tan c k m 1... (.31) Dengan membagi pembilang dan penyebut persamaan (.30) dan (.31) dengan k, diperoleh: A F k 0 m c 1 k k... (.3).1.7. Penentuan Indikator c tan k... (.33) m 1 k Proses penentuan indikator tranduser yang akan digunakan harus mempertimbangkan parameter apa yang kita inginkan untuk diukur. Biasanya parameter-parameter tersebut adalah perpindahan, kecepatan dan percepatan. Untuk pemilihan parameter pengukuran dapat dilakukan dengan melihat panduan seperti yang tercantum dalam Tabel.. di bawah ini: Tabel.. Panduan Pemilihan Parameter Pengukuran Parameter Faktor pemilihan a) frekuensi rendah, dibawah 600 cpm Perpindahan (displacement) b) pengukuran getaran shaft pada mesin berat dengan rotor yang relatif ringan. c) menggunakan transduser velocity dan tranduser acceleration.

16 d) transduser velocity, untuk mengukur displacement dengan rang Tabel.. Lanjutan Parameter Faktor pemilihan kaian single integrator. e) transduser accelerometer, dapat digunakan untuk mengukur diplacement getaran dengan rangkaian double integrator. Kecepatan (velocity) a) range frekuensi antara cpm b) pengukuran over all level getaran mesin c) untuk melakukan prosedur analisa secara umum a) pengukuran pada frekuensi tinggi/ultrasonic sampai Percepatan (acceleration) cpm atau lebih b) untuk pengukuran spike energy pada roll bearing, ball bearing, gear, dan sumber getaran aerodinamis dengan frekuensi tinggi.1.8 Standard Pengukuran Getaran Nilai efektif kecepatan getaran digunakan untuk menilai kondisi mesin. Nilai ini dapat ditentukan oleh hampir semua pengukuran perangkat getaran konvensional. Standard yang digunakan untuk pengukuran getaran antara lain ASTM D (Standard Test Methods For Vibration), ANSI S3.40 (Mechanical Vibration and Shock), DIN (Vibration Monitoring) dan

17 ISO (Gambar.13) dengan perincian sebagai berikut ( ISO : Pengukuran getaran untuk evaluasi mesin oleh non-rotating bagian umum. ISO : Pengukuran getaran untuk evaluasi mesin non-rotating bagian base turbin uap dan generator yang melebihi 50 MW dengan operasi kecepatan 1500 rpm, 1800 rpm, 3000 rpm, 3600 rpm. ISO : Pengukuran getaran untuk evaluasi mesin non-rotating bagian industri mesin dengan daya nominal di atas 15 kw dan nominal kecepatan antara 10 rpm dan 15 rpm. ISO : Pengukuran getaran untuk evaluasi mesin non-rotating bagian turbin gas didorong tidak termasuk pesawat dan turunannya. ISO : Pengukuran getaran untuk evaluasi mesin non-rotating bagian mesin hydraulic power generating dan pompa. ISO : Mesin reciprocating dengan rating daya 100 kw. Gambar.13 ISO Vibration Zona A: Hijau, vibrasi dari mesin sangat baik dan dibawah vibrasi yang diizinkan.

18 Zona B: Kuning, vibrasi dari mesin baik dan dapat dioperasikan karena masih dalam batas yang diizinkan. Zona C: Orange, vibrasi dari mesin dalam batas toleransi dan hanya dioperasikan dalam waktu terbatas. Zona D: Merah, vibrasi dari mesin dalam batas berbahaya dan kerusakan dapat terjadi pada mesin. Analisis data dimulai dengan pembahasan informasi hasil pengukuran dalam domain waktu. Data ini merupakan data awal yang cukup penting karena perilaku sinyal mencerminkan kondisi mesin dan data ini merupakan data paling hulu. Data ini dapat diolah lebih lanjut menjadi data dalam domain frekuensi. Data ini dapat dihubungkan dengan putaran yang terjadi pada poros pompa tersebut. Untuk keperluan diagnosis digunakan berbagai teknik pengolahan data lanjutan misalnya: peta spectrum frekuensi dan order-tracking. Masalah resonansi bisa dipahami lebih baik bila frekuensi pribadi suatu struktur dapat diketahui. Salah satu cara untuk mengetahui frekuensi pribadi tersebut adalah dengan melakukan pengukuran fungsi respon frekuensinya. Pengukuran ini melibatkan beberapa aspek penunjang diantaranya adalah teknik eksitasi getaran yang dikenakan pada struktur.. Kopling Flens Sabuk..1 Kopling Kopling adalah suatu elemen yang berfungsi sebagai penerus putaran dan daya dari poros penggerak keporos yang digerakkan tanpa terjadi slip, dan kedudukan kedua sumbu poros dalam satu garis atau boleh berbeda sedikit. Kopling dapat dibedakan menurut sifat penyambungan kedua porosnya, yaitu kopling tetap dan kopling tidak tetap. Kopling tetap selalu dalam keadaan terhubung, sedangkan kopling tidak tetap dapat dilepaskan bila diperlukan (Suryanto, 1995). Kopling harus memenuhi persyaratan sebagai berikut: 1. Mudah dihubungkan atau dilepaskan.. Mampu meneruskan daya dan putaran sepenuhnya tanpa slip. 3. Kuat terpasang pada porosnya. 4. Tak terdapat bagian yang mudah lepas.

