Steering & Suspension

Ukuran: px
Mulai penontonan dengan halaman:

Download "Steering & Suspension"

Transkripsi

1 Steering & Suspension Hak Cipta oleh Hyundai Motor Company. Alih Bahasa oleh Training Support & Development. Buku ini tidak boleh perbanyak tanpa persetujuan dari Hyundai Motor Company. Training Material & Publication 1

2 Umum Peran suspensi Jika kendaraan berjalan dipermukaan yang halus, datar maka dia akan menerima guncangan dari permukaan jalan. Dan apabila jalan yang dilalui terdapat banyak lubang dan benjolan maka tersebut akan mengalami guncangan yang lebih kuat. Jika tidak dipersiapkan sesuatu untuk mengurangi guncangan ini ketingkat yang dapat diterima, maka bisa menimbulkan beberapa masalah yaitu : Penumpang mengalami guncangan yang dirasa tidak nyaman, turun-naik dan tersentak. Mobil akan susah dikuasai dan bila terjadi guncangan yang kuat dapat merusak kendaran atau penumpang dan barang bawaannya. Untuk meningkatkan kenyamanan dan kestabilan kemudi, maka dibuatlah susunan spring dan rod yang kemudian dipasang diantara Roda dan bodi kendaraan yang fungsinya adalah untuk mengurangi guncangan dan kejutan Suspensi menghubungkan bodi kendaraan dengan roda-roda, yang fungsinya adalah sebagai berikut : Saat mobil melaju, suspensi bersama-sama dengan ban menyerap dan meredam bermacam getaran, kejutan, dan turun-naik dari permukaan jalan untuk melindungi penumpang dan bawang bawaan dan juga untuk meningkatkan kestabilan mengemudi. Menyalurkan gaya maju dan mengerem, yang dihasilkan karena gesekan antara permukaan jalan dan roda ke body. Menopang body pada axles dan menjaga hubungan antara body dan roda-dora secara geometris. SPRUNG WEIGHT DAN UNSPRUNG WEIGHT Seluruh bobot kendaraan yang ditopang oleh pegas (spring) kendaraan disebut dengan sprung weight. Termasuk diantaranya adalah body,frame,engine,transmission, dst. Sedangkan, unsprung weight adalah bobot suatu komponen yang tidak ditopang oleh spring. Termasuk diantaranya adalah tires, wheels, axles dsb.semakin besar sprung weight pada kendaraan, maka semakin besar pula tingkat kenyamanan yang akan diperoleh. Dikarenakan kecenderungan pengaruh guncangan dan kejutan yang disalurkan dari permukaan jalan melalui spring akan berkurang apabila sprung weight-nya besar. Training Material & Publication 2

3 GUNGCANGAN YANG TERJADI PADA UNSPRUNG WEIGH PITCHING Pitching adalah gerakan turun naik pada bagian depan dan belakang kendaraan (seperti menganguk-angguk). Hal ini terjadi terutama apabila mobil melaju dijalan yang banyak benjolannya atau juga di jalan aspal yang tidak rata dan banyak lubang, gejala pitching lebih mudah terjadi bila spring yang digunakan lebih lembut dibandingkan dengan spring yang lebih keras. ROLLING Adalah gerakan bodi kendaraan miring ke kanan atau kekiri. Ketika mobil berjalan atau berbelok di jalan yang bergelombang, salah satu sisi spring kendaraan akan mengembang, sedangkan sisi satunya lagi mengkerut. Hal ini disebabkan karena bodi kendaraan rolling (miring) ke salah satu sisi. Bouncing Bouncing adalah gerakan naik turun pada keseluruhan bodi kendaraan. Bouncing terjadi umumnya ketika kendaraan berjalan pada jalan yang bergelombang dengan kecepatan tinggi. Juga bisa karena springs yang terlalu lembut. Training Material & Publication 3

4 Yawing Yawing adalah gerakan kendaraan yang mengimpang ke sisi kanan dan kiri dari titik sumbu tengah kendaraan. TIPE SUSPENSI Training Material & Publication 4

5 MCPHERSON STRUT (FRONT) KEUNTUNGAN Strukturna sederhana (ringan, murah) Ruang mesin lebih lega Pasa saat dipasang peyimpangan tingkat kelurusan ban sedikit (masih dalam batas toleransi KERUGIAN Adanya batasan desain kinematic suspensi - Ragam ketinggian Roll center besar - Ragam karakteristik Camber mutunya kurang Kekuatan Camber kurang Sulit untuk mengurangi tinggi hood * Hyundai mobil: Accent, New Accent(LC), Trajet, Centennial DOUBLE WISHBONE (FRONT) KEUNTUNGAN Desain suspensi fleksibel Tinggi hood bisa dikurangi KERUGIAN Harga mahal, bobot cukup berat, ruang mesin banyak terpakai Pada saat pemasangan kemungkinan penyimpangn kelurusan ban lebih besar Beban pada arm dan kendaraan menjadi lebih besar dan apabila jarak antara upper arm dan lower arm kecil. Training Material & Publication 5

6 TIPE HIGH-MOUNTED UPPER ARM (EF SONATA, XG) KEUNTUNGAN Desain suspensi lebih fleksibel (performa tinggi) Tingkat kelurusan lebih unggul, KERUGIAN Harga cukup mahal, cukup weight MULTI LINK SYSTEM (FRONT) Mobil : Audi A4, A6 Mobil : Mercedes-Benz S-class(99), MMC Eterna(92) Kendaraan: Nissan Infiniti Q45(89), 300Z(88), Sunny(97), Maxima(98) Kendaraan : Mazda Sentia, Kia Training Material & Publication 6

7 KEUNTUNGAN Desain suspensi lebih fleksibel Distribusi beban pada bodi kendaraan lebih baik berkat banyaknya titik link, sehingga kenyamanan meningkat Nyaman dan stabil. KERUGIAN Desain suspensi perlu optimal, sehingga perlu pengetahuan dan skill yang tinggi untuk menanganinya Mudah terpengaruh oleh gesekan dan ganguang dikarenakan banyaknya bushing dan joint, sehingga kualitas berkendara mudah menurun Kekuatan suspensi kurang STRUT TYPE (DUAL LINK, REAR) KEUNTUNGAN Strukturnya sederhana, ringan, murah. Toe control tersedia. KERUGIAN Kontrol geometris terbatas - Bump camber control is not easy - Roll center height variation is big Pemasangan shock absorber ada di dalam kabin (kabin menjadi berisik) Training Material & Publication 7

8 TRAILING ARM (REAR) KEUNTUNGAN Kontruksinya sederhanan ruang bagasi lebih unggul lega Perubahan Toe, Camber, Tread sedikit KERUGIAN Kkekuatannya kurang Kemudi keras (Roll center ada di atas ground) SEMI TRAILING ARM (REAR) KEUNTUNGAN Kontruksi sederhana Perubahan chamber ke rolling sedikit KERUGIAN Kekuatannya kurang Daya redam kejutan dan noise kurang Daya tapak roda terhadap gaya lateral/forward/backward kurang (kestabilan kurang) AXLE-BEAM TYPE WITH PARHARD ROD (REAR) KEUNTUNGAN Kontruksi sederhana Camber bisa disesuaikan oleh beam torsion - Kemampuan berputar meningkat KERUGIAN Ketahanan untuk lurus ke depan kurang - Dampak dari lateral link Un-sprung weight kurang (kurang nyaman) Karakter antara belokan kanan dan kiri berbeda Daya tapak berubah ketika bergerak ke atas-bawah (laju kurang kurang baik) Lantai menjadi tinggi dikarenakan adanya tiang untuk bergerak COUPLED TORSION BEAM TYPE (REAR) KEUNTUNGAN Geometris putar bisa disetel sesuai dengan bentuk bagian beam Strukturnya sederhana Kekuatannya cukup tinggi Kenyamanan lebih baik (spring weight berkurang) KERUGIAN Lebih berat dibandingkan tipe axle-beam Susah untuk menjaga kondisi ban secara optimal dibawah tekanan gaya menyamping dan gaya maju/mundur Training Material & Publication 8

9 MULTI LINK BEAM AXLE SYSTEM (REAR) Kendaraan : Nissan Sunny, Samsung SM5 DOUBLE WISHBONE (REAR) Tipe High-Mounted Upper Arm KEUNTUNGAN Kontrol geometris baik Tinggi Roll center bisa dioptimalkan KERUGIAN Berat, mahal, memakan ruang Ruang kabin kurang DOUBLE WISHBONE (IN WHEE TYPE, REAR) Kendaraan : Audio A4 (4WD) KEUNTUNGAN Kontrol geometris baik Tinggi roll center dapat dioptimalkan KERUGIAN Berat, mahal, memakan ruang Ketahanan lateral kurang Training Material & Publication 9

10 MULTI LINK SYSTEM (REAR) Kendaraan: Mercedes-Benz 190E (82) KEUNTUNGAN Desain suspensi lebih fleksibel Nyaman dan stabil. KERUGIAN Desain suspension lebih rumit - butuh skill tinggi dan pengalaman Mahal Training Material & Publication 10

11 5-LINK SYSTEM (REAR) Kendaraan: Nissan Silvia(89), Skyline, Infiniti Q45 4-LINK SYSTEM (REAR) Kendaraan : BMW 7-Series Integral A(89) Training Material & Publication 11

12 MULTI LINK SYSTEM (REAR) Kendaraan: BMW Integral suspension Training Material & Publication 12

13 5-LINK SYSTEM (REAR) Kendaraan : Mercedes-Benz S-class (Rear) Training Material & Publication 13

14 4-LINK SYSTEM (REAR) Kendaraan : HMC EF Sonata, XG, MMC Eterna(94) Training Material & Publication 14

15 4-LINK SYSTEM (REAR) Kendaraan : HMC Sonata(95~98), Grandeur, Centennial, MMC Devonair Training Material & Publication 15

16 Kendaraan : Mazda Sentia(93), Kia Enterprise Kendaraan : Mazda Luce(89~92), Kia Potentia Training Material & Publication 16

17 TIPE SUSPENSION STABILIZER BAR Jika hanya menggunakan spring yang lebih lunak untuk meningkatkan kenyamanan, maka bodi kendaraan akan cenderung miring sekali bila mobi berbelok, terkena gaya centrifugal. Pada kendaraan yang menggunakan suspensi independent gejala ini lebih besar. Oleh karena itulah untuk menguranginya ditambahkan stabilizer bar yang dipasang pada torsion bar. Disamping untuk memperkecil body roll ketika berbelok, juga berguna untuk meningkatkan traksi ban. Umumnya, pada suspensi depan, kedua ujung stabilizer dipasang pada lower suspension arm melalui rubber cushions dan linkage, kemudian bagian tengah stabilizer dikunci ke frame atau di dua titik lain melalui via rubber bushing, dan dapat berputar pada titik tersebut. Catatan; dengan tujuan untuk mengurangi body roll dan meningkatkan daya cengkraman ke jalan yang kasar, stabilizer bar sekrang ini tidak hanya dipakai untuk bagian depan namun juga sudah dipasang dibagian belakang. Training Material & Publication 17

18 SHOCK ABSORBER Ketika kendaraan mengalami kejutan dari permukaan jalan, pegas suspensi mengkerut dan mengembang untuk menyerap kejutan tersebut. Namun, dikarenakan pegas mempunyai karakter turun-naik, dan juga dikarenakan sering membutuhkan waktu bagi pegas untuk berhenti turun-naik, maka tingkat kenyamanannya menjadi kurang, kecuali ada suatu alat yang dapat meredam turun-naiknya pegas ini. Nah tugas untuk mengatasi masalah tersebut ada pada shock absorbers atau shock. Shock absorber tidak hanya untuk meredam gaya pegas yang berlebihan, untuk meningkatkan kenyamanan, namun juga memberikan daya cengkram pada ban yang `lebih baik dan meningkatkan kestabilan kemudi. JENIS SHOCK ABSORBERS Single-action shock absorber Daya redamnya hanya terjadi ketika shock absorber merenggang. Daya redam tidak terjadi ketia dia menekan. Training Material & Publication 18

19 Multiple-action shock absorber Daya redamnya terjadi baik ketika mengembang atau ketika menekan. Sekarang ini, kebanyakan tipe shock absorber ini yang yang dipakai pada kendaraan. Training Material & Publication 19

20 Twin-tube shock absorber Tabung cylinder dibagi kendalam pressure tube dan outer tube menjadi working chamber (inner cylinder) dan reservoir chamber (outer cylinder). Training Material & Publication 20

