LAPORAN PRAKTIKUM DINAMIKA KIMIA JUDUL PERCOBAAN : PENENTUAN LAJU REAKSI IODINASI ASETON DALAM SUASANA ASAM. Nama : SantiNurAini NRP :

dokumen-dokumen yang mirip
Laporan Kimia Fisik KI-3141

Gambar 2.1 Reaksi Saponifikasi tripalmitin

Jason Mandela's Lab Report

kimia LAJU REAKSI 1 TUJUAN PEMBELAJARAN

Laboratorium Kimia SMA... Praktikum II Kelas XI IPA Semester I Tahun Pelajaran.../...

KESETIMBANGAN KIMIA A. Pendahuluan 1. Latar Belakang Keadaan setimbang adalah suatu keadaaan dimana konsentrasi seluruh zat tidak lagi mengalami

LAPORAN PRAKTIKUM KIMIA FISIK KI3141 PERCOBAAN M-2 PENENTUAN ORDE REAKSI DAN TETAPAN LAJU REAKSI. : Ricky Iqbal Syahrudin.

LAPORAN PRAKTIKUM PERCOBAAN PRAKTKUM 1 LAJU REAKSI

Laju Reaksi. Bahan Ajar Mata Pelajaran Kimia Kelas XI Semester I

Praktikum Kimia Fisika II Hidrolisis Etil Asetat dalam Suasana Asam Lemah & Asam Kuat

Purwanti Widhy H, M.Pd. Laju Reaksi

Waktu (t) Gambar 3.1 Grafik hubungan perubahan konsentrasi terhadap waktu

LAPORAN PRAKTIKUM KIMIA FISIKA II PENENTUAN LAJU REAKSI DAN TETAPAN LAJU

BAB VI KINETIKA REAKSI KIMIA

PERCOBAAN I PEMBUATAN DAN PENENTUAN KONSENTRASI LARUTAN

LAPORAN PRAKTIKUM KIMIA ANORGANIK II PERCOBAAN IV PENENTUAN KOMPOSISI ION KOMPLEKS

PERCOBAAN 3 PERSAMAAN ARRHENIUS DAN ENERGI AKTIVASI

BY SMAN 16 SURABAYA : Sri Utami, S. P LAJU REAKSI KESIMPULAN

Kunci jawaban dan pembahasan soal laju reaksi

PRAKTIKUM KIMIA DASAR I KECEPATAN REAKSI. Kelompok V : Amir Hamzah Umi Kulsum

Laporan Praktikum Kimia Laju Reaksi

LAPORAN PRAKTIKUM KIMIA FISIKA PERSAMAAN ARRHENIUS DAN ENERGI AKTIVASI

yang berkaitan dengan Laju Reaksi, diberikan pada tabel berikut ini.

Jason Mandela's Lab Report

JURNAL PRAKTIKUM KIMIA DASAR II TERMOKIMIA. Rabu, 2-April-2014 DISUSUN OLEH: KELOMPOK 1:

LAPORAN PRAKTIKUM KIMIA FISIKA II PERCOBAAN I KESETIMBANGAN KIMIA DI DALAM LARUTAN PROGRAM STUDI S-1 KIMIA

BAB II LANDASAN TEORI

PETA KONSEP LAJU REAKSI. Percobaan. Waktu perubahan. Hasil reaksi. Pereaksi. Katalis. Suhu pereaksi. Konsentrasi. Luas. permukaan.

3 METODOLOGI PENELITIAN

LAPORAN PERSAMAAN ARRHENIUS DAN ENERGI AKTIVASI

HALAMAN PENGESAHAN LAPORAN RESMI PRAKTIKUM KIMIA DASAR. :4. Pengaruh Konsentrasi dan Suhu Pada Laju Reaksi. 6. John Peterson Serius

LAPORAN PRAKTIKUM KIMIA DASAR

MODUL LAJU REAKSI. Laju reaksi _ 2013 Page 1

Faktor-faktor yang Mempengaruhi Laju Reaksi

LAPORAN KIMIA ANALITIK KI-2221

Laporan Kimia Fisik KI-3141

LAPORAN KIMIA ANALITIK KI Percobaan modul 3 TITRASI SPEKTROFOTOMETRI

A. MOLARITAS (M) B. KONSEP LAJU REAKSI C. PERSAMAAN LAJU REAKSI D. TEORI TUMBUKAN E. FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU REAKSI