19 .. Modifikasi kopling sabuk Kopling ini dimodifikasi untuk meneruskan momen dengan perantaraan flens sabuk yang diikat dengan menggunakan baut dan mur. Dengan demikian pembebanan yang berlebihan pada poros penggerak pada waktu dihubungkan, dapat dihindari dengan adanya sabuk yang terbuat dari bahan yang fleksibel, maka kopling menjadi tidak kaku, dapat dilihat pada Gambar Pompa Gambar.14 Kopling dan sabuk Pompa adalah suatu alat yang digunakan untuk memindahkan suatu fluida dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Standard pompa sesuai dengan API 610, ISO 5199, DIN 456.

20 Gambar.15 Pompa Sentrifugal Gambar.16 Komponen Pompa Sentrifugal poros Gambar.17 Poros pompa Komponen pompa dapat dilihat pada Gambar.15 dan.16 antara lain: 1. Stuffing Box berfungsi untuk mencegah kebocoran pada daerah dimana poros pompa menembus casing.. Packing digunakan untuk mencegah dan mengurangi bocoran cairan dari casing pompa melalui poros yang bahannya terbuat dari asbes atau teflon.

21 3. Shaft/poros berfungsi untuk meneruskan momen puntir dari penggerak selama beroperasi dan tempat kedudukan impeller dan bagian-bagian berputar lainnya. 4. Shaft sleeve berfungsi untuk melindungi poros dari erosi, korosi dan keausan pada stuffing box. 5. Vane sudu dari impeller sebagai tempat berlalunya cairan pada impeller. 6. Casing merupakan bagian paling luar dari pompa yang berfungsi sebagai pelindung elemen yang berputar. 7. Eye of Impeller bagian sisi masuk pada arah isap impeller. 8. Impeller berfungsi untuk mengubah energi mekanis dari pompa menjadi energi kecepatan pada cairan yang dipompakan secara kontinyu, sehingga cairan pada sisi isap secara terus menerus akan masuk mengisi kekosongan akibat perpindahan dari cairan yang masuk sebelumnya. 9. Casing wear ring berfungsi untuk memperkecil kebocoran cairan yang melewati bagian depan impeller maupun bagian belakang impeller, dengan cara memperkecil celah antara casing dengan impeller. 10. Bearing (bantalan) berfungsi untuk menumpu dan menahan beban dari poros agar dapat berputar, baik berupa beban radial maupun beban axial. Bearing juga memungkinkan poros untuk dapat berputar dengan lancar dan tetap pada tempatnya, sehingga kerugian gesek menjadi kecil. 11. Discharge nozzle merupakan nosel pada sisi keluar..3.1 Karakteristik Pompa

22 Karakteristik pompa adalah prestasi pompa dalam bentuk grafik hubungan antara head (H), daya (N) dan efisiensi (η) terhadap debit (Q) seperti terlihat pada Gambar.18. Gambar.18. Kurva Karakteristik Pompa Sentrifugal Head pompa adalah energi per satuan berat yang harus disediakan untuk mengalirkan sejumlah zat cair yang direncanakan sesuai dengan kondisi instalasi pompa, atau tekanan untuk mengalirkan sejumlah zat cair yang dinyatakan dalam satuan panjang. Menurut Bernoully ada tiga macam energi (head) fluida yaitu energi tekanan, energi kinetik dan energi potensial. Hal ini dinyatakan pada persamaan (.34) sebagai berikut (Sularso, 006): dimana : P V H Z... (.34) g H : head total pompa (m) P γ V g : head tekanan (m) : head kecepatan (m) Z : head statis total (m) Selain ketiga head tersebut pada instalasi terjadi losses yang disebut head losses. Head losses akibat adanya perlengkapan pipa disebut head minor sedangkan akibat turbulensi dan gesekan disebut head mayor. Kerugian head minor dapat dicari dengan persamaan (.35). dimana: V h m f... (.35) g