21 Konstruksi shock absorber tipe twin-tube Dibagian dalam absorber shell (outer tube) terdapat satu cylinder (pressure tube), dan di dalamnya lagi ada satu piston yang bergerak turun-naik. Di dasar piston rod, dipasang satu piston valve untuk menghasilkan Daya redam ketika shock absorber merenggang (selama rebounding). Pada bagian bawah cylinder terdaoat satu base valve untuk menghasilkan daya redam pada saat shock absorber menekan (selama bounding). Di dalam cylinder diisikan pelumas yang jumlahnya 2/3 dari reservoir chamber, sisanya diisi dengan tekanan udara. Cara kerja a. Ketika bounding (menekan) Kecepatan gerakan piston rod tinggi Ketika piston bergerak ke bawah, tekanan di dalam chamber A dibawah piston menjadi tinggi. Kemudian pelumas yang ada di dalam membuka katup non-return yang ada pada piston valve, sehingga praktis tidak ada tahanan yang mengalir kechamber B (daya redam tidak dibangkitkan). Pada saat bersamaan, pelumas dalam jumlah yang sama dikeluarkan oleh dorongan piston rod ke dalam cylinder, ditekan oleh leaf valve dan mengalir ke dalam reservoir chamber. Maka pada saat tersebut damping force dihasilkan oleh aliran yang tertahan. Kecepatan Piston ketika gerakan pelan Jika kecepatan piston rod sangat pelan,maka non-return valve di dalam piston valve dan leaf valve pada base valve keduanya akan tetap tertutup Karena tekanan di dalam chamber A rendah. Namun, apabila terdapat orifice di dalam piston valve dan base valve, cairan di dalam chamber A akan mengalir melewatinya ke dalam chamber B dan reservoir chamber, sehingga tenaga redam yang dikeluarkannya sedikit. b. Selama proses rebounding (Ekspansi) Kecepatan Piston rod ketika gerakan cepat Ketika piston rod bergerak ke atas, tekanan di dalam chamber diatas piston akan menjadi tinggi dan cairan di dalam chamber B akan membuka leaf valve di dalam piston valve dan mengalir ke dalam chamber membuka leaf valve di dalam piston valve dan mengalir ke dalam chamber A. Pada saat tersebut, tahanan aliran dari cairan pelumas bekerja sebagai daya peredam. Selama rod bergerak ke atas, bagian yang bergerak tersebut menggerakkan ke luar dari cylinder, sehingga volume oli yang lewat melalui non-return valve yang ada pada base valve dari reservoir chamber dan mengalir tanpa tahanan ke dalam chamber A. Training Material & Publication 21

22 Kecepatan Piston rod ketika gerakan lambat Ketika piston rod bergerak pada kecepatan rendah, kedua leaf valve di dalam piston valve dan non-return valve di dalam base valve tetap terturup karena Tekanan di dalam chamber B diatas piston adalah rendah. Oleh karena itulah, oli di dalam chamber B lewat melalui orifice di dalam piston valve dan mengalir ke chamber A. Begitu juga, oli di dalam reservoir chamber lewat melalui orifice di dalam base valve dan mengalir ke dalam chamber A. Sehingga daya redam yang dihasilkannya sedikit. Training Material & Publication 22

23 SUSPENSI DEPAN 1. UMUM Perbedaan nyata antara susopensi depan dan belakang adalah karena roda depan harus dapat dikemudikan. Ketika sebuah mobil berbelok atau melaju di dalam yang bergelombang, maka dapat dipastikan roda akan menerima beragam gaya. Suspensi harus mampu menahan gaya-gaya tersebut agar arah kendaraan tidak menyimpang. Suspensi juga harus bisa memungkinkan agar roda bisa bergoyang, bergerak ke depan, belakang dan ke samping, atau merubah sudut kemiringannya ke derajat tertentu tanpa menggangu kemudi kendaraan. Kondisi ini bisa diperoleh melalui suspensi independent tipe Macpherson strut. 2. KONSTRUKSI Suspensi tipe strut terdiri dari lower arms, strut bars, stabilizer bar dan strut assemblies. Coil springs dipasang pada strut assembly, dan shock absorber dibuat di dalam strut assembly. Pada satu ujung lower arm dipasangkan ke front side member melalui rubber bushing, dan dapat bergerak bebas ke atas dan ke bawah. Sedangkan ujung lainnya di pasang ke steering knuckle arm melalui satu media ball joint. Selama shock absorber bertindak sebagai bagian dari pertautan suspensi, maka disamping harus bisa meredam guncangan dari jalan dan gerakan turun naik, dia juga harus cukup kuat untuk menahan beban vertical yang ditempatkan padanya. Ujung atasnya dipasangkan ke fender apron melalui penopang atas, yang terdiri dari rubber cushion dan bearing dan dapat berputar bebas pada sumbunya. Bagian ujung bawah strut assembly dikencangkan ke steering knuckle arm dengan menggunakan baut. Gunanya strut bar adalah menahan gaya yang timbul dari roda dengan arah garis membujur. Satu ujungnya dikencangkan ke lower arm dan ujung lainnya dipasangkan dengan rubber cushion ke strut bar bracket yang dilas ke front cross member. Training Material & Publication 23

24 LOWER ARM Lower arm yang dipakai adalah tipe kompresi, dengan keunggulan sebagai berikut. Mencegah agar kemudi tidak ke depan dan belakang dengan cara mengoptimalkan lower arm rotary shaft. Kontruksinya tipe Box menyilang agar kuat dan ringan. Lower arm bushing A yang di dalamnya disisipi pelat dan lower arm bushing B dengan karakteristik pegas non-symmetrical vehicle lateral direction untuk kestabilan kemudi dan kenyamanan berkendara. Lower arm ball joint yang dipakai menggunakan tipe pegas. a. Lower arm bushing A Satu pelat disisipkan (arah kiri/kanan kendaraan) di dalam lower arm bushing A. sehingga karakteristik lower arm bushing A menjadi keras untuk arah kiri/kanan, dan berkarakter lembut untuk arah depan/belakang dan arah melintir, yang berarti bahwa fungsinya adalah untuk memberikan kestabilan kemudi dan kenyamanan berkendara. Training Material & Publication 24

25 b. Lower arm bushing B Ketika mobil bergerak ke depan, ada kecenderungan bagian belakang lower arm mencoba untuk merenggang ke arah bagian luar kendaraan. Pelepasan lower arm pada saat tersebut dilakukan akibat katakteristik gencetan keras oleh karena itulah kestabilan kemudi bisa tetap terjaga. Pada saat mobil melaju di jalan berlubang atau rintangan (polisi tidur, dll), maka akan ada gaya yang mendorong ban ke arah belakang dan bagian dari lower arm akan terdorong ke arah sisi dalam kendaraan, hal ini terjadi akibat karakteristik peredaman lembutt, sehingga peredamannya mempengaruhi tingkat getaran saat melewati jalan yang menonjol. DRIVE SHAFT Ada dua jenis kombinasi drive shaft yaitu. -Birfield joint (B. J.), Tripod joint (T. J.) -Brifield joint (B. J.), Double offset joint (D. O. J.). Masing-masing tipe mempunyai tingkat efisiensi power transmission yang tinggi dan tingkat getaran serta noiser yang rendah. Knuckle has mempunyai wheel bearing dan hub yang dipress-fitted. Drive shaft dan hub bentuknya adalah spline-coupled. Tujuannya agar transaxle lebih efisien dan getaran dan suara yang ditimbulkannya juga sedikit. dynamic damper dipakai oleh tipe BJ-TJ dan letaknya ada diantara BJ assembly dan TJ assembly berguna mengurangi getaran pada saat kecepatan tinggi. T.J. : TRIPOD JOINT B.J. : BIRFIELD JOINT D.O.J. : DOUBLE OFF-SET JOINT Training Material & Publication 25

26 B. J. / T. J. / D. O. J. B. J. dipasang pada shaft daerah samping roda, karena tingkat defleksinya cukup besar pada saat kemudi diputar maka dipasang T. J. atau D. O. J. pada transmisi, T.J atau D.O.J ini dapat bergerak pada porosnya untuk menyerap perubahan jarak diantara joint yang disebabkan oleh pergerakan suspensi. Bentuk inner race, outer race dan cage antara B. J. dan D. O. T. atau T. J. berbeda satu sama lainnya. B. J. mempunyai karakteristik tingkat velositas yang tetap meskipun sudut putar shaft lebih dari 45 derajat. Sedangkan pada D. O. J. dan T. J. hanya bisa mengijinkan shaft untuk sisi samping maksimal 38 mm dan sudut putarnya maksimal adalah sekitar 22 derajat. Training Material & Publication 26

27 Offset spring Dikarenakan struts dipasang menyudut, maka gaya reaksi ke depan (road surface reaction) atau disingkat R1 akan diberikan ke roda-roada yang cenderung bergerak secara vertical dari titik tengah ban, kemudian gaya tersebut akan berusaha untuk mencondongkan strut ke arah dalam kendaraan. Pada saat ini terjadi, gaya tersebut berusaha mencondongkan strut ke arah dalam kendaraan berkat adanya komponen strut bearing yang berfungsi untuk menghasilkan torsi gaya tolak R3 (karena bagian atas strut tetap berada ditempatnya), selanjutnya dengan bertambahnya friksi pada bearing, ditambah adanya pembengkokkan pada strut, maka akan memperbesar gerakan resistensi pada shock absorber. Sebagai tambahan dikarenakan posisi pemasangan spring berada ditengah, makan akan memberikan keuntungan yang jarak offset yang baik (mengarah keluar kendaraan), dan dikarenakan dudukan spring lower dipasang miring, maka sisi bagian luar coil spring akan cenderung mendekat tanpa intervensi ruang, gaya balik pada spring akan menjadi lebih besar ke sisi luar kendaraan, yang pada akhirnya menghasilkan torsi lengkung R4, yang berlawanan dengan arah lengkungan R3 dari strut. Akibatnya, friksi yang diberikan ke bearing di dalam strut akan berkurang, dan tahanan sliding pada piston rod juga akan berkurang, sehingga memberikan kenyamanan berkendara. A : Body outer side coil spring installation height B : Body inner side coil spring installation height R1 : Road surface reaction force R2 : Strut axial-reaction force R3 : Strut bend direction reaction force R4 : Strut bending force (by spring offset) Training Material & Publication 27

28 REAR SUSPENSION 1. UMUM Pada banyak kendaraan, rear suspension harus bisa menahan berat penumpang dan barang bawaannya. Hal ini akan menimbulkan masalah jika spring dibuat keras atau kaku untuk bisa menahan beban berat, kan terlalu keras apabila pengemudi mengendarai sendiri, sebaliknya apabila terlalu lembut juga akan mengakibatkan spring tidak bisa menahan apabila bebannya penuh. Hal yang sama juga berlaku untuk shock absorbers. Masalah ini dapat diselesaikan dengan cara menggunakan coil springs atau tipe pegas daun lainnya yang mempunyai variabel pegas yang konstan; shock absorbers yang diisi oli; tipe suspensi independent. 2. RIGID AXLE SUSPENSION Ujung suspension arms dilas ke axle beam yang merupakan rumah dari torsional bar. Kedua ujung torsion bar juga dilas pada axle beam yang sama. Pada saat roda turun dan naik dengan arah yang berlawanan, gerakan melintir dari ujung trailing arm disalurkan kedalam puntiran rear axle beam, built-in torsional bar dan rear suspension arms. Puntiran pada rear axle beam dan stabilizer generates merupakan gaya reaktif yang berlawanan dengan puntiran suspension arm. Coil spring Lateral rod Shock absorber Axle beam Torsion bar Rear hub Trailing arm Training Material & Publication 28

29 3. AXLE STEER Pada saat mobil berbelok, badan kendaraan akan melenceng karena adanya gaya centrifugal. Selama tingkat kelenturan suspension spring kanan dan kiri ketika itu berbeda, maka arah roda akan sedikit berubah dan akibatnya akan sama seperti jika kemudi diputar penuh. Kejadian ini disebut dengan axle steer atau roll steer. Side force dan cornering force Permukaan tapak roda yang berputar ketika berbelok ke samping, akan menimbulkan sedikit selip dengan permukaan jalan, sehingga menghasilkan gesekan. Gesekan pada permukaan jalan ini terjadi akibat adanya titik pemusatan, yang disebut dengan side force yaitu titik ban yang sedikit terpisah dari titik tengah ban. Bila titik ini dibagi ke dalam vector, maka komponen sudut sebelah kanan dari arah belokan ban disebut dengan cornering force. Apabila mobil bergerak mengikuti kurva belokan, maka akan terbentuk gaya centrifugal dan gaya centripetal yang diperlukan untuk mengimbangi gaya centrifugal agar mobil bisa tetap berbelok. Gaya centripetal ini adalah merupakan cornering force. Rigid axle suspension Pada rigid axle suspension, pada saat terjadi body rolls, camber pada roda tidak berubah. Namun, untuk suspensi independent, pada saat terjadi body rolls, camber pada roda biasanya akan ikut berubah, membentuk steering effect. Training Material & Publication 29

