BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Misalignment Misalignment adalah ketidaklurusan antara kedua pulley. Misalignment terjadi karena adanya pergeseran atau penyimpangan salah satu bagian mesin dari garis pusatnya. Misalignment sendiri mengakibatkan getaran dalam arah axial. Sedangkan, alignment adalah suatu pekerjaan yang meluruskan/ mensejajarkan dua sumbu poros lurus (antara poros penggerak dengan sumbu poros yang digerakkan) pada waktu peralatan itu beroperasi. Tetapi dalam kenyataan, pengertian lurus tidak bisa didapatkan 100%. Untuk itu harus diberikan toleransi kurang dari 0,06 mm. Dalam proses alignment pada kondisi mesin tidak beroperasi (dingin), hasilnya bisa saja akan berubah pada saat mesin beroperasi (panas). Macam macam ketidaklurusan kedua poros (misalignment) [1]: a) Paralel-Misalignment, adalah posisi dari kedua pulley dalam keadaan tidak sejajar dengan ketinggian yang berbeda seperti yang dapat dilihat pada gambar 2.1. Gambar 2.1 Gambar Parallel-misalignment pulley b) Angular-Misalignment, adalah ketidaklurusan kedua pulley yang posisinya saling menyudut seperti yang dapat dilihat pada gambar

2 Gambar 2.2 Gambar Angular misalignment pulley c) Twisted-Misalignment, adalah gabungan dari parallel dan angular seperti yang dapat dilihat pada gambar 2.3. Gambar 2.3 Gambar Twisted-misalignment pulley d) Softfoot adalah suatu kondisi dimana mesin duduk pada landasan dasar lantai, hal ini berarti sebuah kondisi yang kurang stabil, baik karena sifat dasar pondasi lantai maupun material dudukannya. Proses Leveling, pelurusan dan perataan (alignment) haruslah dilakukan terlebih dahulu. 2.2 Pulley Puli merupakan tempat sabuk berputar, besarnya putaran yang ditransmisikan sabuk tergantung pada diameter puli penggerak dan puli yang digerakkan. Puli berfungsi untuk memindahkan daya dan putaran yang dihasilkan motor diesel ke poros pertama, lalu memindahkannya ke poros kedua (poros utama) yang memutar. Pada umumnya puli dibuat dengan besi 7

3 cor kelabu. Contoh pulley yang digunakan dapat dilihat pada gambar 2.4. Jenis-jenis pulley dapat dibagi menjadi: 1. Sheaves / V-Pulley: Paling sering digunakan, pulley ini digerakkan oleh V-Belt. 2. Variable Speed Pulley: digunakan untuk mengontrol kecepatan mesin. 3. Mi- Lock Pulley: digunakan pada pegas rem. 4. Timing Pulley: digunakan untuk aplikasi yang mempunyai kebutuhan yang lebih spesifik. Adapun beberapa tipe pulley yaitu: 1. Pulley tipe V 2. Pulley timming 3. Pulley Variable 4. Pulley round (alur U) 5. Loss pulley Perbandingan putaran, dan diameter puli diperoleh dari : n 1.d 1 = n 2.d 2.. (2.1) dimana : n 1 = Putaran puli penggerak [mm] n 2 = Putaran puli yang digerakkan [mm] d 1 = Diameter puli penggerak [mm] d 2 = Diameter puli yag digerakkan [mm] Gambar 2.4 Pulley 8

4 2.3 Klasifikasi fan Fan dapat diklasifikasikan dalam dua klasifikasi yaitu: 1. Fan Aksial berfungsi menggerakkan aliran udara sepanjang sumbu fan. Cara kerja fan seperti impeler pesawat terbang: blades fan menghasilkan pengangkatan aerodinamis yang menekan udara. Fan ini terkenal di industri karena murah, bentuknya yang kompak dan ringan. Jenis utama fan dengan aliran aksial (impeler, pipa aksial dan impeler aksial) [2] yang dapat dilihat pada Gambar 2.5. Gambar 2.5 Fan Aksial Fan Aksial dapat dibagi menjadi 3 jenis yaitu : a. Fan Propeller seperti terlihat pada gambar 2.6, Menghasilkan laju aliran udara yang tinggi pada tekanan Rendah, tidak membutuhkan saluran kerja yang luas (sebab tekanan yang dihasilkannya kecil), murah sebab konstruksinya yang sederhana, mencapai efisiensi maksimum, hampir seperti aliran yang mengalir sendiri dan sering digunakan pada ventilasi atap, dapat menghasilkan aliran dengan arah berlawanan, yang membantu dalam penggunaan ventilasi namun efesiensi energinya relarif rendah dan sedikit berisik. Gambar 2.6 Fan Propeller 9

5 b. Fan pipa aksial seperti terlihat pada gambar 2.7 merupakan fan yang menghasilkan tekanan lebih tinggi dan efesiensi operasinya lebih baik daripada fan propeller, dapat dengan cepat dipercepat sampai ke nilai kecepatan tertentu (karena putaran massanya rendah) dan menghasilkan aliran pada arah berlawanan, yang berguna dalam berbagai penggunaan ventilasi, menciptakan tekanan yang cukup untuk mengatasi kehilangan di saluran dengan ruang yang relatif efisien, yang berguna untuk pembuangan. Tetapi harga fan pipa aksial relatif mahal, kebisingan aliran udara sedang dan efesiensi energinya reletif rendah ( 65%). Gambar 2.7 Fan Tabung Aksial c. Fan dengan baling-baling seperti terlihat pada gambar 2.8 merupakan fan yang dapat dengan mudah dipercepat sampai ke nilai kecepatan tertentu (disebabkan putaran massanya yang rendah) dan menghasilkan aliran pada arah berlawanan yang berguna dalam berbagai penggunaan ventilasi, cocok untuk hubungan langsung ke as motor dan kebanyakan energinya efisien ( mencapai 85% jika dilengkapi dengan fan airfoil dan jarak ruang yang kecil). Gambar 2.8 Vane-axial Fan 10