23 h m : head loss minor (m) f : koefisien kerugian dari perlengkapan pipa Head losses mayor dapat dihitung dengan menggunakan persamaan Darcy- Weisbach pada persamaan (.36). dimana: L V h f f... (.36) D g h f : head loss mayor (m) L : panjang pipa (m) D : diameter dalam pipa (m) V : kecepatan aliran (m/s) g : percepatan gravitasi (m/s ) Koefisien untuk pipa licin adalah: 0,316 f... (.37) Re 1 Sedangkan total losses adalah penjumlahan loss mayor dan loss minor yang dinyatakan pada persamaan (.38). h h f h m... (.38).4. Pengolahan Data Vibrasi.4.1. Time Domain Pengolahan data secara time domain melibatkan data hasil pengukuran objek pemantauan respon getaran, tekanan fluida kerja, temperatur fluida kerja maupun aliran fluida kerja. Dalam kasus pengukuran temperatur dengan thermometer yang konvensional karena karakteristik alat ukurnya, maka tidak dapat dilakukan pengukuran temperatur secara dinamik. Demikian pula halnya dengan pengukuran aliran fluida kerja, sehingga untuk memungkinkan pengukuran objek

24 pemantauan berupa sinyal dinamik, maka diperlukan sensor yang memiliki karakteristik dinamik tertentu. Gambar.19. Karakteristik Sinyal Statik dan Dinamik Hasil pengukuran objek pemantauan dalam domain waktu seperti Gambar.19 dapat berupa sinyal: 1. Sinyal statik, yaitu sinyal yang karakteristiknya (misal: amplitudo, arah kerjanya) tidak berubah terhadap waktu.. Sinyal dinamik, yaitu sinyal yang karakteristiknya berubah terhadap waktu, sehingga tidak konstan. Sinyal dinamik yang sering ditemui dalam praktek berasal dari sinyal getaran, baik yang diukur menggunakan accelerometer, vibrometer, maupun sensor simpangan getaran. Untuk keperluan pengolahan sinyal getaran dalam time domain, perlu diperhatikan karakteristik sinyal getaran yang dideteksi oleh masing-masing sensor percepatan, kecepatan, dan simpangan getaran (displacement).

25 .4.. Frekuensi Domain Pengolahan data frekuensi domain umumnya dilakukan dengan tujuan: 1. Untuk memeriksa apakah amplitudo suatu frekuensi domain dalam batas yang diizinkan oleh standar.. Untuk memeriksa apakah amplitudo untuk rentang frekuensi tertentu masih berada dalam batas yang diizinkan oleh standar. 3. Untuk tujuan keperluan diagnosis. Secara konseptual, pengolahan frekuensi domain dilakukan dengan mengkonversikan data time domain ke dalam frekuensi domain. Dalam praktiknya proses konversi ini dilakukan menggunakan proses FFT (Fast Fourier Transfer) atau Transformasi Fourier Cepat seperti terlihat pada Gambar.0. Time Domain F F T F F T Frekuensi Domain Gambar.0. Hubungan Time Domain dengan Frekuesi Domain Data domain waktu merupakan respon total sinyal getaran, sehingga karakteristik masing-masing sinyal getarannya tidak terlihat jelas. Dengan bantuan konsep deret Fourier, maka sinyal getaran ini dapat dipilah-pilah menjadi komponen dalam bentuk sinyal sinus yang frekuensinya merupakan frekuensi-frekuensi dasar dan harmoniknya.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1. Analisa Getaran Analisa getaran merupakan cara yang paling handal untuk mendeteksi awal gejala kerusakan mekanik, elektrikal pada peralatan, sehingga analisa getaran saat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Analisa Getaran Perawatan mesin tradisional, skedul overhaul perbaikan biasanya sulit dibuat karena kebutuhan perbaikan tidak dapat ditentukan secara pasti, tanpa membongkar mesin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Analisa Getaran Sebuah mesin yang ideal sempurna pada prinsipnya tidak menimbulkan getaran sama sekali, karena seluruh energi yang dihasilkan diubah menjadi kerja. Sebagian