30 Wishbone type suspension Untuk tipe wishbone, ketika bodi mobil mengalami rolling, tingkat kemiringan rida arahnya sama dengan bodi mobilnya. Oleh karena itu, roda tersebut akan berusaha berbalik dari arah belokan mobil. Akibatnya, jika suspensi yang dipakai adalah tipe wishbone untuk suspensi depannya, maka mobil cenderung akan mengalami understeer, namun jika digunakan untuk suspensi belakang, maka cenderung akan terjadi oversteering. SUSPENTION BUSHING Untuk meningkatkan kestabilan dan kenyamanan berkendara, dan untuk mengurangi getaran dan noise, maka agar kerja suspensi selalu optimal digunakan suspension bushing. Bagian ujung depan trailing arm dipasang secara elastis ke bodi melalui rubber bushing yang mempunyai kapasitas pegas yanc cukup tinggi. Rubber bushing ini mempunyai karakteristik asymmetrical non-linear pada arah depanbelakang, yang berfungsi untuk mengurangi penyaluran getaran dari roda ke body mobil. Individual independent bushing (dengan karakter nonlinear) juga dipasang pada coupling ke bodi shock absorbers dan coil spring; these, bersama-sama digunakan juga spring pad yang mempunyai channel besar, berguna untuk meredam getaran ke bodi, sehingga kendaraan menjadi lebih stabil dan nyaman. Training Material & Publication 30

31 Wheel Alignment (Kelurusan Roda) DESCRIPTION CAMBER CASTER STEERING AXIS INCLINATION TOE WHEEL ANGLE, TURNING ANGLE WHEEL ALIGNMENT SERVICE PENJELASAN Apabila pengemudi melaju dijalan yang berbelok-belok sehingga si pengemudi tersebut akan banyak mengeluarkan energi dan menyita perhatian yang cukup banyak. Untuk itu roda-roda yang dipasang pada kendaraan sudutnya harus tepat agar bisa menghilangkan masalah diatas, juga untuk mencegah agar ban tidak cepat aus. Kombinasi sudut ini disebut dengan wheel alignment. Kemudi akan mudah dikendalikan jika kelurusan roda sesuai sudutnya, karena kemudi akan tetap lurus ke posisi depan jalan dengan sedikit bantuan pengemudi, dan sedikit tenaga untuk membelokkan kemudinya. Dengan kata lain, kemudi mudah dikendalikan selama seluruh elemen yang terkait dengan wheel alignment, sudah dalam keadaan benar. Namun jika ada salah satu saja elemen yang tidak benar, maka kemungkinan akan muncul masalah sebagai berikut : Kemudi sudah dikendaikan Kemudi tidak stabil Ban menjadi cepat aus Putaran balik kemudi lemah CAMBER Penjelasan Roda depan kendaraan dipasang dengan tingkat kemiringan atas mengarah ke luar atau ke dalam. Inilah yang disebut dengan camber yang tingkat kemiringannya diukur dari garis vertikal. Bila kemiringannya mengarah keluar, disebut dengan positive camber. Sebaliknya, bila kemiringannya mengarah kedalam disebut dengan negative camber. 2. MASALAH YANG TIMBUL APABILA CAMBER TIDAK BENAR 1. Mobil akan manarik ke salah satu sisi (jika setingan camber roda depan tidak sama). 2. Ban menjadi cepat aus dibagian dalan (negative camber berlebihan). 3. Ban cepat aus dibagian luar (positive camber berlebihan). Training Material & Publication 31

32 4. Wheel bearings menjadi cepat aus. 5. Ball joints cepat aus (camber tidak benar menyebabkan bengkokan pada spindle dan spindle support sehingga menambah beban pada ball joints). 3. POSITIVE CAMBER Mengurangi beban vertikal Dengan memberikan positive camber maka beban akan diberikan ke bagian dalam spindle, sehingga mengurangi reaksi gaya pada spindle dan steering knuckle. Pencegahan wheel slip-off Gaya reaktif, ukurannya sebanding dengan beban kendaraan, diberikan ke roda ke jalan secara tegak lurus. Dan dibagi menjadi gaya tegak lurus ke poros spindle dan gaya parallel ke sumbu spindle yang akan memaksa roda ke arah dalam, yang membantu mencegah roda keluar dari spindle. Bagian dalam wheel bearing dibuat lebih besar dari bagian luarnya untuk menahan beban ini. Pencegahan negative camber yang tidak diinginkan When a load is applied to the vehicle, the tops of the wheels tend to tilt inward due to the deformation of the suspension components and relevant bushings. Positive camber also helps to prevent this. 4. ZERO CAMBER Mencegah keausan ban yang tidak merata. 5. NEGATIVE CAMBER Pada saat kendaraan berbelok, camber yang mengarah ke luar akan mengurangi gaya cornering akibat ada kenaikan positive camber. Beberapa model menambahkan sedikit negative camber untuk lurus laju kedepan sehingga positive camber akan berkurang pada saat mobil dibelokkan, dan mengurangi camber thrust dan menghasilkan gaya cornering yang cukup untuk berbelok. Training Material & Publication 32

33 6. BAN AUS TIDAK MERATA Positive camber : Bagian ban yang aus adalah sisi luarnya. Bagian sisi luar ban berputar dengan radius yang lebih kecil dibandingkan bagian sisi dalam ban. Namun, dikarenakan kecepatan putaran ban sisi dalam dan luar adalah sama, maka bagian sisi luar ban akan selip. Negative camber Bagian sisi dalam ban menjadi lebih cepat aus. Training Material & Publication 33

34 CASTER 1. PENJELASAN Caster adalah tingkat kemiringan ke arah dalam atau luar dari steering axis. Caster diukur dalam derajat dari garis lurus vertikal steering axis yang dilihat dari sisi samping. Kemiringan ke dalam dari garis vertikal disebut dengan positive caster, dan kemiringan ke luar disebut dengan negative caster. Jarak dari persimpangan garis tengah steering axis center dengan ground ke titik tengah antara ban dan permukaan jalan disebut dengan caster trail. 2. KEGUNAAN CASTER a. Untuk membantu kontrol arah kendaraan dengan cara menjaga posisi roda depan agar tetap lurus ke depan. b. Membantu agar roda depan kembali lurus ke depan setelah berbelok. c. Untuk menanggulangi pengaruh efek road crown pada arah kendaraan. d. Membantu kinerja suspensi sesuai dengan desain suspensi kendaraan, sudut camber angle dan sudut kemiringan steering axis agar perubahan camber pada saat mobil berbelok sesuai dengan keinginan. SUDUT KEMIRINGAN STEERING AXIS 1. PENJELASAN Sekeliling sumbu dimana roda berputar ketika berbelok ke kanan atau ke kiri, disebut dengan steering axis. Sumbu ini bisa dicari dengan cara menarik garis antara bagian atas support bearing yang ada pada shock absorber dan bagian bawah suspension arm ball joint (untuk suspensi tipe strut). Garis ini miring ke arah dalam bila dilihat dari arah depan kendaraan dan disebut dengan steering axis inclination. Kingpin offset, atau steering offset, adalah jarak antara titik tengah roda dan titik dimana steering axis memotong permukaan jalan. Disebut negatif apabila titik perpotongannya adalah antara bagian tengah dan bagian luar roda. Sudut kingpin adalah sudut antara steering axis dan bidang garis bujur kendaraan. It influences steering force along with caster. a: Kingpin offset b: Kingpin angle Training Material & Publication 34

35 2. TIPE SUSPENSI Rigid type dan steering axis Pada suspensi tipe rigid axle, pada setiap ujung axle dipasang komponen yang disebut dengan kingpin. Kingpin axis setara dengan steering axis yang ada pada tipe suspensi lainnya. Tipe double wishbone Untuk suspensi tipe double wishbone suspension, jalur penghubung antara upper ball joint dan lower ball joint membentuk steering axis. Training Material & Publication 35

36 3. PERAN STEERING AXIS INCLINATION Meringankan kemudi Pada saat roda berbelok kekanan dan kekiri dengan posisi steering axis ditengah dan offset dalam radius, offset yang besar akan menimbulkan torsi yang besar pada steering axis karena adanya tahanan putar (rolling) pada ban, dan menaikkan steering effort. Mengurangi kemudi menarik ke salah satu sisi Jika offset terlalu besar, maka akan timbul gaya reaktif pada roda pada saat mobil direm, yang menghasilkan suatu momen pada steering axis, sehingga menyebabkan roda menarik ke salah satu sisi. Momen ini sebanding dengan besar offsetnya. Apabila offsetnya mendekati nol, momen yang dihasilkan pada steering axis akan lebih kecil pada saat gaya diberikan ke roda, dan kemudi akan sedikit dipengaruhi oleh pengereman atau gunjangan dari jalan. Kemampuan mobil lurus ke depan meningkat Steering axis inclination menyebabkan roda secara otomatis akan kembali lurus ke depan setelah selesai berbelok. Untuk mobil berpenggerak roda depan, besarnya offset umumnya kecil (nol atau negatif), untuk mencegah penyaluran getaran dari ban ke steering wheel yang terjadi pada saat pengereman atau ganguan lainnya seperti kejutan pada saat akselerasi tibatiba. Ada dua cara untuk membuat offset menjadi kecil : 1. Menyetel ke positive camber. 2. Memiringkan steering axis. TOE Pada saat roda depan lebih dekat dibanding dengan roda belakang, seperti tampak pada gambar diatas, disebut dengan called toe-in. Aturan kebalikannya disebut dengan toe-out. Sudut tersebut biasanya digambarkan dalam jarak (b-a). Peran toe angle Fungsi utama toe angle adalah untuk membantalkan camber thrust yang dihasilkan pada saat camber dijalankan. Apabila roda depan diberikan positive camber, maka kemiringannya akan ke luar, sehingga menyebabkan roda-roda tersebut berusaha berputar keluar begitu mobil bergerak ke depan, sehingga terjadi side-slip. Hal ini akan menyebabkan ban menjadi cepat aus. Oleh karena itulah, toe-in diberikan ke roda depan untuk mencegah hal tersebut dengan cara membatalkan rolling ke arah luar karena camber. Selama camber mendekati nol, maka nilai sudut toe juga akan menjadi lebih kecil. Kekerasan suspensi dan sudut toe Pada saat mobil melaju, gaya dari berbagai arah dibebankan ke suspensi, sehingga mengakibatkan roda cenderung ke toe out. Untuk menghindari hal tersebut, beberapa kendaraan diberikan sedikit toe-in bahkan untuk camber nol sekalipun. Training Material & Publication 36

37 Tipe ban dan sudut toe Toe angle yang diberikan ke ban tipe bias berbeda dengan yang diberikan ke ban radial, meskipun cambernya sama. Alasannya adalah, karena tapak dan bahu ban bias lebih cepat aus dibandingkan dengan ban tipe radial, the former type generates greater camber thrust. Therefore, bias-ply tyres are given more toe angle than radial-ply tyres. TURNING RADIUS Jika sudut kemudi kiri dan kanan sama, maka radius putarnya akan sama (r1 = r 2), akan tetapi setiap roda akan berputar dengan titik tengah yang berbeda, (O1 dan O2). Sehingga kemungkinan berbelok secara halus tidak bisa dilakukan karena adanya side-slipping pada ban. Hasilnya adalah, meskipun tekanan udara pada setiap ban sama dan tingkat kelurusan ban sudah benar, namun tingkat keausan ban akan berbeda. Pada kendaraan, steering linkage dimodifikasi untuk memperoleh sudut kemudi roda depan kanan dan kiri yang tepat, agar didapat turning radius yang diinginkan. Training Material & Publication 37