6 2. Fan Sentrifugal seperti pada gambar 2.9 meningkatkan kecepatan aliran udara dengan impeler berputar. Kecepatan meningkat sampai mencapai ujung blades dan kemudian diubah ke tekanan. Fan ini mampu menghasilkan tekanan tinggi yang cocok untuk kondisi operasi yang kasar, seperti sistim dengan suhu tinggi, aliran udara kotor atau lembab, dan handling bahan. Gambar 2.9 Fan Sentrifugal Fan sentrifugal dapat diklasifikasikan menjadi: a. Fan radial dengan blade datar ( gambar 2.10) Rancangannya sederhana sehingga dapat dipakai untuk unit penggunaan khusus, dapat beroperasi pada aliran udara yang rendah tanpa masalah getaran, sangat tahan lama, Efisiensinya mencapai 75%, Memiliki jarak ruang kerja yang lebih besar yang berguna untuk handling padatan yang terbang (debu, serpih kayu, dan skrap logam), namun penggunaannya hanya cocok untuk laju aliran udara rendah sampai medium. Gambar 2.10 Fan Sentrifugal dengan Blade Radial b. Forward-Curved Fan (Fan yang melengkung ke depan) seperti terlihat gambar 2.11 merupakan fan yang dapat menggerakkan volum udara yang 11

7 besar terhadap tekanan yang relatif rendah, ukuran fan relatif kecil, tingkat kebisingannya rendah (disebabkan rendahnya kecepatan) dan sangat cocok untuk digunakan untuk penyejuk udara dan ventilasi, namun fan ini Hanya cocok untuk layanan penggunaan yang bersih, bukan untuk layanan kasar dan bertekanan tinggi, keluaran fan sulit untuk diatur secara tepat, penggerak harus dipilih secara hati-hati untuk menghindarkan beban motor berlebih sebab kurva daya meningkat sejalan dengan aliran udara, Efisiensi energinya relatif rendah (55-65%) Gambar 2.11 Forward-Curved Fan c. Backward inclined fan (gambar 2.12), merupakan fan yang dapat beroperasi dengan perubahan tekanan statis (asalkan bebannya tidak berlebih ke motor), Cocok untuk sistim yang tidak menentu pada aliran udara tinggi, Cocok untuk layanan forced-draft, Fan dengan blade datar lebih kuat, Fan dengan blades lengkung lebih efisien (melebihi 85%), Fan dengan blades air-foil yang tipis adalah yang paling efisien. Namun fan ini memiliki sejumlah kekurangan seperti Tidak cocok untuk aliran udara yang kotor (karena bentuk fan mendukung terjadinya penumpukan debu), Fan dengan blades air-foil kurang stabil karena mengandalkan pada pengangkatan yang dihasilkan oleh tiap blade dan Fan blades air-foil yang tipis akan menjadi sasaran erosi. Gambar 2.12 Backward Inclined Fan 12

8 2.4 Sistem Transmisi Centifugal Fan (V-belt) Jarak yang cukup jauh yang memisahkan antara dua buah poros mengakibatkan tidak memungkinkannya mengunakan transmisi langsung dengan roda gigi. Sabuk-V merupakan sebuah solusi yang dapat digunakan. Sabuk-V adalah salah satu transmisi penghubung yang terbuat dari karet dan mempunyai penampang trapesium. Bagian sabuk yang membelit pada pulli akan mengalami lengkungan sehingga lebar bagian dalamnya akan bertambah besar (Sularso, 1991:163) Sebagian besar transmisi sabuk menggunakan sabuk-v karena mudah penanganannya dan murah harganya. Selain itu sabuk-v juga memiliki keungulan lain dimana sabuk-v akan menghasilhan transmisi daya yang besar pada tegangan yang relatif rendah serta jika dibandingkan dengan transmisi roda gigi dan rantai, sabuk-v bekerja lebih halus dan tak bersuara. Sabuk-V selain juga memiliki keungulan dibandingkan dengan transmisitransmisi yang lain, sabuk-v juga memiliki kelemahan dimana sabuk-v dapat memungkinkan untuk terjadinya slip. Secara umum, sabuk dapat diklasifikasikan menjadi 3 jenis [3] yaitu: Sabuk rata (flat belt) Sabuk rata (flat belt) dipasang pada puli silinder dan meneruskan momen antara dua poros yang jaraknya dapat mencapai 10 meter dengan perbandingan putaran antara 1:1 sampai dengan 6:1. Sabuk dengan penampang trapesium (v-belt) dipasang pada puli dengan alur dan meneruskan momen antara dua poros yang jaraknya dapat mencapai 5 meter dengan perbandingan putaran antara 1:1 sampai dengan 7:1. Sabuk dengan gigi (timing belt) yang digerakkan dengan sproket pada jarak pusat sampai 2 meter, dan meneruskan putaran secara tepat dengan perbandingan antara 1:1 sampai 6:1. Kecepatan sabuk pada umumnya direncanakan antara m/s, serta dapat mentransmisikan daya hingga 500 kw. Sabuk-V terbuat dari karet dan mempunyai penampang trapesium. Tenunan tetoron atau 13

9 semacamnya dipergunakan sebagai inti sabuk untuk membawa tegangan yang besar, hal ini dapat dilihat pada Gambar 2.13 ((Sularso, 1991:164) Gambar 2.13 Penampang sabuk-v klasik 2.5 Tipe Dan Ukuran Nominal Sabuk-V Dalam gambar 2.14 diberikan berbagai proporsi penampang sabuk-v yang umum dipakai yang merupakan tipe standart ditandai dengan huruf A, B, C, D dan E. Gambar 2.14 Ukuran penampang sabuk-v 14

10 2.6 Alur V pada pulley Table 2.1 Diameter minimum puli yang diizinkan dan dianjurkan (mm) Penampang A B C D E Diameter min. yang diizinkan Diameter mini. yang dianjurkan Alur V pada pulley dimana akan didudukan sabuk V harus dikerjakan dengan hati-hati pada mesin perkakas, kebenaran bentuk serta ukuran dari alur V serta ukuran diameter lubang harus tepat. untuk pulle yang menggunakan alur V lebih dari satu maka alur-alur tersebut harus seragam sehingga masing-masing sabuk akan bekerja secara merata.kesalahan bentuk dari alur V pada pulley akan mengakibatkan penurunan umur pakai dari sabuk itu sendiri serta akan mereduksi daya yang akan ditransmisikan. Pada tabel 2.1 ( Sularso, 1991:169) terdapat diameter pulli berdasarka tipe sabuk- V. 2.7 Analisa Getaran Getaran secara teknik didefinisikan sebagai gerak osilasi dari suatu objek terhadap posisi awalnya. Semua mesin memiliki tiga sifat fundamental yang berhubungan untuk menentukan bagaimana mesin akan bereaksi terhadap kekuatan-kekuatan yang menyebabkan getaran-getaran, seperti sistem pegas-massa [12], yaitu : 1. Massa (m) Merupakan inersia untuk tetap dalam keadaan semula atau gerak. Sebuah gaya mencoba untuk membawa perubahan dalam keadaan istirahat atau gerak, yang ditentang oleh massa dan satuannya dalam kg. 2. Kekakuan atau stiffnes (k) Ada kekakuan tertentu yang dipersyaratkan membengkokkan atau membelokkan struktur dengan jarak tertentu. Ini mengukur gaya yang 15