Lebih terperinci

BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN

BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN 3.1. Rancangan Alat Uji Pada penelitian ini alat uji dirancang sendiri berdasarkan dasar teori dan pengalaman dari penulis. Alat uji ini dirancang sebagai

Lebih terperinci

POMPA SENTRIFUGAL. Oleh Kelompok 2

POMPA SENTRIFUGAL. Oleh Kelompok 2 POMPA SENTRIFUGAL Oleh Kelompok 2 M. Salman A. (0810830064) Mariatul Kiptiyah (0810830066) Olyvia Febriyandini (0810830072) R. Rina Dwi S. (0810830075) Suwardi (0810830080) Yayah Soraya (0810830082) Yudha

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Getaran merupakan salah satu efek yang terjadi akibat adanya gerak yang diakibatkan adanya perbedaan tekanan dan frekuensi. Dalam dunia otomotif ada banyak terdapat

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. yang menyebabkan terjadinya penurunan tekanan sampai turun di bawah tekanan uap

BAB 2 TINJAUAN PUSTAKA. yang menyebabkan terjadinya penurunan tekanan sampai turun di bawah tekanan uap BAB TINJAUAN PUSTAKA.1. Kavitasi Pada sistem pemipaan yang menggunakan pompa sentrifugal sangat mungkin terjadi kavitasi yang dipengaruhi oleh kecepatan aliran dan perbedaan penampang yang menyebabkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Pada bab ini akan menjelaskan teori pompa beberapa parameter yang berkaitan dengan kenerja pompa. Semua karateristik, teori perhitungan dan efisiensi di jelaskan

Lebih terperinci

TUGAS KHUSUS POMPA SENTRIFUGAL

TUGAS KHUSUS POMPA SENTRIFUGAL AUFA FAUZAN H. 03111003091 TUGAS KHUSUS POMPA SENTRIFUGAL Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat lain yang diinginkan. Pompa beroperasi dengan membuat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Analisa Getaran 2.1.1 Getaran Getaran secara teknik didefinisikan sebagai gerak osilasi dari suatu objek terhadap posisi awalnya. Semua mesin memiliki tiga sifat fundamental

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

BAB 2 LANDASAN TEORI. menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk

BAB 2 LANDASAN TEORI. menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk BAB 2 LANDASAN TEORI 2.1 Teori Dasar Pompa adalah mesin atau peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Misalignment Misalignment adalah ketidaklurusan antara kedua pulley. Misalignment terjadi karena adanya pergeseran atau penyimpangan salah satu bagian mesin dari garis pusatnya.

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahkan fluida dari satu tempat ketempat lainnya, melalui suatu media aluran pipa dengan cara menambahkan energi

Lebih terperinci

iii Banda Aceh, Nopember 2008 Sabri, ST., MT

iii Banda Aceh, Nopember 2008 Sabri, ST., MT ii PRAKATA Buku ini menyajikan pembahasan dasar mengenai getaran mekanik dan ditulis untuk mereka yang baru belajar getaran. Getaran yang dibahas di sini adalah getaran linier, yaitu getaran yang persamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan BAB II DASAR TEORI 2.1. DASAR TEORI POMPA 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

Materi Pendalaman 01:

Materi Pendalaman 01: Materi Pendalaman 01: GETARAN & GERAK HARMONIK SEDERHANA 1 L T (1.) f g Contoh lain getaran harmonik sederhana adalah gerakan pegas. Getaran harmonik sederhana adalah gerak bolak balik yang selalu melewati

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Jenis - Jenis Fan Fan dapat diklasifikasikan dalam dua jenis yaitu: 1. Axial Fan memakai gaya poros untuk menggerakkan udara atau gas, berputar dengan poros utama dengan kipas

Lebih terperinci

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI SKRIPSI MEKANIKA KEKUATAN BAHAN Skripsi Yang Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu fluida dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB I PENDAHULUAN. yang berputar dengan putaran tertentu (Zhou and Shi, 2001). Salah satunya adalah pompa

BAB I PENDAHULUAN. yang berputar dengan putaran tertentu (Zhou and Shi, 2001). Salah satunya adalah pompa BAB I PENDAHULUAN 1.2 LatarBelakang Mesin-mesin rotasi seperti turbin, kompresor, pompa, dan fan banyak digunakan di dunia industri. Mesin-mesin rotasi tersebut pada umumnya terdiri dari poros yang berputar