38 PERAWATAN WHEEL ALIGNMENT 1. UMUM Jika ban aus tidak merata, namun kemudi stabil, atau jika suspensi pernah diperbaiki akibat suatu tabrakan, maka wheel alignment harus diperiksa dan dibetulkan. Wheel alignment terdiri dari beberapa item seperti camber, caster, steering axis inclination, toe-in dan setiap item tersebut terkait satu dengan yang lainnya. Selalu ukur wheel alignment dengan menempatkan mobil di tempat yang rata dan datar. Hal ini perlu untuk memperoleh tingkat kelurusan yang benar, meskipun menggunakan alat tester yang akurat, namun penempatan kendaraan yang tidak datar, akan mengacaukan hasil pengukuran wheel alignment. 2. PEMERIKSAAN SEBELUM MELAKUKAN PENGUKURAN Sebelum melakukan pengukuran wheel alignment, setiap faktor dapat berpengaruh terhadap wheel alignment, untuk itu harus diperiksa dan dibetulkan sebagaimana mestinya. Dengan melakukan persiapan yang benar maka angka yang akan diperoleh dipastikan benar. Item-item yang perlu diperiksa sebelum melakukan pengukuran wheel alignment adalah : Tekanan angin ban (kondisinya standar) Keausan ban yang tidak merata atau ukurannya tidak sama Gerak main ball joint karena aus Gerak main tie rod karena aus Putaran front wheel bearing karena aus Panjang strut bar kanan dan kiri Komponen steering linkage apakah bentuknya berubah atau aus Komponen yang terkait dengan front suspension apakah aus atau berubah bentuk Celah chassis-ke-ground 3. HASIL PENGUKURAN DAN CARA PENGGUNAANYA Jika dari hasil pengukuran diperiukan penyetelan, maka lakukan penyetelan sesuai dengan mekanisme yang berlaku. Dan apabila tidak diperlukan mekanisme penyesuaian, seperti misalnya steering axis inclination, carilah komponen mana yang mengalami kerusakan, perbaiki atau ganti bilamana perlu. Akan tetapi meskipun diperlukan mekanisme penyetelan, namun jika deviasinya sudah melebihi batas, maka penyebabnya harus ditemukan, komponen tersebut harus diperbaiki atau diganti. 4. FRONT WHEEL ALIGNMENT TOE ANGLE Untuk menyetel toe-in, rubahlah panjang tie rod yang menghubungkan ke steering knuckle. Untuk tipe dimana tie rod berada dibelakang spindles : tambahkan panjang rod, menambah toe-in. Untuk tipe dimana tie rod berada di depan spindles : tambahkan panjang tie rod, menambah toe-out. Training Material & Publication 38

39 5. REAR WHEEL ALIGNMENT Pelurusan roda belakang untuk tipe independent rear suspension didapat dengan cara menyetel sudut camber dan toe. Metode penyetelan sudut camber dan toe berbeda tergantung dari tipe suspensinya. Beberapa model ada yang tidak dilengkapi mekanisme untuk menyetel camber. TOE ANGLE Dengan cara memutar eccentric cam, arm can dapat digerakkan ke kiri atau kekanan untuk merubah arah wheel, kemudian menyetel toe-in. skala tingkat kenaikannya adalah 2.4 mm. Untuk toe-in depan, jika panjang rear arm tidak dibuat sama dengan tujuan untuk menyesuaikan toe-in pada roda belakang secara terpisah, maka sudut roda kanan dan kiri akan berbeda, tanpa memperdulikan seberapa tepat penyetelan toe-in. Bila hal ini terjadi, maka pertama-tama adalah dengan membetulkan sudut roda kiri dan kanan, kemudian menyetel toe-in. Training Material & Publication 39

40 BAN & RODA FUNGSI BAN Fungsi ban adalah sebagai berikut : Ban menopang seluruh berat yang ada pada kendaraan. Ban melakukan kontak langsung dengan permukaan jalan sehingga berfungsi menyalurkan tenaga dan menahan permukaan jalan melalui pengeran, juga dalam mengontrol awal start, akselerasi, berhenti dan berbelok arah. Ban meredam kejutan yang disebabkan oleh permukaan jalan yang tidak rata. Kontruksi CARCASS Adalah kawat yang dipasang dibagian dalam ban yang fungsinya untuk menahan berat dan menyerab benturan. Terdiri dari lapisan kawat ban yang dibungkus menyatu dengan karet. Kawat untuk ban bus dan truck biasanya terbuat dari bahan nylon atau baja, sedangkan untuk ban kendaraan penumpang yang dipakai adalah polyester atau nylon. Ban umumnya digolongkan berdasarkan arah kawat ban, ban radian dan ban bias. TREAD Tread atau biasa disebut tapak adalah bagian luar lapisan ban yang melindungi bagian kawat ban agar tidak rusak atau cepat. Bagian ini adalah daerah yang langsung kontak dengan permukaan jalam dan menghasilkan tahanan gesek yang menyalurkan laju kendaraan dan gaya pengereman ke jalan. SIDE WALL Side wall adalah lapisan karet yang melindungi sisi samping ban serta melindungi bagian kawat ban agar tidak rusak. Tanda yang ada disamping ban memuat informasi tentang ban yang digunakan beserta kapasitas daya angkutnya. BREAKER Breaker, adalah lapisan fabrik antara lapisan kawat dan tapak ban, untuk memperkuat lapisan diantara keduanya, disamping untuk membantu mengurangi kejutan dari permukaan jalan ke lapisan kawat. Breaker biasanya digunakan untuk ban bias. Ban untuk bus, truck dan truck ringan menggunakan breaker bahan nylon, sedangkan untuk mobil penumpang menggunakan polyester. Training Material & Publication 40

41 BELT Ada jenis breaker yang digunakan untuk ban badial. Yang berputar menggelinding disekeliling ban antara carcass dan tread rubber, komponen ini terpasang dengan kuat pada carcass. Ban yang dipakai untuk mobil penumpang menggunakan rigid breakers yang terbuat dari baja, kawat rayon atau polyester, sedangkan untuk bus dan truck terbuat dari kawat baja. BEADS Beads atau butiran pada ban mobil penumpan terbuat dari kawat baja kaku yang kuat. Pada saat ban berputar dijalan raya, ada gaya putar dari ban yang mencoba keluar lingkarannya. Untuk itulah bead ini berfungsi untuk menahan dengan kuat fixes the tyre to the rim by winding the end of cord. It is composed of bead wire and core rubber. SHOULDER Shoulder atau bahu adalah bagian unjung dari tapak sampai ke bagian atas dinding samping ban. INNER LINER Inner liner adalah lapisan karet anti air yang dipasang dibagian dalam ban fungsinya mirip sebagai tabung. TREAD PATTERN Bentuk RIB : Bentuk polanya dibuat pada sekeliling lingkaran ban - Tahanannya rendah terhadap putaran. - Stabilitas dan laju kendaraan baik karena ban tidak menarik ke kanan dan ke kiri. - Cocok untuk kecepatan tinggi karena panas yang ditimbulkannya rendah. - Pengereman & tenaga putar kemudi lemah. - Ban mudah pecah oleh adanya tekanan. Cocok untuk jalan beraspal, ban depan truck -bus. Bentuk LUG : Pola bentuknya menudut ke arah kanan di sekeliling ban. - Unggul dalam hal pengereman dan tenaga putar kemudi - Noise pada kecepatan tinggi Tidak cocok untuk kecepatan tinggi karena tahanannya cukup kuat terhadap putaran. Cocok untuk jalan jelek, roda belakang bus, kendaraan industri, dump trucks. Bentuk RIB-LUG : Adalah kombinasi bentuk RIB & LUG - Tulang yang dipasang ditengah-tengah ban berfungi untuk mencegah selip dan meningkatkan stabilitas kendaraan. - Rug pada bahu ban membuat pengereman dan tenaga putar kemudi tetap baik. Cocok untuk jalan beraspal dan jelek. Biasanya dipakai untuk ban depan dan belakang truck dan bus. Training Material & Publication 41

42 Bentuk Block : Berbentuk blok tersendiri dimana alur lekukannya berhubungan satu sama lainnya - Sangat bagus dalam hal handling dan stabilitas di jalan yang dipenuhi air hujan dan salju. - Mudah aus karena area bidang bannya cukup luas dan ditopang oleh groove (alur). Cocok untuk dipakai motorcar pada musin dingin dan semi. Cocok untuk roda belakang radial mobil biasa. Pola arah : Bentuk pola menyilang pada kedua sisi luar arah menghadapnya adalah sama. - Tenaga pengereman baik. - Dikarenakan adanya negative hydrotropism yang baik, maka pada saat hujan tingkat kestabilannya baik. - Cocok untuk kecepatan tinggi. Ban motorcar untuk kecepatan tinggi. Tanda arah putaran ke depan dicap pada ban. RASIO Training Material & Publication 42

43 UKURAN BAN Aspect rasio adalah rasio antara lebah dan tinggi. Dulunya, aspek rasio ban yang dibuat untuk tinggi dan lebar rasio 100, namun sekarang kebanyakan aspek rasio ban 80, 70, 60. Artinya sekarang ini ukuran ban yang banyak digunakan adalahan ban yang lebih lebar. Dan lebar tersebut menandakan serinya, sehingga jika aspek rasio lebarnya adalah 70, maka ban tersebut disebut dengan ban seri 70. SPEED RATING INDEX Simbol kecepatan adalah tanda kecepatan aman yang bisa dipacai dengan syarat kondisi ban dalam keadaan baik. Umumnya rating kecepatan adalah sebagai berikut: Q = 99 MPH, 160km/h U = 124 MPH, 200km/h R = 106MPH, 170km/h H = 130 MPH, 210km/h S = 112 MPH, 180km/h V = 149 MPH, 240km/h T = 118 MPH, 190km/h W = 168 MPH, 270km/h LOAD INDEX Banyak ban yang memberikan informasi yang ditempatkan diakhir ukuran ban. Informasi ini terdiri dari suatu angka yang disebut dengan load index, dan huruf yang mengartikan speed rating. Load index adalah beban maksimal yang dapat ditopang oleh ban. PANAS YANG DITIMBULKAN OLEH BAN Selama karet, lapisan kawat dan bahan campuran lainnya yang dipakai pada ban tidak cukup elastis, maka ban akan lebih besar kehilangan topangan karena ban menyerap energi selama melentur sehingga menimbulkan panas. Selama bahan material ban yang dipakai mempunyai konduktor panas yang kurang, maka panas akan cepat timbul dan menumpuk di dalam material ban, sehingga menyebabkan temperatur di dalam ban menjadi tinggi. Panas yang tinggi dapat memperlemah balutan antara lapisan karet dan kawat ban, nantinya dapat menimbulkan lapisan menjadi terpisah atau ban meletus. Panas yang timbul di dalam ban bervariasi diperngaruhi oleh faktor tekanan ban, beban, kecepatan kendaraan, kedalaman kembang ban dan konstruksi ban. TEKANAN BAN Apabila tekanan angin ban kurang, akan menyebabkan ban menjadi lebih lentur dan timbul gesekan di dalam ban sehingga bisa menaikkan temperatur di dalam ban. Training Material & Publication 43

44 BEBAN Bertambahnya beban berarti mengurangi tekanan angin ban. Temperatur di dalam ban akan naik bersamaan dengan semakin melenturnya ban. Pada saat tersebut, punggung ban mendapatkan beban lebin sehingga bisa memicu perpisahan atau meletus. KECEPATAN KENDARAAN Temperatu di dalam ban naik seiring dengan bertambahnya kecepatan ban dan akan lebih cepat naik bilamana kelenturannya ban lebih besar (tekanan angin kurang). KONTRUKSI BAN Ban radial mempunyai sabuk keras yang mengikat kawat ban dengan kuat sehingga tapak ban yang kontak dengan permukaan jalan tidak cepat aus. Dikarenakan sabuk-sabuk tersebut mengurangi kelenturan tapak ban, maka ban tidak cepat panas dan temperaturnya juta tetap rendah dibandingkan dengan ban tipe bias. Kawat baja yang dipasang pada ban radial juga bisa memancarkan panas jika lapisan kawat bajanya mempunyai penghantar panas yang besar. PERPORMA PENGEREMAN Kendaraan mengurangi laju dan berhenti dengan cara membangkitkan gesekan antara ban dan permukaan jalan. Besarnya gaya pengereman yang dihasilkan tergantung dari kondisi jalan, tipe ban, konstruksi ban dan kondisi lainnya yang mempengaruhi kerja ban. Performa pengereman dipengaruhi oleh koefisien gesek. Semakin kecil nilainya,maka gesekan bannya lebih kecil dan jarak pengeremannya semakin jauh (jarak henti mulai dari pertama kali pedal rem diinjak sampai dengan mobil berhenti total). KEAUSAN BAN DAN JARAK PENGEREMAN Pada jalan kering, ban aus tidak berpengaruh besar terhadap jarak pengereman. Namun untuk permukaan jalan basah jarak pengemannya cenderung lebih jauh. Performa pengereman kurang dikarenakan pola kembang ban sudah aus sehingga daya cengkramnya terhadap air berkurang. STANDING WAVE Ketika kendaraan bergerak, ban akan terus-menerus melentur seiring dengan melajunya kendaraan. Kemudian, pada saat ban merenggang dari permukaan jalan, tekanan angin yang ada dan elastistas di dalam ban akan berusaha kembali ke keadaan semula. Pada kecepatan tinggi, ban akan berputar lebih cepat dari kecepepatan ban. Proses bergoyangnya tapak ban ini belangsung secara terus-menerus. Turun naiknya ban ini, akan berakibat terjadinya standing waves, yang kemudian menyebabkan bunyi dengun di sekitar ban. Energi yang terkunci di dalam standing waves kemudian dirubah ke dalam bentuk panas, sehingga memicu naiknya temperatur ban. Dalam situasi tertentu, panas ini bisa merusak ban dalam waktu singkat dimana sebelumnya terjadi pemisahan antara tapak ban dengan kawat ban. Umumnya ban radial lebih tahan pada kecepatan tinggi, selama dia menggunakan lapisan kawat yang dipengang kuat oleh sabuk yang kuat, dan tidak mudah berubah bentuk. Ban untuk bus, truck dan truck kecil mempunyai sedikit masalah terhadap standing waves karena mobil jenis ini berjalan lambat dengan tekanan ban yang lebih tinggi. HYDROPLANING Kendaan akan tergelincir di jalan yang tergenan air, jika kendaraan tersebut melaju terlalu cepat sehingga mengakibatkan tapak ban berputar lebih cepat dari kecepatan mobil sehingga menimbulkan cengraman yang tidak begitu kuat. Alasanya adalah begitu keceptan kendaraan bertambah, maka tahanan pada air juga akan bertambah, sehingga memaksa ban umum terapung pada permukaan air. Kejadian ini disebut dengan hydroplaning. Efek ini persis dengan water-skiing ; pada kecepatan rendah melaju digenangan air kendaraan tidak begitu Training Material & Publication 44