11 diperlukan untuk memperoleh defleksi tertentu disebut kekakuan, satuan dalam N/m. 3. Damping atau redaman (c) Setelah memaksa set bagian atau struktur ke dalam gerakan, bagian atau struktur akan memiliki mekanisme inheren untuk memperlamabat gerak (kecepatan). Karakteristik ini untuk mengurangi kecepatan gerak disebut redaman, satuannya dalam N/(m/s). Lihat Gambar 2.15 dengan menerapkan kekuatan untuk massa, massa bergerak ke kiri, menekan pegas semi. Ketika massa dilepaskan, bergerak kembali ke posisi netral dan kemudian perjalanan kanan lanjut sampai ketegangan pegas berhenti massa. Massa kemudian berbalik dan mulai melakukan perjalanan ke kiri lagi. Ini lagi melintasi posisi netral dan mencapai batas kiri. Gerakan ini secara teoritis dapat terus tanpa henti jika tidak ada redaman dalam sistem dan tidak ada efek eksternal (seperti gesekan). Gerakan ini disebut getaran[12]. Gambar 2.15 Konsep dasar getaran Karakteristik Getaran Getaran mesin adalah gerakan suatu bagian mesin maju dan mundur (bolak-balik) dari keadaan diam/netral. Kondisi suatu mesin dan masalah-masalah mekanik yang terjadi dapat diketahui dengan mengukur karakteristik getaran pada mesin tersebut. Karakteristik- karakteristik getaran yang penting antara lain adalah: 16

12 Frekuensi Getaran Perpindahan Getaran. (Vibration Displacement) Kecepatan Getaran (Vibration Velocity) Percepatan Getaran (Vibration Acceleration) Dengan mengacu pada gerakan pegas, kita dapat mempelajari karakteristik suatu getaran dengan memetakan gerakan dari pegas tersebut terhadap fungsi waktu Parameter Pengukuran Kondisi suatu mesin dan masalah-masalah mekanik yang terjadi dapat diketahui dengan mengukur karakteristik getaran pada mesin tersebut. Karakteristik getaran yang penting antara lain: 1. Frekuensi adalah karakteristik dasar yang digunakan untuk mengukur dan menggambarkan getaran. 2. Perpindahan mengindikasikan berapa jauh suatu objek bergetar. 3. Kecepatan mengindikasikan berapa cepat obek bergetar. 4. Percepatan mengindikasikan suatu objek bergetr terkait dengan gaya penyebab getaran. 5. Phase mengindikasikan bagaimana suatu bagian bergetar relatif terhadap bagian yang lain, atau untuk menentukan posisi suatu bagian yang bergetar pada suatu saat, terhadap suatu referensi atau terhadap bagian lain yang bergettar dengan frekuensi yang sama. Gerakan massa dari posisi netral, untuk batas atas perjalanan, kembali melalui posisi netral, untuk batas bawah perjalanan dan kembali ke posisi netral, merupakan satu siklus gerak. Ini satu siklus gerak berisi semua informasi yang diperlukan untuk mengukur getaran dari sistem ini. Gerak terus massa hanya akan mengulangi siklus yang sama [12]. Gerakan ini disebut periodik dan harmonis, dan hubungan antara perpindahan massa dan waktu dinyatakan dalam bentuk persamaan sinusoidal:... (2.2) 17

13 dimana A = Amplitudo ω = 2.π.f f = frequensi t = detik Sebagai massa perjalanan naik dan turun, kecepatan perubahan wisata dari nol sampai maksimum. Velocity dapat diperoleh dengan waktu membedakan persamaan perpindahan:... (2.3) Demikian pula, percepatan massa juga bervariasi dan dapat diperoleh dengan membedakan persamaan kecepatan:... (2.4) Dalam Gambar 2.7 perpindahan ditampilkan sebagai kurva sinus; kecepatan, sebagai kurva cosinus; percepatan lagi diwakili oleh kurva sinus. Gambar 2.16 Sifat-sifat gelombang Sifat-sifatnya terdiri dari a) Gelombang Fundamental b) Frekuensi 18

14 c) Panang Gelombng d) Amplitudo e) Frekuensi dan waktu f) Langkah g) Bentuk Gelombng Gerak Harmonik Getaran dari sebuah mesin merupakan resultan dari sejumlah getaran individu komponen yang muncul oleh gerak ataupun gaya pada komponen mekanikal ataupun proses pada mesin ataupun sistem yang saling terkait.setiap komponen individu yang bergetar ini memiliki gerak periodik. Gerakan akan berulang pada periode waktu tertentu. Interval atau selang waktu τ, dimana getaran berulang biasanya diukur dalam satuan waktu yaitu detik. Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus (dapat dinyatakan dalam bentuk sinus atau kosinus). Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Gerak osilasi dapat berulang secara teratur. Jika gerak itu berulang dalam selang waktu yang sama, maka geraknya disebut gerak periodik. Waktu pengulangan τ disebut dengan periode osilasi dan kebalikannya, f = 1/τ disebut frekuensi. Jika gerak dinyatakan dalam fungsi waktu x(t), maka setiap gerak periodik harus memenuhi hubungan (t) = x(1 + τ)[8]. Secara umum, gerak harmonik dinyatakan dengan persamaan: x = A sin 2π...(2.4) dimana A adalah amplitudo osilasi yang diukur dari posisi setimbang massa, dan τ adalah periode dimana gerak diulang pada t = τ. Gerak harmonik sering dinyatakan sebagai proyeksi suatu titik yang bergerak melingkar dengan kecepatan tetap pada suatu garis lurus, seperti terlihat pada gambar Dengan kecepatan sudut garis OP sebesar ω, perpindahan simpangan x dapat dituliskan sebagai: x = A sin ɷt..(2.5) 19