Lebih terperinci

ANALISA PENGARUH JUMLAH SUDU IMPELER TERHADAP GETARAN PADA POMPA SENTRIFUGAL

ANALISA PENGARUH JUMLAH SUDU IMPELER TERHADAP GETARAN PADA POMPA SENTRIFUGAL NASKAH PUBLIKASI ANALISA PENGARUH JUMLAH SUDU IMPELER TERHADAP GETARAN PADA POMPA SENTRIFUGAL Naskah Publikasi ini disusun sebagai syarat untuk mengikuti Wisuda Universitas Muhammadiyah Surakarta Disusun

Lebih terperinci

BAB 3 DINAMIKA STRUKTUR

BAB 3 DINAMIKA STRUKTUR BAB 3 DINAMIKA STRUKTUR Gerakan dari struktur terapung akan dipengaruhi oleh keadaan sekitarnya, dimana terdapat gaya gaya luar yang bekerja pada struktur dan akan menimbulkan gerakan pada struktur. Untuk

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

Analisis Getaran Struktur Mekanik pada Mesin Berputar untuk Memprediksi Kerusakan Akibat Kondisi Unbalance Sistem Poros Rotor

Analisis Getaran Struktur Mekanik pada Mesin Berputar untuk Memprediksi Kerusakan Akibat Kondisi Unbalance Sistem Poros Rotor Seminar Nasional Maritim, Sains, dan Teknologi Terapan 2016 Vol. 01 Politeknik Perkapalan Negeri Surabaya, 21 November 2016 ISSN: 2548-1509 Analisis Getaran Struktur Mekanik pada Mesin Berputar untuk Memprediksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

PEMICU 1 29 SEPT 2015

PEMICU 1 29 SEPT 2015 PEMICU 1 9 SEPT 015 Kumpul 06 Okt 015 Diketahui: Data eksperimental hasil pengukuran sinyal vibrasi sesuai soal. Ditanya: a. Hitung persamaan karakteristiknya. b. Dapatkan putaran kritisnya c. Simulasikan

Lebih terperinci

PERANCANGAN ALAT DAN ANALISIS EKSPERIMENTAL GETARAN AKIBAT MISALIGNMENT POROS

PERANCANGAN ALAT DAN ANALISIS EKSPERIMENTAL GETARAN AKIBAT MISALIGNMENT POROS PERANCANGAN ALAT DAN ANALISIS EKSPERIMENTAL GETARAN AKIBAT MISALIGNMENT POROS Muhammad Hasbi, Nanang Endriatno, Jainudin Staf Pengajar Program Studi Teknik Mesin Fakultas Teknik Universitas Halu Oleo,

Lebih terperinci

TUJUAN PERCOBAAN II. DASAR TEORI

TUJUAN PERCOBAAN II. DASAR TEORI I. TUJUAN PERCOBAAN 1. Menentukan momen inersia batang. 2. Mempelajari sifat sifat osilasi pada batang. 3. Mempelajari sistem osilasi. 4. Menentukan periode osilasi dengan panjang tali dan jarak antara

Lebih terperinci

SILABUS. I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360

SILABUS. I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360 SILABUS I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360 Jumlah SKS : 2 SKS Semester : 7(ganjil) Kelompok mata kuliah : MKK Program Studi?Program : Produksi dan Perancangan

Lebih terperinci

BAB I PENDAHULUAN. hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah

BAB I PENDAHULUAN. hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah BAB I PENDAHULUAN 1.1. Latar Belakang Penulisan Dewasa ini penggunaan pompa mempunyai peranan sangat luas, hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah tangga, sebagai

Lebih terperinci

ANALISIS PENURUNAN KAPASITAS POMPA NATRIUM HIDROKSIDA (NaOH) DENGAN KAPASITAS 60 M 3 /JAM

ANALISIS PENURUNAN KAPASITAS POMPA NATRIUM HIDROKSIDA (NaOH) DENGAN KAPASITAS 60 M 3 /JAM Hal 35-45 ANALISIS PENURUNAN KAPASITAS POMPA NATRIUM HIDROKSIDA (NaOH) DENGAN KAPASITAS 60 M 3 /JAM Agus Setyo Umartono, Ahmad Ali Fikri Program Studi Teknik Mesin, Fakultas Teknik Universitas Gresik ABSTRAK

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Diagram Alir Penelitian Dalam pembahasan metode penelitian ini disuse untuk mengidentifikasikan kegagalan yang terjadi pada pompa sentrifugal terhadap sinyal vibrasi yang