45 menggelincir, namun pada kecepatan tinggi kendaraan akan menggelincir dipermukaan air. Tapak ban yang kontak dengan permukaan jalan terbagi menjadi tiga zona yaitu : A : DRAIN ZONE Mendorong air ke samping atau mempompanya melalui alur dan saluran zig-zag yang terdapat pada kembang ban. B : WIPE ZONE Sisa film atau air dibersihkan. C: GRIP ZONE (FRICTION ZONE) Pola tapak ban mencengkram permukaan jalan. Pada kecepatan yang lebih rendah, Zona C adalah daerah yang paling lebah sehingga ban Mencengram permukaan jalan. Begitu mobil melaju cepat, gesekan ban berkurang sedangkan zona A mulai melebar mengalahkan zona B dan C. Kendaraan terlihat mengalami hydroplaning jika kedalaman air lebih tinggi dari 2.5 ~ 10.0 mm. Training Material & Publication 45

46 Step 1 : Tapak ban secara penuh kontak dengan permukaan jalan. Step 2 : A wedge-shaped film pada air Secara perlahan masuk diantara tapak ban dan permukaan jalan. (hydroplaning sebagian) Step 3 : Tapak terangkat dari permuaan jalan (hydroplaning penuh) Hydroplaning tidak hanya menyebabkan kehilangan kontrol kemudi, namun bisa juga mengurangi atau menghilangkan daya cengkram rem. Sehingga akibatnya dapat membahanyakan, maka dari itu perlu diperhatikan hal-hal untuk mencegah terjadinya hydroplaning : a. Jangan menggunakan ban yang sudah botak atau aus. Apabila ban sudah aus, maka tapak tidak mempunyai alur lagi dan tidak mempunyai kemampuan untuk mengeringkan air untuk mencegah terjadinya hydroplaning. b. Kurangi laju kendaraan bila melawati jalan yang tergenang air, karena semakin cepat kecepatan kendaraan maka semakin besar juga tahanan airnya sehingga berimbas terjadinya hydroplaning. c. Sesuaikan tekanan angin ban. Tekanan angin yang sesuai dapat memperlambat terjadinya hydroplaning. CORNERING PERFORMANCE Cornering selalu identik dengan gaya sentrifugal, yang mencoba menahan kendaraan yang berbelok dengan sudut tajam, untuk mengimbanginya ada yang disebut dengan gaya centripetal. Gaya centripetal ini terbentuk oleh deformasi dan side-slipping pada tapak ban yang terjadi diantara ban dan permukaan jalan. Inilah yang disebut dengan. Training Material & Publication 46

47 Gaya cornering ini menstabilkan kendaraan ketika berbelok. Performas berbelok bermacammacam yang dipengaruhi oleh: 1. Spesifikasi ban 2. Beban yang diberikan ke tapak ban (gaya cornering bertambah mengikuti beban yang ada) 3. Ukuran ban (gaya cornering bertambah sesuai dengan ukuran ban) 4. Kondisi permukaan jalan (gaya cornering turun dengan cepat jika permukaan basah dengan air atau salju) 5. Tekanan angin ban (gaya cornering bertambah begitu tekanan angin ban terlalu keras) 6. Wheel camber (gaya cornering berkurang pada positive camber) 7. Lebar Rim (semakin besar ban akan membuat semakin besar gaya cornering). KEAUSAN BAN Keausan ban adalah suatu hilangnya atau rusaknya tapak ban atau permukaan karet ban karena gesekan yang terjadi ketika ban melaju dijalan. Keausan ban bermacam-macam tergantung dari tekanan angin ban, beban, kecepatan kendaraan, cuaca panas, kondisi permukaan jalan, temperatur dan faktor lainnya. TEKANAN INFLASI Tekanan angin yang kuran dapat mempercepat ban menjadi aus karena ban terlalu lentur terhadap permukaan jalan. BEBAN Semakin besar beban muatan juga semakin mempercepat keausan ban. Ban juga semakin cepat aus ketika berbelok dengan beban yang cukup besar karena gaya sentrifugalnya lebih besar ketika berbelok mengakibatkan gesekan antara ban ban permukaan jalan menjadi lebih besar. Training Material & Publication 47

48 KECEPATAN KENDARAAN Gaya laju dan pengereman, gaya sentrifugal ketika berbelok, dan gaya lainnya yang ditimbulkan pada ban, bertambah berbanding sama dengan kecepatan kendaraan. Bertambanya kecepatan kendaraan akan melipatgandakan gaya-gaya tersebut, semakin bertambahnya gesekan yang terjadi antara tapak ban dan permukaan jalan akan mempercepat tingkat keausan ban. Sebagai tambahan, kondisi jalan juga merupakan faktor yang berpengaruh terhadap keausan ban. Jalan yang kasar juga bisa sebagai pemicu ban menjadi lebih aus. TEKANAN ANGIN Tekanan angin di dalam ban adalah sebagai penopang berat kendaraan. Ban pada dasarnya adalah sebuah kontainer penampung udara. Tekanan angin yang tepat membuat handling dan traksi menjadi lebih baik serta ban menjadi lebih awet. Apabila udara di dalamnya berisi gas, maka pada saat dingin yang terjadi adalah sebaliknya. Untuk setiap 10 derajat fahrenheit (sekitar 5.5 derajat celcius) temperatur ambient di dalam akan berubah, tekanan angin ban akan berubah sekitar 1 psi. tekanan angin akan turn seiring dengan rendahnya temperatur, dan naik apabila temperaturnya juga naik. Perbedaan nyata antara musin panas dan dingin adalah sekitar 50 derajat F (sekitar 28 derajat celcius), yang akan mengakibatkan turunnya tekanan angin ban sekitar 5 psi dan akan mempengaruhi handling, traksi, durability dan safety. Tekanan angin yang dianjurkan adalah tekanan dingin, sehingga perlu didinginkan dengan istrirahat beberapa saat bila pergi bila untuk jarak jauh. Perlu diingat bahwa tekanan angin cenderung akan turun sekitar 1 psi per bulan, sehingga harus sering-sering diperiksa. ROTASI BAN Rotasi ban bisa dilakukan dengan beberapa cara. Jika dilakukan sesuai anjuran, maka bisa membuat ban menjadi awet dan tingkat keausan berata satu dengan yang lainnya. Bahkan juga bisa memberikan keuntungan terhadap performa kendaraan. Kapankan ban harus dirotasi? Dianjurkan untuk melakukan rotasi ban setiap kilometer 3,000 sampai 5,000, mesikipun ban tidak terlihat aus. Rotasi ban sering bisa dilakukan bersamaan dengan waktu penggantian oli. Ingat bahwa rotasi ban tidak membetulkan problem keausan ban karena kesalahan tekanan angin atau adanya komponen mekanikal yang aus. Untuk mobil berpenggerak roda depan, tukar roda dengan pola menyilang (fig. A) atau dengan cara alternatif X (fig. B). untuk mobil berpenggerak roda belakang atau 4WD, tukar ban dengan pola menyilang ke belakang (fig. C) atau pola alternatif X (fig. B). Training Material & Publication 48

Sistem suspensi dipasang diantara rangka kendaraan dengan poros roda, supaya getaran atau goncangan yang terjadi tidak di teruskan ke body.

Sistem suspensi dipasang diantara rangka kendaraan dengan poros roda, supaya getaran atau goncangan yang terjadi tidak di teruskan ke body. SISTEM SUSPENSI Sistem suspensi dipasang diantara rangka kendaraan dengan poros roda, supaya getaran atau goncangan yang terjadi tidak di teruskan ke body. SPRUNG WEIGHT DAN UNSPRUNG WEIGHT Pada umumnya

Lebih terperinci

SISTEM SUSPENSI & BAN

SISTEM SUSPENSI & BAN SISTEM SUSPENSI & BAN SISTEM SUSPENSI URAIAN Sistem suspensi terletak diantara bodi kendaraan dan roda-roda, dan dirancang untuk menyerap kejutan dari permukaan jalan sehingga menambah kenyamanan. Komponen

Lebih terperinci

BAB II LANDASAN TEORI. seperti mesin, suspensi transmisi serta digunakan untuk menjaga mobil agar

BAB II LANDASAN TEORI. seperti mesin, suspensi transmisi serta digunakan untuk menjaga mobil agar 7 BAB II LANDASAN TEORI 2.1 Definisi Chassis Chassis merupakan komponen utama pada kendaraan yang terbuat dari material kuat seperti besi dan baja, yang di buat dengan struktur dan perhitungan yang presisi

Lebih terperinci

SISTEM KEMUDI & WHEEL ALIGNMENT

SISTEM KEMUDI & WHEEL ALIGNMENT SISTEM KEMUDI & WHEEL ALIGNMENT SISTEM KEMUDI I. URAIAN Fungsi sistem kemudi adalah untuk mengatur arah kendaraan dengan cara membelokkan roda depan. Bila steering wheel diputar, steering column akan meneruskan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Suspensi Suspensi adalah kumpulan komponen tertentu yang dirancang untuk menyerap kejutan dari permukaan jalan yang bergelombang sehingga menambah kenyamanan berkendara

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Garis Besar Chasis Dan Suspensi Pada sebuah kendaraan terbagi ke dalam beberapa sistem yang merupakan point utama dari adanya sebuah kendaraan, salah satunya sistem chasis meliputi

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Kode & Nama Mata Kuliah : OT 443. CHASSIS OTOMOTIF Topik Bahasan : Kumpulan bahan kajian dan perkuliahan yang menjamin kendaraan berjalan dengan aman dan nyaman Tujuan / Kompetensi

Lebih terperinci

BAB II DASAR TEORI Suspensi

BAB II DASAR TEORI Suspensi digilib.uns.ac.id BAB II DASAR TEORI 2. 1. Suspensi Suspensi adalah suatu sistem yang berfungsi meredam kejutan, getaran yang terjadi pada kendaraan akibat permukaan jalan yang tidak rata. Suspensi dapat

Lebih terperinci

SUSPENSI (suspension)

SUSPENSI (suspension) SUSPENSI (suspension) Suspensi adalah mekanisme yang dipasang di antara body dan roda yang berfungsi untuk menciptakan kestabilan kendaraan (nyaman dan aman) Unsur kestabilan kendaraan : 1. Stabil pengendaraannya

Lebih terperinci

Sistem Suspensi pada Truck

Sistem Suspensi pada Truck Sistem Suspensi pada Truck Halaman 1 dari 4 Fungsi utama sistem suspensi pada kendaraan adalah mendukung berat kendaraan untuk diteruskan ke tanah (ground). Fungsi lain adalah melindungi badan kendaraan

Lebih terperinci

PT Mercedes-Benz Distribution Indonesia

PT Mercedes-Benz Distribution Indonesia BAB III PENGENALAN SUSPENSI PADA KENDARAAN MERCEDES-BENZ B- Class (W 245) 1.1 DASAR TEORI Komponen utama dari suspensi yang di gunakan pada kendaraan Mercedes-Benz B-class (w 245) terdiri dari beberapa

Lebih terperinci

STEERING. Komponen Sistem Kemudi/ Steering

STEERING. Komponen Sistem Kemudi/ Steering STEERING Fungsi sistem kemudi adalah untuk mengatur arah kendaraan dengan cara membelokkan roda-roda depan. Bila roda kemudi diputar, steering column akan meneruskan tenaga putarnya ke steering gear. Steering