15 Besaran ω biasanya diukur dalam radian per detik dan disebut frekuensi lingkaran. Oleh karena gerak berulang dalam 2π radian, maka didapat hubungan: ɷ = = 2πf.(2.6) dengan τ dan f adalah periode dan frekuensi gerak harmonik bertuturt-turut dan biasanya diukur dalam detik dan siklus perdetik. Kecepatan dan percepatan gerak harmonik dapat diperoleh secara mudah dengan diferensiasi simpangan gerak harmonik. Dengan menggunakan notasi titik untuk turunannya, maka didapat: ẋ = ɷA cos ɷt = ɷA sin (ɷt + )...(2.7) ẍ = A sin ɷt = A sin (ɷt + π)..(2.8) Gambar 2.17 Gerak Harmonik Sebagai Proyeksi Suatu Titik Yang Bergerak Pada Lingkaran Gerak Periodik Gerak yang berulang dalam selang waktu yang sama disebut gerak periodik. Gerak periodik ini selalu dapat dinyatakan dalam fungsi sinus atau conisus, oleh sebab itu gerak periodik disebut gerak harmonik. Jika gerak yang periodik ini bergerak bolak-balik melalui lintasan yang sama disebut getaran atau osilasi. Getaran mesin pada umumnya memiliki beberapa frekuensi yang muncul bersama-sama. Gerak periodik dapat dihasilkan oleh getaran bebas system dengan banyak derajat kebebasan, dimana getaran pada tiap frekuensi natural member sumbangan. Getaran 20

16 semacam ini menghasilkan bentuk gelombang kompleks yang diulang secara periodik seperti pada gambar Gelombang pertama yang harus kita amati adalah gelombang (1). Hal ini diwakili oleh satu siklus. Sebagai skala waktu adalah 1 s, ia memiliki frekuensi 1 Hz. Gelombang berikutnya untuk dipertimbangkan adalah gelombang (3). Hal ini dapat dilihat bahwa ia memiliki tiga siklus pada periode yang sama dari gelombang pertama. Jadi, ia memiliki frekuensi 3 Hz. Ketiga adalah gelombang (7). Ia memiliki tujuh siklus dan karena itu frekuensinya 7 Hz. Gelombang (9) adalah berikutnya dengan Sembilan siklus dan akan memiliki frekuensi 9 Hz. Jika x (t) adalah fungsi periodik dengan periode, maka fungsi ini dapat dinyatakan oleh deret Fourier [9] sebagai: x(t) =...(2.9) Dengan Gambar 2.18 Gerak periodik gelombang sinyal segiempat dan Gelombang pembentuknya dalam domain waktu Pada gelombang segiempat berlaku x(t) = ± X pada t =0, dan t =τ, dan seterusnya. Deret ini menunjukkan nilai rata-rata dari fungsi yang diskontinu. Untuk menentukan nilai koefisien n a dan n b, kedua ruas persamaan (2.9) 21

17 dengan cosωt dan sin ωt, kemudian setiap suku diintegrasi untuk lama perioda τ. Dengan mengingat hubungan berikut, = =...(2.10) = Dari persamaan (2.10), maka untuk m = n, diperoleh hasil = (2.11) = (2.12) Persamaan deret Fourier berdasarkan nilai gelombang empat persegi: x(t) = X untuk 0 < t < τ/2 dan x(t) = X untuk τ/2 < t < τ Maka koefisien dan dapat dihitung, sebagai berikut: = = 0 Karena = 0 Dan = = = Akan menghasilkan nilai = 0 untuk n bilangan genap, dan = 4X/ untuk n bilangan ganjil. Sehingga deret Fourier untuk gelombang empat persegi menjadi : x(t) = (2.13) 22

18 2.7.5 Getaran Bebas (Free Vibration) Getaran bebas terjadi jika sistem berosilasi karena bekerjanya gaya yang ada dalam sistem itu sendiri (inherent) dan apabila tidak ada gaya luar yang bekerja. Sistem yang bergetar bebas akan bergetar pada satu atau lebih frekuensi naturalnya yang merupakan sifat dinamika yang dibentuk oleh distribusi massa dan kekakuannya. Perhatikan gerak dari sebuah elemen yang ditempatkan pada sebuah pegas seperti diillustrasikan dalam gambar 2.19 yang menunjukkan sebuah jarak kecil x dari posisi kesetimbangannya. Persamaan diferensial menjabarkan perpindahan elemen setelah dilepaskan yang diperoleh dengan penjumlahan gaya dalam arah vertikal. Aljabar penjumlahan ΣF dengan gaya ke atas (+) adalah: Gambar 2.19 Sistem Massa Pegas dan diagram benda bebas Hukum Newton kedua adalah dasar pertama untuk meneliti gerak system seperti ditunjukkan pada gambar 2.17 dimana gaya statik dan gaya pegas k adalah sama dengan gaya berat w yang bekerja pada massa m: Gerak statik: k = W = m.g (2.14) k - W = 0 Gerak dinamik: mẍ + k( +x) W = 0...(2.15) 23

19 dimana menghasilkan persamaan diferensial untuk gerak, karena k = W dan menggunakan ẍ = a yang merupakan turunan kedua dari x terhadap waktu [10]. mẍ + kx = 0 (2.16) Persamaan 2.16 merupakan persamaan gerak getar bebas tanpa peredaman, selanjutnya diubah menjadi: ẍ + = 0, ω n =..(2.17) Solusi dari persamaan (2.17) : x = Ae st ẋ = sae st ẍ = s 2 Ae st... (2.18) Substitusi (2.18) ke (2.17) e st (s 2 + 0) s 1 = iω n s 2 = -iω n Sehingga: x = A 1 e s 1t + A2 e s 2t = A1 e iω nt + A2 e iω nt (2.19) Ingat: e iq = cos q + i sin q e iq = cos q - i sin q Persamaan (2.19) menjadi x = A 1 (cos ω n t + i sin ω n t) + A 2 (cos ω n t - i sin ω n t) = (A 1 + A 2 ) cos ω n t + i(a 1 - A 2 ) sin ω n t = A cos ω n t + B cos ω n t.(2.20) Kondisi pada t=0, x(0)=x 0 sedangkan v(0)=v 0 x = A cos ω n t + B cos ω n t v = ẋ = -ω n A cos ω n t + ω n B cos ω n t pada t = 0 B= 0, ω n A = V 0 24