Lebih terperinci

MAKALAH GETARAN BEBAS TAK TEREDAM DAN GETARAN BEBAS TEREDAM

MAKALAH GETARAN BEBAS TAK TEREDAM DAN GETARAN BEBAS TEREDAM MAKALAH GETARAN BEBAS TAK TEREDAM DAN GETARAN BEBAS TEREDAM Disusun untuk Memenuhi Tugas Mata Kuliah Getaran Mekanik Dosen Pengampu: Agus Nugroho, S.Pd., M.T. Disusun Oleh: 1. Andrika Hilman Hanif (5212415009)

Lebih terperinci

ANALISA KERUSAKAN POMPA SENTRIFUGAL P-011C DI PT. SULFINDO ADIUSAHA DENGAN MENGGUNAKAN TRANSDUCER GETARAN ACCELEROMETER

ANALISA KERUSAKAN POMPA SENTRIFUGAL P-011C DI PT. SULFINDO ADIUSAHA DENGAN MENGGUNAKAN TRANSDUCER GETARAN ACCELEROMETER Jurnal Teknik Mesin (JTM): Vol. 05, No. 3, Oktober 2016 98 ANALISA KERUSAKAN POMPA SENTRIFUGAL P-011C DI PT. SULFINDO ADIUSAHA DENGAN MENGGUNAKAN TRANSDUCER GETARAN ACCELEROMETER Levi Amanda Putra Program

Lebih terperinci

BAB IV PEMODELAN POMPA DAN ANALISIS

BAB IV PEMODELAN POMPA DAN ANALISIS BAB IV PEMODELAN POMPA DAN ANALISIS Berdasarkan pemodelan aliran, telah diketahui bahwa penutupan LCV sebesar 3% mengakibatkan perubahan kondisi aliran. Kondisi yang paling penting untuk dicermati adalah

Lebih terperinci

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Kunlestiowati H *. Nani Yuningsih **, Sardjito *** * Staf Pengajar Polban, kunpolban@yahoo.co.id ** Staf Pengajar Polban, naniyuningsih@gmail.com

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto Getaran Mekanik Getaran Bebas Tak Teredam Muchammad Chusnan Aprianto Getaran Bebas Getaran bebas adalah gerak osilasi di sekitar titik kesetimbangan dimana gerak ini tidak dipengaruhi oleh gaya luar (gaya

Lebih terperinci

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons SILABUS : 1.Getaran a. Getaran pada sistem pegas b. Getaran teredam c. Energi dalam gerak harmonik sederhana 2.Gelombang a. Gelombang sinusoidal b. Kecepatan phase dan kecepatan grup c. Superposisi gelombang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG 1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id GETARAN Getaran adalah salah satu bentuk

Lebih terperinci

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA GELOMBAG : Gerak Harmonik Sederhana M. Ishaq Pendahuluan Gerak harmonik adalah sebuah kajian yang penting terutama jika anda bergelut dalam bidang teknik, elektronika, geofisika dan lain-lain. Banyak gejala

Lebih terperinci

BAB III METODOLOGI DAN HASIL PENELITIAN

BAB III METODOLOGI DAN HASIL PENELITIAN BAB III METODOLOGI DAN HASIL PENELITIAN 3.1. Metode Pengambilan Data Pengambilan data dilakukan pada mesin bubut type EMCO MAXIMAT V13 dengan menggunakan alat vibrometer (untuk mengukur getaran) Kohtect

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB I PENDAHULUAN. Banyak macam pompa air yang digunakan untuk keperluan sehari-hari.

BAB I PENDAHULUAN. Banyak macam pompa air yang digunakan untuk keperluan sehari-hari. BAB I PENDAHULUAN 1. Latar Belakang Banyak macam pompa air yang digunakan untuk keperluan sehari-hari. Salah satunya adalah pompa sentrifugal. Pompa irigasi ini dipakai untuk memompa air dari sungai maupun

Lebih terperinci

LAPORAN PENELITIAN HIBAH BERSAING

LAPORAN PENELITIAN HIBAH BERSAING TEKNIK LAPORAN PENELITIAN HIBAH BERSAING Aplikasi Response Getaran Untuk Menganalisis Fenomena Kavitasi Pada Instalasi Pompa Sentrifugal Wijianto, ST.M.Eng.Sc Marwan Effendy, ST. MT. UNIVERSITAS MUHAMMADIYAH

Lebih terperinci

PENGUKURAN GETARAN DAN SUARA

PENGUKURAN GETARAN DAN SUARA PENGUKURAN GETARAN DAN SUARA ISI: PENDAHULUAN GETARAN MENGUKUR GETARAN ACCELEROMETER KALIBRASI PENGUKURAN AKUSTIK TEKANAN SUARA DAN TINGKAT TEKANAN SUARA ALAT PENGUKUR SUARA METODE KALIBRASI WHAT IS VIBRATION?