Lebih terperinci

BAB IV GEOMETRI RODA

BAB IV GEOMETRI RODA BAB IV GEOMETRI RODA 4.1 TUJUAN PEMBELAJARAN Peserta didik dapat: 1. Menjelaskan pentingnya meluruskan roda 2. Mengetahui tanda-tanda roda harus diluruskan 3. Mengetahui 4. Mengetahui dan menggunakan peralatan

Lebih terperinci

BAB III ANALISIS SISTEM SUSPENSI DEPAN

BAB III ANALISIS SISTEM SUSPENSI DEPAN 35 BAB III ANALISIS SISTEM SUSPENSI DEPAN 3.1. Daftar Spesifikasi Kendaraan 1) Spesifikasi Kendaraan Toyota Kijang Innova 2.0 V M/T Tahun 2004 Tabel 3.1. Spesifikasi Kendaraan Toyota Kijang Innova 2.0

Lebih terperinci

BAB III BALANS RODA/BAN

BAB III BALANS RODA/BAN BAB III BALANS RODA/BAN 3.1 TUJUAN Peserta didik dapat : 1. Dapat mengidentifikasi gangguan pada roda / ban 2. Dapat memahami dan menjelaskan balans static dan balans dinamik 3. Dapat membalans roda pada

Lebih terperinci

BAB III KONSTRUKSI DOUBLE WISHBONE

BAB III KONSTRUKSI DOUBLE WISHBONE BAB III KONSTRUKSI DOUBLE WISHBONE Suspensi double wishbone merupakan sebuah mekanisme suspensi bebas yang terdiri dari lengan-lengan (dapat berbentuk silinder berlubang, pipa, maupun batang) yang memiliki

Lebih terperinci

CHASSIS. SISTEM KEMUDI 1. Uraian Bagian-bagian Utama Sistem Kemudi

CHASSIS. SISTEM KEMUDI 1. Uraian Bagian-bagian Utama Sistem Kemudi CHASSIS GARIS BESAR CHASSIS............. 222 SUSPENSI 1. Uraian............................ 223 2. Komponen Utama Suspensi........... 224 3. Tipe dan Karakteristik Suspensi........ 233 4. Sistem Suspensi

Lebih terperinci

MODUL SISTEM KEMUDI DPKJ OLEH : KHUSNIADI PROGRAM STUDI TEKNIK KENDARAAN RINGAN JURUSAN TEKNIK MEKANIK OTOMOTIF SMK NEGERI 1 BUKITTINGGI 2011

MODUL SISTEM KEMUDI DPKJ OLEH : KHUSNIADI PROGRAM STUDI TEKNIK KENDARAAN RINGAN JURUSAN TEKNIK MEKANIK OTOMOTIF SMK NEGERI 1 BUKITTINGGI 2011 1 MODUL SISTEM KEMUDI DPKJ OLEH : KHUSNIADI PROGRAM STUDI TEKNIK KENDARAAN RINGAN JURUSAN TEKNIK MEKANIK OTOMOTIF SMK NEGERI 1 BUKITTINGGI 2011 2 SISTEM KEMUDI Kompetensi : Menjelaskan pengertian prinsip

Lebih terperinci

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD Oleh: Bagus Kusuma Ruswandiri 2108100120 Dosen Pembimbing: Prof. Ir. I Nyoman Sutantra, M.Sc., Ph.D. Latar Belakang

Lebih terperinci

OVH SUSPENSION I.STRUCTURE & FUNCTION. 1.Rear suspension cylinder

OVH SUSPENSION I.STRUCTURE & FUNCTION. 1.Rear suspension cylinder OVH SUSPENSION I.STRUCTURE & FUNCTION 1.Rear suspension cylinder Hydro-pneumatic cylinder yang dipasang tegak pada bagian belakang unit, dimana bagian bawah cylinder dipasang dengan pin dan spherical bearing

Lebih terperinci

Setelah mengikuti pelajaran ini peserta dapat mengetahui fungsi wheel alignment.

Setelah mengikuti pelajaran ini peserta dapat mengetahui fungsi wheel alignment. CHASIS WHEEL ALIGNMENT Tujuan Instruksional Umum : Setelah mengikuti pelajaran ini peserta dapat mengetahui fungsi wheel alignment. Tujuan Instruksional Khusus : 1. Peserta dapat menyebutkan definisi,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. II untuk sumbu x. Perasamaannya dapat dilihat di bawah ini :

BAB IV HASIL DAN PEMBAHASAN. II untuk sumbu x. Perasamaannya dapat dilihat di bawah ini : BAB IV HASIL DAN PEMBAHASAN 4.1 Analisa Perancangan Rem Persamaan umum untuk sistem pengereman menurut Hukum Newton II untuk sumbu x. Perasamaannya dapat dilihat di bawah ini : F = m. a Frem- F x = m.

Lebih terperinci

Oleh : Bimo Arindra Hapsara Dosen Pembimbing : Ir. J. Lubi. Proposal Tugas Akhir. Tugas Akhir

Oleh : Bimo Arindra Hapsara Dosen Pembimbing : Ir. J. Lubi. Proposal Tugas Akhir. Tugas Akhir Proposal Tugas Akhir Tugas Akhir Oleh : Bimo Arindra Hapsara 2106 100 047 Dosen Pembimbing : Ir. J. Lubi Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kecelakaan

Lebih terperinci

PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK

PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK Jurnal Elemen Volume 4 Nomor 1, Juni 2017 ISSN : 2442-4471 PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK Kurnia Dwi Artika 1, Rusuminto Syahyuniar 2, Nanda Priono 3 1),2) Staf Pengajar Jurusan Mesin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Gokart Gokart merupakan salah satu produk yang sarat dengan teknologi dan perkembangan. Ditnjau dari segi komponen, Gokart mempunyai beragam komponen didalamnya, namun secara

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. RODA 1. Pengertian Roda Roda pada umumnya yang digunakan pada mobil dapat dibagi menjadi pelek roda dan ban. Pelek roda dan ban ini pada manusia diumpamakan sebagai kaki dan sepatu.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengereman Modifikasi pengereman dan kemudi ini berlandaskan pada tinjauan pustaka yang mendukung terhadap cara kerja dari sistem pengereman dan kemudi. Rem adalah salah satu

Lebih terperinci

BAB III LANDASAN TEORI. start. Persiapan alat. Dongkrak roda depan. Setting laser. Setting lavel. Sentering as. Sentering titk roda. setting.

BAB III LANDASAN TEORI. start. Persiapan alat. Dongkrak roda depan. Setting laser. Setting lavel. Sentering as. Sentering titk roda. setting. BAB III LANDASAN TEORI 3.1 Flow chart start Persiapan alat Dongkrak roda depan Setting laser Setting lavel Sentering as Sentering titk roda setting selesai Gambar 3.1 Flow chart proses front wheel aligment(doc

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Kemudi Di dalam sebuah sistem kemudi ada dua faktor yang menjadi tujuan dari setiap pengembangan teknologi otomotif yaitu mempermudah pengendalian kendaraan dan meningkatkan

Lebih terperinci

POROS PENGGERAK RODA

POROS PENGGERAK RODA SMK KARTANEGARA WATES KAB. KEDIRI SISTEM PEMINDAH TENAGA (SPT) POROS PENGGERAK RODA 34 PEMELIHARAAN / SERVICE POROS PENGGERAK RODA A. URAIAN Fungsi axle shaft adalah sebagai penumpu beban roda atau dudukan

Lebih terperinci

CASIS GEOMETRI RODA. Sistem starter, pengapian, sistem penerangan, sistem tanda dan sistem kelengkapan tambahan

CASIS GEOMETRI RODA. Sistem starter, pengapian, sistem penerangan, sistem tanda dan sistem kelengkapan tambahan Rangka CASIS GEOMETRI RODA 1. Komponen kendaraan Motor : Blok motor dan kepala silinder serta perlengkapannya sistem bahan bakar bensin atau diesel Casis : 1. Sistem kemudi 2. Pegas dan peredam getaran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. ENGINEERING DESIGN Definisi merancang adalah merumuskan suatu konsep dan ide yang baru atau merubah konsep dan ide yang sudah ada tersebut dengan cara yang baru dalam usaha memenuhi

Lebih terperinci

BAB II DASAR TEORI. yang menggerakan roda telah dibebaskan oleh kopling. Agar kendaraan bias. dan dengan jarak yang seminim mungkin.

BAB II DASAR TEORI. yang menggerakan roda telah dibebaskan oleh kopling. Agar kendaraan bias. dan dengan jarak yang seminim mungkin. BAB II DASAR TEORI 2.1 REM 2.1.1 Fungsi Rem Pada saat kendaraan mulai meluncur di jalanan, maka kelajuan akan tetap ada pada kendaraan itu walaupun mesin sudah dimatikan atau permindahan tenaga yang menggerakan

Lebih terperinci

PENDAHULUAN DAN SISTEM KOPLING

PENDAHULUAN DAN SISTEM KOPLING SMK KARTANEGARA WATES KAB. KEDIRI SISTEM PEMINDAH TENAGA (SPT) PENDAHULUAN DAN SISTEM KOPLING 7 PENDAHULUAN SISTEM PEMINDAH TENAGA (POWER TRAIN). Pemindah tenaga (Power Train) adalah sejumlah mekanisme

Lebih terperinci

WHEEL ALIGNMENT & ECS

WHEEL ALIGNMENT & ECS WHEEL ALIGNMENT & ECS 1 DAFTAR ISI WHEEL ALIGNMENT Pentingnya Wheel Alignment ------------------------------------------------------------------------------- Yang terjadi dalam proses Alignment --------------------------------------------------------------------

Lebih terperinci

MAKALAH SISTEM PEMINDAH TENAGA PROPELLER SHAFT. Rian Alif Prabu ( ) Septian Dwi Saputra ( )

MAKALAH SISTEM PEMINDAH TENAGA PROPELLER SHAFT. Rian Alif Prabu ( ) Septian Dwi Saputra ( ) MAKALAH SISTEM PEMINDAH TENAGA PROPELLER SHAFT Rian Alif Prabu (12504244022) Septian Dwi Saputra (12504244032) Pendidikan Teknik Otomotif Fakultas Teknik Universitas Negeri Yogyakarta 2016 BAB I PENDAHULUAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Power Steering Dalam mengemudikan kendaraan roda empat, terkadang kita menemukan kendaraan yang mudah untuk dikendarai dan ada juga yang sulit. Salah satu faktornya adalah

Lebih terperinci

PELAKSANAAN DAN PEMBAHASAN

PELAKSANAAN DAN PEMBAHASAN 37 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 ALUR PROSES Pada gambar 4.1 menggambarkan sebuah langkah dari proses pelayanan perawatan kendaraan yang dilakukan oleh menejemen Astrido Daihatsu Kebon Jeruk agar

Lebih terperinci

BAB III DATA KENDARAAN UNTUK SIMULASI

BAB III DATA KENDARAAN UNTUK SIMULASI BAB III DATA KENDARAAN UNTUK SIMULASI 3.1. Tinjauan Pemodelan truk secara lengkap dikembangkan dan bertujuan untuk mempelajari efektivitas dari sistem Antilock Braking System termasuk pemodelan dinamika

Lebih terperinci

BAB III ANALISIS FRONT WHEEL ALIGNMENT PADA DAIHATSU GRAN MAX PICK UP

BAB III ANALISIS FRONT WHEEL ALIGNMENT PADA DAIHATSU GRAN MAX PICK UP BAB III ANALISIS FRONT WHEEL ALIGNMENT PADA DAIHATSU GRAN MAX PICK UP A. Spesifikasi Kendaraan Daihatsu Gran Max SPESIFIKASI PICK UP 1.3 1.5 STD 3W STD 3W BOX 1.3 1.5 DIMENSI Panjang keseluruhan Lebar

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

INFOMATEK Volume 6 Nomor 1 Maret 2004 DESAIN & PEMBUATAN PROTOTIPE LIGHT BUGGY

INFOMATEK Volume 6 Nomor 1 Maret 2004 DESAIN & PEMBUATAN PROTOTIPE LIGHT BUGGY Desain & Pembuatan Prototipe Light Buggy INFOMATEK Volume 6 Nomor 1 Maret 2004 DESAIN & PEMBUATAN PROTOTIPE LIGHT BUGGY Farid Rizayana Design Center Jurusan Teknik Mesin Fakultas Teknik Universitas Pasundan

Lebih terperinci

BAB IV PERAWATAN PREVENTIF PADA PT DUNIA EXPRESS TRANSINDO 4.1 PERAWATAN PREVENTIF Perawatan preventif merupakan tindakan pemeliharaan yang terjadwal dan terencana. Hal ini dilakukan untuk mengantisipasi