20 A = x = sin ω n t x = Asin ω n t Persamaan ini merupakan persamaan diferensial linier dimana solusinya dapat ditemukan sebagai berikut. x = Asin ɷt..(2.21) ẍ = sin ɷt. (2.22) substitusi persamaan (2.16) dan (2.25) sehingga: m ( sin ɷt) + k (A sin ɷt) = 0...(2.23) (k ) (A sin ɷt) = 0 (A sin ɷt) 0 (k ) = Standarisasi Pengukuran Getaran Standar Indicator yang digunakan untuk pengukuran getaran dalam penelitian ini adalah ISO :1995(E). Standard ini dapat digunakan untuk menentukan tingkat getaran yang dapat diterima bagi berbagai kelas permesinan. Dengan demikian, untuk menggunakan standard ini, pertama-tama perlu mengklasifikasikan permesinan yang akan diuji sesuai Tabel 2.4 yang menunjukkan pedoman bagi kelayakan permesinan ISO :1995(E) [11]. 25

21 Tabel 2.4 Kriteria zona evaluasi kelayakan permesinan ISO :1995(E) Dengan membaca Tabel 2.4 dapat mengkaitkan kondisi kerusakan permesinan dengan getaran sebagai monitoring perawatan berbasis kondisi. Standar yang digunakan adalah parameter kecepatan (rms) untuk mengindikasikan kerusakan. Zona Good, satisfactory, unsatisfactory dan unacceptable seperti terlihat pada Tabel 2.4. mengklasifikasikan tingkat keparahan sesuai dengan kelas permesinan, sebagai berikut: 1. Zona Good Zona hijau, getaran dari mesin sangat baik dan dibawah getaran yang diizinkan. 2. Zona Satisfactory Zona abu-abu, getaran dari mesin baik dan dapat dioperasikan karena masih dalam batas yang diizinkan. 3. Zona Unsatisfactory Zona merah muda, getaran dari mesin dalam batas toleransi dan hanya dioperasikan dalam waktu terbatas. 4. Zona Unacceptable Zona merah, getaran dari mesin dalam batas berbahaya dan kerusakan dapat terjadi pada mesin. 26

22 5. Kelas I Bagian mesin secara integral dikaitkan sebagai permesinan lengkap dalam kondisi pengoperasian normal (motor listrik sampai 15 kw). 6. Kelas II Peralatan permesinan berukuran sedang (motor listrik dengan output kw) tanpa fondasi khusus, mesin terpasang mati (hingga 300 kw) dengan fondasi khusus. 7. Kelas III Mesin dengan penggerak utama yang lebih besar dan mesin-mesin besar lainnya dengan rotating masses terpasang mati pada fondasi padat dan fondasi berat yang indikatornya sulit bagi penjalaran getaran. 8. Kelas IV Mesin dengan penggerak utama yang lebih besar dan mesin-mesin besar lainnya dengan rotating masses-terpasang pada fondasi yang indikatornya mudah bagi pengukuran getaran (sebagai contoh: turbo generator terutama dengan substruktur yang ringan). 27

BLOWER DAN KIPAS SENTRIFUGAL

BLOWER DAN KIPAS SENTRIFUGAL BLOWER DAN KIPAS SENTRIFUGAL Hampir kebanyakan pabrik menggunakan fan dan blower untuk ventilasi dan untuk proses industri yang memerlukan aliran udara. Sistim fan penting untuk menjaga pekerjaan proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Jenis - Jenis Fan Fan dapat diklasifikasikan dalam dua jenis yaitu: 1. Axial Fan memakai gaya poros untuk menggerakkan udara atau gas, berputar dengan poros utama dengan kipas

Lebih terperinci

ANALISA PENGARUH PARALLEL-MISALIGNMENT DAN TINGKAT GETARAN YANG TERJADI PADA PULLEY DEPERICARPER FAN SKRIPSI

ANALISA PENGARUH PARALLEL-MISALIGNMENT DAN TINGKAT GETARAN YANG TERJADI PADA PULLEY DEPERICARPER FAN SKRIPSI ANALISA PENGARUH PARALLEL-MISALIGNMENT DAN TINGKAT GETARAN YANG TERJADI PADA PULLEY DEPERICARPER FAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH LASTRI SITUMORANG

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

BAB II DASAR TEORI Sistem Transmisi

BAB II DASAR TEORI Sistem Transmisi BAB II DASAR TEORI Dasar teori yang digunakan untuk pembuatan mesin pemotong kerupuk rambak kulit adalah sistem transmisi. Berikut ini adalah pengertian-pengertian dari suatu sistem transmisi dan penjelasannya.

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Cara Kerja Alat Cara kerja Mesin pemisah minyak dengan sistem gaya putar yang di control oleh waktu, mula-mula makanan yang sudah digoreng di masukan ke dalam lubang bagian

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Transmisi 2.2 Motor Listrik

BAB II DASAR TEORI 2.1 Sistem Transmisi 2.2 Motor Listrik BAB II DASAR TEORI 2.1 Sistem Transmisi Sistem transmisi dalam otomotif, adalah sistem yang berfungsi untuk konversi torsi dan kecepatan (putaran) dari mesin menjadi torsi dan kecepatan yang berbeda-beda

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI SKRIPSI MEKANIKA KEKUATAN BAHAN Skripsi Yang Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu :

Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu : SABUK-V Untuk menghubungkan dua buah poros yang berjauhan, bila tidak mungkin digunakan roda gigi, maka dapat digunakan sabuk luwes atau rantai yang dililitkan di sekeliling puli atau sprocket pada porosnya

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Getaran merupakan salah satu efek yang terjadi akibat adanya gerak yang diakibatkan adanya perbedaan tekanan dan frekuensi. Dalam dunia otomotif ada banyak terdapat

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

BAB II TINJAUAN PUSTAKA. memisahkan serabut dan biji sawit yang berasal dari ampas press yang telah