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana MODUL PERKULIAHAN OSILASI Bagian- Fakultas Program Studi atap Muka Kode MK Disusun Oleh eknik eknik Elektro 3 MK4008, S. M Abstract Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik

Lebih terperinci

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. Centrifugal pumps (pompa sentrifugal) Sifat dari hidrolik ini adalah memindahkan energi pada daun/kipas pompa dengan dasar pembelokan/pengubah aliran (fluid

Lebih terperinci

Pemodelan Sistem Dinamik. Desmas A Patriawan.

Pemodelan Sistem Dinamik. Desmas A Patriawan. Pemodelan Sistem Dinamik Desmas A Patriawan. Tujuan Bab ini Mengulang Transformasi Lalpace (TL) Belajar bagaimana menemukan model matematika, yang dinamakan transfer function (TF). Belajar bagaimana menemukan

Lebih terperinci

KATA PENGANTAR. Semarang, 28 Mei Penyusun

KATA PENGANTAR. Semarang, 28 Mei Penyusun KATA PENGANTAR Segala puji syukur kami panjatkan ke hadirat Tuhan Yang MahaEsa. Berkat rahmat dan karunia-nya, kami bisa menyelesaikan makalah ini. Dalam penulisan makalah ini, penyusun menyadari masih

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

Gambar 1. Sistem pegas-massa diagram benda bebas

Gambar 1. Sistem pegas-massa diagram benda bebas GETARAN MEKANIK Pengertian Getaran Getaran adalah gerakan bolak-balik dalam suatu interval waktu tertentu. Getaran berhubungan dengan gerak osilasi benda dan gaya yang berhubungan dengan gerak tersebut.

Lebih terperinci

LAPORAN TUGAS AKHIR. Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun oleh:

LAPORAN TUGAS AKHIR. Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun oleh: LAPORAN TUGAS AKHIR Analisa Kerusakan Pompa Sentrifugal One Stage type Ebara Pump 37KW Pada Water Treatment Plant (WTP) Dengan Metode FFT Analyzer Studi Kasus Mall Senayan City Diajukan Guna Memenuhi Syarat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia industri, mesin rotari merupakan bagian yang sangat penting dalam proses produksi dan bantalan (bearing) mempunyai peran penting dalam menjaga performa

Lebih terperinci

15 BAB III TINJAUAN PUSTAKA 3.1 Pengertian Pompa Pompa adalah mesin fluida yang berfungsi untuk memindahkan fluida cair dari suatu tempat ke tempat lain dengan cara memberikan energi mekanik pada pompa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengetahuan Dasar Pompa Pompa adalah suatu peralatan mekanis yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat

Lebih terperinci

KAJIAN EKSPERIMENTAL CACAT PADA BANTALAN BERDASARKAN LEVEL GETARAN

KAJIAN EKSPERIMENTAL CACAT PADA BANTALAN BERDASARKAN LEVEL GETARAN KAJIAN EKSPERIMENTAL CACAT PADA BANTALAN BERDASARKAN LEVEL GETARAN J. A. Apriansyah, Dedi Suryadi, A. Fauzan Suryono Program Studi Teknik Mesin, Fakultas Teknik, Universitas Bengkulu Jl. WR. Supratman

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Teknologi dispenser semakin meningkat seiring perkembangan jaman. Awalnya hanya menggunakan pemanas agar didapat air dengan temperatur hanya hangat dan panas menggunakan heater, kemudian

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

BAB 3 POMPA SENTRIFUGAL

BAB 3 POMPA SENTRIFUGAL 3 BAB 3 POMPA SENTRIFUGAL 3.1.Kerja Pompa Sentrifugal Pompa digerakkan oleh motor, daya dari motor diberikan kepada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Zat cair yang

Lebih terperinci

Bab 4 Perancangan Perangkat Gerak Otomatis

Bab 4 Perancangan Perangkat Gerak Otomatis Bab 4 Perancangan Perangkat Gerak Otomatis 4. 1 Perancangan Mekanisme Sistem Penggerak Arah Deklinasi Komponen penggerak yang dipilih yaitu ball, karena dapat mengkonversi gerakan putaran (rotasi) yang

Lebih terperinci

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin :

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin : BOILER FEED PUMP A. PENGERTIAN BOILER FEED PUMP Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