Lebih terperinci

PR I PERGERAKAN RODA KENDARAAN BERMOTOR AKIBAT GESEKAN

PR I PERGERAKAN RODA KENDARAAN BERMOTOR AKIBAT GESEKAN Nama : Fatimah NIM : 20214039 Mata Kuliah :Metodelogi Penelitian PR I PERGERAKAN RODA KENDARAAN BERMOTOR AKIBAT GESEKAN Secara prinsip mobil terdiri dari tiga bagian utama. Yang pertama adalah mesin sebagai

Lebih terperinci

SUSPENSI DAN KEMUDI SEPEDA MOTOR

SUSPENSI DAN KEMUDI SEPEDA MOTOR SUSPENSI DAN KEMUDI SEPEDA MOTOR TEORI SECARA UMUM SISTIM SUSPENSI Sistim suspensi biasanya ditempatkan diantara frame dan poros roda. Pada umumnya dilengkapi dengan shock absorber. Sistim suspensi terletak

Lebih terperinci

REKONDISI SISTEM KEMUDI DAN SISTEM SUSPENSI MOBIL TOYOTA HIACE PROYEK AKHIR

REKONDISI SISTEM KEMUDI DAN SISTEM SUSPENSI MOBIL TOYOTA HIACE PROYEK AKHIR REKONDISI SISTEM KEMUDI DAN SISTEM SUSPENSI MOBIL TOYOTA HIACE PROYEK AKHIR Diajukan Kepada Fakultas Teknik Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Gelar Ahli

Lebih terperinci

MEKANISME KERJA MESIN TOE TESTER DI PT. SUZUKI INDOMOBIL MOTOR PLANT TAMBUN II

MEKANISME KERJA MESIN TOE TESTER DI PT. SUZUKI INDOMOBIL MOTOR PLANT TAMBUN II MEKANISME KERJA MESIN TOE TESTER DI PT. SUZUKI INDOMOBIL MOTOR PLANT TAMBUN II PENDAHULUAN Latar Belakang Masalah Mesin Toe Tester misalnya, penyetelan seperti ini banyak sekali digunakan umumya pada pabrik

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Tio Agustian, 2014 Analisis front wheel alignment (fwa) pada kendaraan Daihatsu Gran Max Pick Up

BAB I PENDAHULUAN A. Latar Belakang Tio Agustian, 2014 Analisis front wheel alignment (fwa) pada kendaraan Daihatsu Gran Max Pick Up BAB I PENDAHULUAN A. Latar Belakang Perkembangan Industri mobil di Indonesia ini sangatlah maju, dalam penggunaannya mobil digunakan sebagai sarana yang dapat membantu kebanyakan orang untuk memindahkan

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 8 BAB III TINJAUAN PUSTAKA 3.1 AIR SUSPENSION (SUSPENSI UDARA) Air suspension, atau suspensi bus dengan bantalan udara digunakan sebagai penopang bantingan dan pengganti fungsi per. Awalnya, sistem ini

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Transmisi Transmisi yaitu salah satu bagian dari sistem pemindah tenaga yang berfungsi untuk mendapatkan variasi momen dan kecepatan sesuai dengan kondisi jalan dan kondisi pembebanan,

Lebih terperinci

ANALISA GAYA PADA SISTEM KEMUDI TYPE RECIRCULATING BALL

ANALISA GAYA PADA SISTEM KEMUDI TYPE RECIRCULATING BALL ANALISA GAYA PADA SISTEM KEMUDI TYPE RECIRCULATING BALL PUBLIKASI ILMIAH Disusun sebagai salah satu syarat menyelesaikan program studi Strata 1 pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

BAB III METODE PENELITIAN. 3.1 Diagram alir Berikut merupakan gambar diagram alur : Mulai. Kajian pustaka Studi Literatur

BAB III METODE PENELITIAN. 3.1 Diagram alir Berikut merupakan gambar diagram alur : Mulai. Kajian pustaka Studi Literatur 20 BAB III METODE PENELITIAN 3.1 Diagram alir Berikut merupakan gambar diagram alur : Mulai Kajian pustaka Studi Literatur Analisa Penguatan Front Wheel Alignment Data Awal NO Perancangan FWA YES Penyedia

Lebih terperinci

SISTEM POROS PROPELLER

SISTEM POROS PROPELLER SMK KARTANEGARA WATES KAB. KEDIRI SISTEM PEMINDAH TENAGA (SPT) SISTEM POROS PROPELLER 22 PEMELIHARAAN / SERVICE UNIT FINAL DRIVE ( SISTEM POROS PROPELLER) URAIAN Propeller Shaft Propeller Shaft berfungsi

Lebih terperinci

Tugas akhir ABSTRAK Teknik Mesin Universitas Pasundan

Tugas akhir ABSTRAK Teknik Mesin Universitas Pasundan ABSTRAK Shell Eco Marathon adalah ajang tahunan yang menantang siswa SMA dan Mahasiswa dari seluruh dunia untuk mendesain, membuat dan menguji kendaraan yang memiliki efisiensi tinggi. Selain dapat dibuat

Lebih terperinci

BAB III ANALISIS KASUS

BAB III ANALISIS KASUS A. Analisis BAB III ANALISIS KASUS Penulis mengumpulkan data-data teknis pada mobil Daihatsu Gran Max Pick Up 3SZ-VE dalam menganalisis sistem suspensi belakang untuk kerja pegas daun (leaf spring), dimana

Lebih terperinci

BAGIAN-BAGIAN UTAMA MOTOR Bagian-bagian utama motor dibagi menjadi dua bagian yaitu : A. Bagian-bagian Motor Utama yang Tidak Bergerak

BAGIAN-BAGIAN UTAMA MOTOR Bagian-bagian utama motor dibagi menjadi dua bagian yaitu : A. Bagian-bagian Motor Utama yang Tidak Bergerak BAGIAN-BAGIAN UTAMA MOTOR Bagian-bagian utama motor dibagi menjadi dua bagian yaitu : A. Bagian-bagian Motor Utama yang Tidak Bergerak Tutup kepala silinder (cylinder head cup) kepala silinder (cylinder

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI Suatu sistem penggerak yang terdapat dalam sebuah mobil tidak lepas dari peranan motor penggerak dan transmisi sebagai penghantar putaran dari motor penggerak sehingga mobil

Lebih terperinci

MODIFIKASI SISTEM KEMUDI MANUAL MENJADI SISTEM KEMUDI DENGAN POWER STEERING TIPE RACK AND PINION PADA TOYOTA KIJANG 5K

MODIFIKASI SISTEM KEMUDI MANUAL MENJADI SISTEM KEMUDI DENGAN POWER STEERING TIPE RACK AND PINION PADA TOYOTA KIJANG 5K MODIFIKASI SISTEM KEMUDI MANUAL MENJADI SISTEM KEMUDI DENGAN POWER STEERING TIPE RACK AND PINION PADA TOYOTA KIJANG 5K PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya

Lebih terperinci

BAB 1 PENDAHULUAN. akan berbelok, maka ada dua skenario atau kejadian yang dikenal sebagai understeer

BAB 1 PENDAHULUAN. akan berbelok, maka ada dua skenario atau kejadian yang dikenal sebagai understeer BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Dalam berkendara, ketika kendaraan telah mencapai sebuah tikungan dan akan berbelok, maka ada dua skenario atau kejadian yang dikenal sebagai understeer dan

Lebih terperinci

ANALISA DYNAMIC OF HANDLING KENDARAAN REVERSE TRIKE DITINJAU DARI PERGESERAN CENTRE OF GRAVITY (CG) SKRIPSI

ANALISA DYNAMIC OF HANDLING KENDARAAN REVERSE TRIKE DITINJAU DARI PERGESERAN CENTRE OF GRAVITY (CG) SKRIPSI ANALISA DYNAMIC OF HANDLING KENDARAAN REVERSE TRIKE DITINJAU DARI PERGESERAN CENTRE OF GRAVITY (CG) SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar SarjanaTeknik Oleh: BHANU PUTRA BUMI

Lebih terperinci

BAB I PENDAHULUAN. seiring dengan perkembangan serta kemajuan di bidang industri terutama dalam

BAB I PENDAHULUAN. seiring dengan perkembangan serta kemajuan di bidang industri terutama dalam BAB I PENDAHULUAN 1.1 Latar Belakang Gokart saat ini sangat berkembang dalam ilmu pengetahuan dan teknologi, seiring dengan perkembangan serta kemajuan di bidang industri terutama dalam bidang otomotif.

Lebih terperinci

MAKALAH PENERAPAN OPEN LOOP DAN CLOSE LOOP SYSTEM OLEH: JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS NEGERI SURABAYA

MAKALAH PENERAPAN OPEN LOOP DAN CLOSE LOOP SYSTEM OLEH: JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS NEGERI SURABAYA MAKALAH PENERAPAN OPEN LOOP DAN CLOSE LOOP SYSTEM OLEH: JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS NEGERI SURABAYA Penerapan Close loop system A. Close loop System (sistem loop tertutup) Sistem loop

Lebih terperinci

New Mitsubishi Fuso Tractor Head FV51 JH

New Mitsubishi Fuso Tractor Head FV51 JH New Mitsubishi Fuso Tractor Head FV51 JH (KTB), Authorized Distributor Kendaraan Mitsubishi di Indonesia dari Mitsubishi Motors Corporation (MMC) dan Mitsubishi Fuso Truck & Bus Corporation (MFTBC) mulai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Transmisi Transmisi yaitu salah satu bagian dari sistem pemindah tenaga yang berfungsi untuk mendapatkan variasi momen dan kecepatan sesuai dengan kondisi jalan dan kondisi

Lebih terperinci

TIPS MUDIK DARI YAMAHA INDONESIA

TIPS MUDIK DARI YAMAHA INDONESIA PRESS RELEASE TIPS MUDIK DARI YAMAHA INDONESIA 10 August 2011 Image not found or type unknown JAKARTA - Hari Raya Lebaran kian dekat dan para pemudik pun siap-siap mudik untuk merayakannya bersama keluarga

Lebih terperinci

POROS PENGGERAK RODA

POROS PENGGERAK RODA SMK KARTANEGARA WATES KAB. KEDIRI SISTEM PEMINDAH TENAGA (SPT) POROS PENGGERAK RODA 34 PEMELIHARAAN / SERVICE POROS PENGGERAK RODA A. URAIAN Fungsi axle shaft adalah sebagai penumpu beban roda atau dudukan

Lebih terperinci

BAB III PENGUKURAN DAN GAMBAR KOMPONEN UTAMA PADA MESIN MITSUBISHI L CC

BAB III PENGUKURAN DAN GAMBAR KOMPONEN UTAMA PADA MESIN MITSUBISHI L CC BAB III PENGUKURAN DAN GAMBAR KOMPONEN UTAMA PADA MESIN MITSUBISHI L 100 546 CC 3.1. Pengertian Bagian utama pada sebuah mesin yang sangat berpengaruh dalam jalannya mesin yang didalamnya terdapat suatu

Lebih terperinci

Oleh sebab itu pembuatan silinder diperlukan ketelitian yang tinggi.

Oleh sebab itu pembuatan silinder diperlukan ketelitian yang tinggi. Blok Silinder Blok silinder merupakan inti daripada mesin yang terbuat dari besi tuang. Belakangan ini ada beberapa blok silinder yang dibuat dari paduan aluminium. Seperti kita ketahui, bahwa aluminium

Lebih terperinci

BAB IV PERAWATAN REM CAKRAM TIPE ABS

BAB IV PERAWATAN REM CAKRAM TIPE ABS BAB IV PERAWATAN REM CAKRAM TIPE ABS 4.1. Tujuan Perawatan Perawatan dan perbaikan merupakan suatu hal yang sangat penting agar suatu alat atau mesin dapat bekerja dengan baik. Karena dengan sistem perawatan

Lebih terperinci

MELEPAS DAN MEMASANG PROPELLER SHAFT, AS RODA DAN GARDAN PADA MOBIL TOYOTA KIJANG 5K LAPORAN PRAKTIK AKHIR SEMESTER GENAP

MELEPAS DAN MEMASANG PROPELLER SHAFT, AS RODA DAN GARDAN PADA MOBIL TOYOTA KIJANG 5K LAPORAN PRAKTIK AKHIR SEMESTER GENAP MELEPAS DAN MEMASANG PROPELLER SHAFT, AS RODA DAN GARDAN PADA MOBIL TOYOTA KIJANG 5K LAPORAN PRAKTIK AKHIR SEMESTER GENAP diajukan untuk memenuhi nilai akhir semester dua disusun oleh : Arman Syah. S XI

Lebih terperinci

PERBAIKAN CHASSIS DAN BODY CHEVROLET LUV ( SISTEM SUSPENSI )

PERBAIKAN CHASSIS DAN BODY CHEVROLET LUV ( SISTEM SUSPENSI ) digilib.uns.ac.id PERBAIKAN CHASSIS DAN BODY CHEVROLET LUV ( SISTEM SUSPENSI ) PROYEK AKHIR Diajukan Untuk Memenuhi Persyaratan Guna Memperoleh Gelar Ahli Madya (A.Md) Disusun Oleh : GILANG RESTU AJI I

Lebih terperinci

Mekanisme-mekanisme yang terdapat pada steering column adalah peredam benturan, tilt steering, steering lock, telescophic steering.