BAB II TINJAUAN PUSTAKA. memisahkan serabut dan biji sawit yang berasal dari ampas press yang telah BAB II TINJAUAN PUSTAKA Dipericarper fan merupakan salah satu mesin yang berada dalam Pabrik Kelapa Sawit yang berfungsi sebagai penyedia udara yang akan digunakan untuk memisahkan serabut dan biji sawit

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

TUJUAN PERCOBAAN II. DASAR TEORI

TUJUAN PERCOBAAN II. DASAR TEORI I. TUJUAN PERCOBAAN 1. Menentukan momen inersia batang. 2. Mempelajari sifat sifat osilasi pada batang. 3. Mempelajari sistem osilasi. 4. Menentukan periode osilasi dengan panjang tali dan jarak antara

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Mesin Pan Granulator Mesin Pan Granulator adalah alat yang digunakan untuk membantu petani membuat pupuk berbentuk butiran butiran. Pupuk organik curah yang akan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Analisa Getaran Perawatan mesin tradisional, skedul overhaul perbaikan biasanya sulit dibuat karena kebutuhan perbaikan tidak dapat ditentukan secara pasti, tanpa membongkar mesin

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik BAB II DASAR TEORI 2.1. Sistem Transmisi Transmisi bertujuan untuk meneruskan daya dari sumber daya ke sumber daya lain, sehingga mesin pemakai daya tersebut bekerja menurut kebutuhan yang diinginkan.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA Getaran banyak dipakai sebagai alat untuk melakukan analisis terhadap mesin-mesin, baik gerak rotasi maupun translasi. Pengetahuan akan getaran dan data-data yang dihasilkan sangat

Lebih terperinci

SABUK-V. Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu :

SABUK-V. Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu : SABUK-V Untuk menghubungkan dua buah poros yang berjauhan, bila tidak mungkin digunakan roda gigi, maka dapat digunakan sabuk luwes atau rantai yang dililitkan di sekeliling puli atau sprocket pada porosnya

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai BAB II DASAR TEORI 2.1. Prinsip Kerja Mesin Perajang Singkong. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai beberapa komponen, diantaranya adalah piringan, pisau pengiris, poros,

Lebih terperinci

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Pemipil Jagung Mesin pemipil jagung merupakan mesin yang berfungsi sebagai perontok dan pemisah antara biji jagung dengan tongkol dalam jumlah yang banyak dan

Lebih terperinci

4 RANCANGAN SIMULATOR GETARAN DENGAN OUTPUT ARAH GETARAN DOMINAN VERTIKAL DAN HORIZONTAL

4 RANCANGAN SIMULATOR GETARAN DENGAN OUTPUT ARAH GETARAN DOMINAN VERTIKAL DAN HORIZONTAL 33 4 RANCANGAN SIMULATOR GETARAN DENGAN OUTPUT ARAH GETARAN DOMINAN VERTIKAL DAN HORIZONTAL Perancangan simulator getaran ini dilakukan dalam beberapa tahap yaitu : pengumpulan konsep rancangan dan pembuatan

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons SILABUS : 1.Getaran a. Getaran pada sistem pegas b. Getaran teredam c. Energi dalam gerak harmonik sederhana 2.Gelombang a. Gelombang sinusoidal b. Kecepatan phase dan kecepatan grup c. Superposisi gelombang

Lebih terperinci

BAB III. Metode Rancang Bangun

BAB III. Metode Rancang Bangun BAB III Metode Rancang Bangun 3.1 Diagram Alir Metode Rancang Bangun MULAI PENGUMPULAN DATA : DESAIN PEMILIHAN BAHAN PERHITUNGAN RANCANG BANGUN PROSES PERMESINAN (FABRIKASI) PERAKITAN PENGUJIAN ALAT HASIL

Lebih terperinci

PERANCANGAN ALAT DAN ANALISIS EKSPERIMENTAL GETARAN AKIBAT MISALIGNMENT POROS

PERANCANGAN ALAT DAN ANALISIS EKSPERIMENTAL GETARAN AKIBAT MISALIGNMENT POROS PERANCANGAN ALAT DAN ANALISIS EKSPERIMENTAL GETARAN AKIBAT MISALIGNMENT POROS Muhammad Hasbi, Nanang Endriatno, Jainudin Staf Pengajar Program Studi Teknik Mesin Fakultas Teknik Universitas Halu Oleo,

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

TUGAS AKHIR. Disusun oleh : ENDI SOFAN HADI NIM : D

TUGAS AKHIR. Disusun oleh : ENDI SOFAN HADI NIM : D TUGAS AKHIR PERENCANAAN FAN PENDINGIN RADIATOR PADA KENDARAAN RODA EMPAT DENGAN DAYA MESIN 88 HP DAN PUTARAN 3100 RPM DENGAN JUMLAH SUDU 8 BUAH SERTA DIAMETER KIPAS 410 mm Tugas Akhir Disusun Sebagai Syarat

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

A. Dasar-dasar Pemilihan Bahan

A. Dasar-dasar Pemilihan Bahan BAB II TINJAUAN PUSTAKA A. Dasar-dasar Pemilihan Bahan Di dalam merencanakan suatu alat perlu sekali memperhitungkan dan memilih bahan-bahan yang akan digunakan, apakah bahan tersebut sudah sesuai dengan

Lebih terperinci

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Dalam mempelajari masalah gerak pada gelombang atau gerak harmonik, kita mengenal yang namanya PERIODE, FREKUENSI DAN

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG 1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id GETARAN Getaran adalah salah satu bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kajian Singkat Alat Alat pembuat mie merupakan alat yang berfungsi menekan campuran tepung, telur dan bahan-bahan pembuatan mie yang telah dicampur menjadi adonan basah kemudian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini BAB II TINJAUAN PUSTAKA A. Definisi Alat Pencacah plastik Alat pencacah plastik polipropelen ( PP ) merupakan suatu alat yang digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini memiliki

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

SILABUS. I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360

SILABUS. I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360 SILABUS I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360 Jumlah SKS : 2 SKS Semester : 7(ganjil) Kelompok mata kuliah : MKK Program Studi?Program : Produksi dan Perancangan

Lebih terperinci

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto Getaran Mekanik Getaran Bebas Tak Teredam Muchammad Chusnan Aprianto Getaran Bebas Getaran bebas adalah gerak osilasi di sekitar titik kesetimbangan dimana gerak ini tidak dipengaruhi oleh gaya luar (gaya