DETEKSI KERUSAKAN BEARING PADA CONDENSATE PUMP DENGAN ANALISIS SINYAL VIBRASI

DETEKSI KERUSAKAN BEARING PADA CONDENSATE PUMP DENGAN ANALISIS SINYAL VIBRASI DETEKSI KERUSAKAN BEARING PADA CONDENSATE PUMP DENGAN ANALISIS SINYAL VIBRASI Ganong Zainal Abidin, I Wayan Sujana Program Studi Teknik Mesin, Institut Teknologi Nasional Malang Email : ganongzainal@outlook.com

Lebih terperinci

POMPA. Pompa Dinamik. Pompa Perpindahan A. POMPA SENTRIGUGAL

POMPA. Pompa Dinamik. Pompa Perpindahan A. POMPA SENTRIGUGAL 8 POMPA Pompa bisa diklasifikasikan dengan berbagai cara. Jika pompa diklasifikasikan berdasarkan cara energi dipindahkan maka pompa bisa dikelompokkan sebagai berikut:: 1. Pompa dinamik (Dynamic) 2. Pompa

Lebih terperinci

Simulasi Sederhana tentang Energy Harvesting pada Sistem Suspensi

Simulasi Sederhana tentang Energy Harvesting pada Sistem Suspensi Simulasi Sederhana tentang Energy Harvesting pada Sistem Suspensi mochamad nur qomarudin, februari 015 mnurqomarudin.blogspot.com, alfiyahibnumalik@gmail.com bismillah. seorang kawan meminta saya mempelajari

Lebih terperinci

DASAR PENGUKURAN MEKANIKA

DASAR PENGUKURAN MEKANIKA DASAR PENGUKURAN MEKANIKA 1. Jelaskan pengertian beberapa istilah alat ukur berikut dan berikan contoh! a. Kemampuan bacaan b. Cacah terkecil 2. Jelaskan tentang proses kalibrasi alat ukur! 3. Tunjukkan

Lebih terperinci

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat 1 BAB I PENDAHULUAN 1.1 Pandangan Umum Pompa Pompa adalah suatu jenis mesin yang digunakan untuk memindahkan fluida dari suatu tempat yang rendah ketempat yang lebih tinggi atau dari tempat yang bertekanan

Lebih terperinci

PEMANTAUAN KONDISI MESIN BERDASARKAN SINYAL GETARAN

PEMANTAUAN KONDISI MESIN BERDASARKAN SINYAL GETARAN 130 PEMANTAUAN KONDISI MESIN BERDASARKAN SINYAL GETARAN Didik Djoko Susilo 1 1 Staf Pengajar - Jurusan Teknik Mesin - Fakultas Teknik UNS Keywords : Machine Monitoring Vibration Signal Data Acquisition

Lebih terperinci

KARAKTERISTIK VIBRASI PADA GEAR PUTARAN RENDAH

KARAKTERISTIK VIBRASI PADA GEAR PUTARAN RENDAH KARAKTERISTIK VIBRASI PADA GEAR PUTARAN RENDAH (Studi Kasus Gearbox Main Drive Kiln Pabrik Indarung V PT Semen Padang) Suherdian Septa Sarianja Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas

Lebih terperinci

GERAK HARMONIK Gerak Harmonik terdiri atas : 1. Gerak Harmonik Sederhana (GHS) 2. Gerak Harmonik Teredam

GERAK HARMONIK Gerak Harmonik terdiri atas : 1. Gerak Harmonik Sederhana (GHS) 2. Gerak Harmonik Teredam GERAK OSILASI adalah variasi periodik - umumnya terhadap waktu - dari suatu hasil pengukuran, contohnya pada ayunan bandul. Istilah vibrasi sering digunakan sebagai sinonim osilasi, walaupun sebenarnya

Lebih terperinci

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB Getaran (Osilasi) : Gerakan berulang pada lintasan yang sama Ayunan Gerak Kipas Gelombang dihasilkan oleh getaran Gelombang bunyi Gelombang air

Lebih terperinci

Ruko Jambusari No. 7A Yogyakarta Telp. : ; Fax. :

Ruko Jambusari No. 7A Yogyakarta Telp. : ; Fax. : PRAKTIKAL VIBRASI MEKANIK Teori dan Praktik Oleh : Dr. Abdul Hamid, B.Eng, M.Eng. Edisi Pertama Cetakan Pertama, 2012 Hak Cipta 2012 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak

Lebih terperinci