Mekanisme-mekanisme yang terdapat pada steering column adalah peredam benturan, tilt steering, steering lock, telescophic steering. POWER STEERING,, WHEEL ALIGNMENT & BALANCE Power Steering a. Sistem Kemudi Sistem kemudi merupakan suatu mekanisme pada kendaraan yang berfungsi untuk mengatur arah kendaraan dengan cara membelokkan roda

Lebih terperinci

SISTEM TRANSMISI OTOMATIS SEPEDA MOTOR

SISTEM TRANSMISI OTOMATIS SEPEDA MOTOR SISTEM TRANSMISI OTOMATIS SEPEDA MOTOR CVT (Continuous Variable Transmission) Modul ini disusun sebagai bahan ajar bagi siswa kelas XI TSM (Teknik Sepeda Motor) Disusun : Gunadi, S. Pd DINAS PENDIDIKAN

Lebih terperinci

Gesekan. Hoga Saragih. hogasaragih.wordpress.com

Gesekan. Hoga Saragih. hogasaragih.wordpress.com Gesekan Hoga Saragih Gaya Gesekan Gaya gesekan adalah gaya yang ditimbulkan oleh dua benda yang bergesekan dan arahnya berlawanan dengan arah gerak benda. Beberapa cara memperkecil gaya gesekan dalam kehidupan

Lebih terperinci

PEMINDAH DAYA. 1. Uraian Tipe axle dan axle shaft

PEMINDAH DAYA. 1. Uraian Tipe axle dan axle shaft PEMINDAH DAYA GARIS BESAR PEMINDAH DAYA..... 190 KOPLING 1. Uraian.......................... 191 2. Rangkaian kopling................ 191 3. Plat kopling...................... 193 4. Mekanisme penggerak............

Lebih terperinci

BAB IV PEMBAHASAAN 4.1 PENGERTIAN DAN FUNGSI KOPLING Kopling adalah satu bagian yang mutlak diperlukan pada truk dan jenis lainnya dimana penggerak utamanya diperoleh dari hasil pembakaran di dalam silinder

Lebih terperinci

1 BAB II LANDASAN TEORI

1 BAB II LANDASAN TEORI 1 BAB II LANDASAN TEORI Pengertian Transmisi Fungsi transmisi adalah untuk meneruskan putaran dari mesin ke arah putaran roda penggerak, dan untuk mengatur kecepatan putaran dan momen yang dihasilkan sesuai

Lebih terperinci

BAHAN PELATIHAN NASIONAL OTOMOTIF PERBAIKAN KENDARAAN RINGAN

BAHAN PELATIHAN NASIONAL OTOMOTIF PERBAIKAN KENDARAAN RINGAN BAHAN PELATIHAN NASIONAL OTOMOTIF PERBAIKAN KENDARAAN RINGAN GENERAL SISTEM UTAMA KENDARAAN RINGAN DAN FUNGSINYA 10 001 1 BUKU INFORMASI Daftar Isi Halaman Bagian - 1 2 Pendahuluan 2 Definisi Pelatih,

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Identifikasi Sistem Kopling dan Transmisi Manual Pada Kijang Innova

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Identifikasi Sistem Kopling dan Transmisi Manual Pada Kijang Innova BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Berikut ini adalah beberapa refrensi yang berkaitan dengan judul penelitian yaitu sebagai berikut: 1. Tugas akhir yang ditulis oleh Muhammad

Lebih terperinci

PEMBUATAN RANGKA DAN SISTEM SUSPENSI PADA GOKART DENGAN MENGGUNAKAN MESIN VARIO 110 CC TUGAS AKHIR

PEMBUATAN RANGKA DAN SISTEM SUSPENSI PADA GOKART DENGAN MENGGUNAKAN MESIN VARIO 110 CC TUGAS AKHIR PEMBUATAN RANGKA DAN SISTEM SUSPENSI PADA GOKART DENGAN MENGGUNAKAN MESIN VARIO 110 CC TUGAS AKHIR Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Diploma III (Ahli Madya) Jurusan Teknik Mesin Politeknik

Lebih terperinci

UJI KINERJA DINAMIS SISTEM SUSPENSI DAN ANALISIS STABILITAS MICRO CAR. Skripsi

UJI KINERJA DINAMIS SISTEM SUSPENSI DAN ANALISIS STABILITAS MICRO CAR. Skripsi UJI KINERJA DINAMIS SISTEM SUSPENSI DAN ANALISIS STABILITAS MICRO CAR Skripsi Diajukan Dalam Rangka Menyelesaikan Studi Strata 1 Untuk Mencapai Gelar Sarjana Pendidikan Oleh : Nama : Mulyono NIM : 5201403034

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Indonesia. Dan hampir setiap orang menyukai kerupuk, selain rasanya yang. ikan, kulit dan dapat juga berasal dari udang.

BAB II TINJAUAN PUSTAKA. Indonesia. Dan hampir setiap orang menyukai kerupuk, selain rasanya yang. ikan, kulit dan dapat juga berasal dari udang. BAB II TINJAUAN PUSTAKA A. Pengertian Kerupuk Kerupuk memang bagian yang tidak dapat dilepaskan dari tradisi masyarakat Indonesia. Dan hampir setiap orang menyukai kerupuk, selain rasanya yang enak harganya

Lebih terperinci

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap KOPLING Defenisi Kopling dan Jenis-jenisnya Kopling adalah suatu elemen mesin yang berfungsi untuk mentransmisikan daya dari poros penggerak (driving shaft) ke poros yang digerakkan (driven shaft), dimana

Lebih terperinci

Apabila berat roda didistribusikan merata pada poros roda, titik tertentu dari roda akan dapat berhenti pada segala posisi. Dalam kondisi semacam ini

Apabila berat roda didistribusikan merata pada poros roda, titik tertentu dari roda akan dapat berhenti pada segala posisi. Dalam kondisi semacam ini Meningkatkan kemampuan mesin, handling dan kemampuan pengereman, juga aerodinamik body. Memungkinkan kendaraan dapat berjalan dengan kecepatan yang semakin tinggi. Pada kecepatan tinggi. wheel assembly

Lebih terperinci

Struktur dari Center Brake

Struktur dari Center Brake BAB I PENDAHULUAN Brake system dan ABS dipasang gunanya adalah untuk mencegah terjadinya cedera akibat kecelakaan karena kendaraan tidak bisa dihentikan pada saat melaju. Saat kendaraan bergerak, meskipun

Lebih terperinci

PENDAHULUAN DAN SISTEM KOPLING

PENDAHULUAN DAN SISTEM KOPLING SMK KARTANEGARA WATES KAB. KEDIRI SISTEM PEMINDAH TENAGA (SPT) PENDAHULUAN DAN SISTEM KOPLING 7 PENDAHULUAN SISTEM PEMINDAH TENAGA (POWER TRAIN). Pemindah tenaga (Power Train) adalah sejumlah mekanisme

Lebih terperinci

Konstruksi CVT. Parts name

Konstruksi CVT. Parts name Konstruksi CVT C 3 D 4 E 5 6F 7 G B 2 8 H Parts name A 1 A. Crankshaft B. Primary sliding sheave (pulley bergerak) C. Weight / Pemberat D. Secondary fixed sheave(pulley tetap) E. Secondary sliding sheave

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. 1 Fungsi Undercarriage Undercarriage atau disebut juga sebagai kerangka bawah merupakan bagian dari sebuah crawler tractor yang berfungsi: untuk menopang dan meneruskan beban

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. SEJARAH MOTOR DIESEL Pada tahun 1893 Dr. Rudolf Diesel memulai karier mengadakan eksperimen sebuah motor percobaan. Setelah banyak mengalami kegagalan dan kesukaran, mak akhirnya

Lebih terperinci

Dinamika Kendaraan Teori dan Aplikasi

Dinamika Kendaraan Teori dan Aplikasi Dinamika Kendaraan Teori dan Aplikasi 1. Fundamental Roda dan Pelek Pada dasarnya untuk mempelajari lebih jauh mengenai dinamika kendaraan terlebih dahulu kita harus memahami beberapa fundamental dasar

Lebih terperinci

SISTEM POROS PROPELLER

SISTEM POROS PROPELLER SMK KARTANEGARA WATES KAB. KEDIRI SISTEM PEMINDAH TENAGA (SPT) SISTEM POROS PROPELLER 22 PEMELIHARAAN / SERVICE UNIT FINAL DRIVE ( SISTEM POROS PROPELLER) URAIAN Propeller Shaft Propeller Shaft berfungsi

Lebih terperinci

Perancangan dan Analisa Sistem Kemudi Narrow Tilting Vehicle dengan Variasi Trackwidth dan Panjang Suspensi Arm

Perancangan dan Analisa Sistem Kemudi Narrow Tilting Vehicle dengan Variasi Trackwidth dan Panjang Suspensi Arm E126 Perancangan dan Analisa Sistem Kemudi Narrow Tilting Vehicle dengan Variasi Trackwidth dan Panjang Suspensi Arm Idestrian Adzanta dan Unggul Wasiwitono Jurusan Teknik Mesin, Fakultas Teknologi Industri,

Lebih terperinci

BAB IV PEMBAHASAN DAN HASIL. pembongkaran overhoul differential dengan keadaan tutup oli berkarat spare. Gambar 4.1 Differential cover belakang.

BAB IV PEMBAHASAN DAN HASIL. pembongkaran overhoul differential dengan keadaan tutup oli berkarat spare. Gambar 4.1 Differential cover belakang. BAB IV PEMBAHASAN DAN HASIL 4.1 Data Awal setelah Overhoul differential Berikut adalah penampakan differential awal sebelum dilakukan pembongkaran overhoul differential dengan keadaan tutup oli berkarat

Lebih terperinci

TINJAUAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap sistem kerja CVT, dan troubeshooting serta mencari

TINJAUAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap sistem kerja CVT, dan troubeshooting serta mencari BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Observasi terhadap sistem kerja CVT, dan troubeshooting serta mencari referensi dari beberapa sumber yang berkaitan dengan judul yang di

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Truk Pengangkut dan Ban Truk Produk truk pengangkut dalam pertambangan mempunyai banyak tipe dan ukuran. Namun setiap kelas atau berat muatan yang sama hampir mempunyai ukuran

Lebih terperinci

BAB III PEMBAHASAN DAN HASIL ANALISIS KOPLING KIJANG INNOVA TYPE V TAHUN 2004

BAB III PEMBAHASAN DAN HASIL ANALISIS KOPLING KIJANG INNOVA TYPE V TAHUN 2004 22 BAB III PEMBAHASAN DAN HASIL ANALISIS KOPLING KIJANG INNOVA TYPE V TAHUN 2004 3.1 Tempat Dan Objek Analisis Tempat untuk melakukan analisis dan perbaikan pada tugas akhir ini, adalah workshop otomotif

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 PENDAHULUAN Heavy Dump Truck (HD) merupakan produk Komatsu yang mempunyai ukuran yang berbeda-beda dan salah satunya adalah Heavy Dump Truck Komatsu 465-7R, yang mempunyai arti:

Lebih terperinci

BAB IV PEMBAHASAN DAN PERAWATAN REM 4.1 PENGERTIAN PERAWATAN Perawatan adalah segala sesuatu yang dilakukan untuk mencegah kerusakan terhadap suatu obyek, sehingga diharapkan dapat berfungsi secara maksimal

Lebih terperinci

PROSES KERJA MESIN 2ND STAGE PADA PEMBUATAN GREEN TYRE DI PT. ELANGPERDANA TYRE INDUSTRY

PROSES KERJA MESIN 2ND STAGE PADA PEMBUATAN GREEN TYRE DI PT. ELANGPERDANA TYRE INDUSTRY PENULISAN ILMIAH Arief Wibowo 21411117 Teknik Mesin Dr. Rr Sri Poernomo Sari, ST,. MT. PROSES KERJA MESIN 2ND STAGE PADA PEMBUATAN GREEN TYRE DI PT. ELANGPERDANA TYRE INDUSTRY Latar Belakang Latar Belakang

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Diagram Alur Penelitian Dalam bab ini menguraikan tentang alur jalannya penelitian analisa Ketepatan Tekanan Tutup Radiator pada Bus Hino R260. Diagram alur penelitian ini

Lebih terperinci