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Persiapan UAS - Latihan Soal Doc. Name: K3ARFIS0UAS Version : 205-02 halaman 0. Jika sebuah partikel bergerak dengan persamaan posisi r= 5t 2 +, maka kecepatan rata -rata antara

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor BAB II DASAR TEORI 2.1 Konsep Perencanaan Sistem Transmisi Pada perancangan suatu kontruksi hendaknya mempunyai suatu konsep perencanaan. Untuk itu konsep perencanaan ini akan membahas dasar-dasar teori

Lebih terperinci

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:

Lebih terperinci

SILABUS MATA KULIAH FISIKA DASAR

SILABUS MATA KULIAH FISIKA DASAR LAMPIRAN TUGAS Mata Kuliah Progran Studi Dosen Pengasuh : Fisika Dasar : Teknik Komputer (TK) : Fandi Susanto, S. Si Tugas ke Pertemuan Kompetensi Dasar / Indikator Soal Tugas 1 1-6 1. Menggunakan konsep

Lebih terperinci

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai Mesin penghancur kedelai dengan penggerak motor listrik 0,5 Hp, mengapa lebih memilih memekai motor listrik 0,5 Hp karena industri yang di

Lebih terperinci

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana MODUL PERKULIAHAN OSILASI Bagian- Fakultas Program Studi atap Muka Kode MK Disusun Oleh eknik eknik Elektro 3 MK4008, S. M Abstract Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Serabut Kelapa Sebagai Negara kepulauan dan berada di daerah tropis dan kondisi agroklimat yang mendukung, Indonesia merupakan Negara penghasil kelapa terbesar di dunia. Menurut

Lebih terperinci

TRANSMISI RANTAI ROL

TRANSMISI RANTAI ROL TRANSMISI RANTAI ROL Penggunaan: transmisi sabuk > jarak poros > transmisi roda gigi Rantai mengait pada gigi sproket dan meneruskan daya tanpa slip perbandingan putaran tetap Keuntungan: Mampu meneruskan

Lebih terperinci

TRANSMISI RANTAI ROL 12/15/2011

TRANSMISI RANTAI ROL 12/15/2011 TRANSMISI RANTAI ROL Penggunaan: transmisi sabuk > jarak poros > transmisi roda gigi Rantai mengait pada gigi sproket dan meneruskan daya tanpa slip perbandingan putaran tetap Mampu meneruskan daya besar

Lebih terperinci

GERAK HARMONIK Gerak Harmonik terdiri atas : 1. Gerak Harmonik Sederhana (GHS) 2. Gerak Harmonik Teredam

GERAK HARMONIK Gerak Harmonik terdiri atas : 1. Gerak Harmonik Sederhana (GHS) 2. Gerak Harmonik Teredam GERAK OSILASI adalah variasi periodik - umumnya terhadap waktu - dari suatu hasil pengukuran, contohnya pada ayunan bandul. Istilah vibrasi sering digunakan sebagai sinonim osilasi, walaupun sebenarnya

Lebih terperinci

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

Bab III Elastisitas. Sumber :  Fisika SMA/MA XI Bab III Elastisitas Sumber : www.lib.ui.ac Baja yang digunakan dalam jembatan mempunyai elastisitas agar tidak patah apabila dilewati kendaraan. Agar tidak melebihi kemampuan elastisitas, harus ada pembatasan

Lebih terperinci

SABUK ELEMEN MESIN FLEKSIBEL 10/20/2011. Keuntungan Trasmisi sabuk

SABUK ELEMEN MESIN FLEKSIBEL 10/20/2011. Keuntungan Trasmisi sabuk 0/0/0 ELEMEN MESIN FLEKSIBEL RINI YULIANINGSIH Elemen mesin ini termasuk Belts, Rantai dan ali Perangkat ini hemat dan sering digunakan untuk mengganti gear, poros dan perangkat transmisi daya kaku. Elemen

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 Revisi Antiremed Kelas 10 Fisika Persiapan Penilaian Akhir Semester (PAS) Genap Halaman 1 01. Dalam getaran harmonik, percepatan getaran... (A) selalu sebanding dengan simpangannya (B) tidak bergantung

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian CVT (Continously Variable Transmision) Sistem CVT (Continously Variable Transmission) adalah sistem otomatis yang dipasang pada beberapa tipe sepeda motor saat ini.

Lebih terperinci

ANTIREMED KELAS 11 FISIKA

ANTIREMED KELAS 11 FISIKA ANTIRMD KLAS 11 FISIKA Persiapan UAS 1 Fisika Doc. Name: AR11FIS01UAS Version : 016-08 halaman 1 01. Jika sebuah partikel bergerak dengan persamaan posisi r = 5t + 1, maka kecepatan rata-rata antara t

Lebih terperinci

SOAL TRY OUT FISIKA 2

SOAL TRY OUT FISIKA 2 SOAL TRY OUT FISIKA 2 1. Dua benda bermassa m 1 dan m 2 berjarak r satu sama lain. Bila jarak r diubah-ubah maka grafik yang menyatakan hubungan gaya interaksi kedua benda adalah A. B. C. D. E. 2. Sebuah

Lebih terperinci

KATA PENGANTAR. Semarang, 28 Mei Penyusun

KATA PENGANTAR. Semarang, 28 Mei Penyusun KATA PENGANTAR Segala puji syukur kami panjatkan ke hadirat Tuhan Yang MahaEsa. Berkat rahmat dan karunia-nya, kami bisa menyelesaikan makalah ini. Dalam penulisan makalah ini, penyusun menyadari masih

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB Soal No. 1 Seorang berjalan santai dengan kelajuan 2,5 km/jam, berapakah waktu yang dibutuhkan agar ia sampai ke suatu tempat yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Gambaran Umum Mesin pemarut adalah suatu alat yang digunakan untuk membantu atau serta mempermudah pekerjaan manusia dalam hal pemarutan. Sumber tenaga utama mesin pemarut adalah

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap KOPLING Defenisi Kopling dan Jenis-jenisnya Kopling adalah suatu elemen mesin yang berfungsi untuk mentransmisikan daya dari poros penggerak (driving shaft) ke poros yang digerakkan (driven shaft), dimana

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang. KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi

Lebih terperinci

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

Bab III Elastisitas. Sumber :  Fisika SMA/MA XI Bab III Elastisitas Sumber : www.lib.ui.ac Baja yang digunakan dalam jembatan mempunyai elastisitas agar tidak patah apabila dilewati kendaraan. Agar tidak melebihi kemampuan elastisitas, harus ada pembatasan

Lebih terperinci

IV. PENDEKATAN DESAIN

IV. PENDEKATAN DESAIN IV. PENDEKATAN DESAIN A. Kriteria Desain Alat pengupas kulit ari kacang tanah ini dirancang untuk memudahkan pengupasan kulit ari kacang tanah. Seperti yang telah diketahui sebelumnya bahwa proses pengupasan

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB II LANDASAN TIORI

BAB II LANDASAN TIORI BAB II LANDASAN TIORI 2.1. Prinsip Kerja Mesin Pemecah Kedelai Mula-mula biji kedelai yang kering dimasukkan kedalam corong pengumpan dan dilewatkan pada celah diantara kedua cakram yang salah satunya

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perencanaan Proses perencanaan mesin pembuat es krim dari awal sampai akhir ditunjukan seperti Gambar 3.1. Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN 1 2 SASARAN PEMBELAJARAN Mahasiswa mampu menyelesaikan persoalan gerak partikel melalui konsep gaya. 3 DINAMIKA Dinamika adalah cabang dari mekanika yang mempelajari gerak benda ditinjau dari penyebabnya.

Lebih terperinci

TES STANDARISASI MUTU KELAS XI

TES STANDARISASI MUTU KELAS XI TES STANDARISASI MUTU KELAS XI. Sebuah partikel bergerak lurus dari keadaan diam dengan persamaan x = t t + ; x dalam meter dan t dalam sekon. Kecepatan partikel pada t = 5 sekon adalah ms -. A. 6 B. 55

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Mesin dan peralatan di Pabrik Kelapa Sawit (PKS) memiliki variasi yang cukup banyak sesuai fungsinya, dengan tujuan yaitu mengolah Tandan Buah Segar (TBS) menjadi minyak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 1 BAB II LANDASAN TEORI 2.1 Tanah Lempung Tanah lempung dan mineral lempung adalah tanah yang memiliki partikel-partikel mineral tertentu yang menghasilkan sifat-sifat plastis pada tanah bila dicampur

Lebih terperinci

HUKUM - HUKUM NEWTON TENTANG GERAK.

HUKUM - HUKUM NEWTON TENTANG GERAK. DINAMIKA GERAK HUKUM - HUKUM NEWTON TENTANG GERAK. GERAK DAN GAYA. Gaya : ialah suatu tarikan atau dorongan yang dapat menimbulkan perubahan gerak. Dengan demikian jika benda ditarik/didorong dan sebagainya

Lebih terperinci

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak?????

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak????? DINAMIKA PARTIKEL GAYA Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain Macam-macam gaya : a. Gaya kontak gaya normal, gaya gesek, gaya tegang tali, gaya

Lebih terperinci

HAK CIPTA DILINDUNGI UNDANG-UNDANG [1] Tidak diperkenankan mengumumkan, memublikasikan, memperbanyak sebagian atau seluruh karya ini

HAK CIPTA DILINDUNGI UNDANG-UNDANG [1] Tidak diperkenankan mengumumkan, memublikasikan, memperbanyak sebagian atau seluruh karya ini BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Teknik 4.1.1. Kebutuhan Daya Penggerak Kebutuhan daya penggerak dihitung untuk mengetahui terpenuhinya daya yang dibutuhkan oleh mesin dengan daya aktual pada motor

Lebih terperinci

Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier

Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier Aplikasi Deret Fourier (FS) 1. Deret Fourier Menurut Fourier setiap fungsi periodik dapat dinyatakan sebagai jumlah fungsi sinus dan cosinus yang tak berhingga jumlahnya dan dihubungkan secara harmonis.

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas 11 FISIKA Gerak Harmonis - Soal Doc Name: K1AR11FIS0401 Version : 014-09 halaman 1 01. Dalam getaran harmonik, percepatan getaran (A) selalu sebanding dengan simpangannya tidak bergantung

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci

MESIN PERUNCING TUSUK SATE

MESIN PERUNCING TUSUK SATE MESIN PERUNCING TUSUK SATE NASKAH PUBLIKASI Disusun : SIGIT SAPUTRA NIM : D.00.06.0048 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 013 MESIN PERUNCING TUSUK SATE Sigit Saputra,

Lebih terperinci

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah

Lebih terperinci

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m)

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) LAMPIRAN 74 75 Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) : 15,4 kg Diameter silinder pencacah (D) : 37,5cm = 0,375 m Percepatan gravitasi (g) : 9,81 m/s 2 Kecepatan putar

Lebih terperinci

Materi Pendalaman 01:

Materi Pendalaman 01: Materi Pendalaman 01: GETARAN & GERAK HARMONIK SEDERHANA 1 L T (1.) f g Contoh lain getaran harmonik sederhana adalah gerakan pegas. Getaran harmonik sederhana adalah gerak bolak balik yang selalu melewati

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN Paket C 2011 Program IP Mata Ujian : Fisika Jumlah Soal : 20 1. Pembacaan jangka sorong berikut ini (bukan dalam skala sesungguhnya) serta banyaknya angka penting adalah. 10 cm 11 () 10,22

Lebih terperinci

Gelombang sferis (bola) dan Radiasi suara

Gelombang sferis (bola) dan Radiasi suara Chapter 5 Gelombang sferis (bola) dan Radiasi suara Gelombang dasar lain datang jika jarak dari beberapa titik dari titik tertentu dianggap sebagai koordinat relevan yang bergantung pada variabel akustik.

Lebih terperinci

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB Getaran (Osilasi) : Gerakan berulang pada lintasan yang sama Ayunan Gerak Kipas Gelombang dihasilkan oleh getaran Gelombang bunyi Gelombang air

Lebih terperinci

Prediksi 1 UN SMA IPA Fisika

Prediksi 1 UN SMA IPA Fisika Prediksi UN SMA IPA Fisika Kode Soal Doc. Version : 0-06 halaman 0. Dari hasil pengukuran luas sebuah lempeng baja tipis, diperoleh, panjang = 5,65 cm dan lebar 0,5 cm. Berdasarkan pada angka penting maka

Lebih terperinci