LAPORAN PRAKTIKUM KIMIA DASAR I STOIKIOMETRI REAKSI

JURNAL PRAKTIKUM KIMIA LAJU REAKSI 24 MARET 2014

I. TUJUAN Menentukan konstanta kecepatan reaksi dengan menggunakan polarimeter.

BAB III METODE PENELITIAN

Laporan Kimia Analitik KI-3121

LAPORAN PRAKTIKUM ANALISIS SPEKTROMETRI PENETAPAN ANION FOSFAT DALAM AIR. Disusun oleh. Sucilia Indah Putri Kelompok 2

LEMBAR KERJA SISWA 4

c. Suhu atau Temperatur

LOGO. KINETIKA DEGRADASI FOTOKATALITIK MALACHITE GREEN DENGAN KATALIS SEMIKONDUKTOR TiO 2 DAN O 2 /UV. Nama : Yusnaya Adisti NRP :

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI

Termodinamika apakah suatu reaksi dapat terjadi? Kinetika Seberapa cepat suatu reaksi berlangsung?

PENGARUH KATALISIS TERHADAP TETAPAN LAJU

PENENTUAN RUMUS ION KOMPLEKS BESI DENGAN ASAM SALISILAT

RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMA Negeri 1 Sanden Mata Pelajaran : Kimia Kelas/Semester : XI/1 Alokasi Waktu : 2 JP

BAB III METODOLOGI PENELITIAN. Pertanian dan Peternakan Universitas Islam Negeri Sultan Syarif Kasim Riau,

A. Judul B. Tujuan C. Dasar Teori

MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK PANGAN

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI

III. METODOLOGI PERCOBAAN. Penelitian ini dilakukan pada bulan Januari 2015 sampai Juni 2015 di

KELARUTAN SEBAGAI FUNGSI TEMPERATUR

BAB 1 PENDAHULUAN. energi, menyusun bahan makanan, merombak bahan makanan, memasukkan atau

LAPORAN PRAKTIKUM KIMIA DASAR I

SMAN 1 MATAULI PANDAN

Difusi gas merupakan campuran antara molekul satu gas dengan molekul lainnya yang

ANALISIS DUA KOMPONEN TANPA PEMISAHAN

Laporan Resmi Praktikum Kimia Fisika III Inversi Gula

dimana a = bobot sampel awal (g); dan b = bobot abu (g)

STUDI ELEKTROLISIS LARUTAN KALIUM IODIDA. Oleh : Aceng Haetami ABSTRAK

BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah ekperimental.

PENENTUAN KADAR BESI DALAM SAMPEL AIR SUMUR SECARA SPEKTROFOTOMETRI

LAPORAN PRAKTIKUM SINTESIS KIMIA ORGANIK

HUBUNGAN ANTARA KONSENTRASI DAN TEMPERATUR TERHADAP LAJU REAKSI DAN NILAI ENERGI AKTIFASI

wanibesak.wordpress.com

LAPORAN PRAKTIKUM KIMIA ORGANIK. Disusun Oleh :

LAJU REAKSI MEKANISME REAKSI

Soal-Soal. Bab 4. Latihan. Laju Reaksi. 1. Madu dengan massa jenis 1,4 gram/ cm 3 mengandung glukosa (M r. 5. Diketahui reaksi:

Modul 1 Analisis Kualitatif 1

ADLN - PERPUSTAKAAN UNIVERSITAS AIRLANGGA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Paguyaman yang berhubungan dengan materi laju reaksi diberikan dalam Tabel 2 berikut.

BAB IV HASIL DAN PEMBAHASAN. A. Hasil

LAPORAN LENGKAP PRAKTIKUM KIMIA ANORGANIK PERCOBAAN 3 PENENTUAN BILANGAN KOORDINAI KOMPLEKS TEMBAGA (II)

BAB III METODE PENELITIAN. Jenis penelitian yang digunakan adalah penelitian eksperimen. Termasuk

PERCOBAAN I PENENTUAN KADAR KARBONAT DAN HIDROGEN KARBONAT MELALUI TITRASI ASAM BASA

PERCOBAAN 03 LAJU INVERSI GULA

BAB I PENDAHULUAN A. Judul percobaan B. Tujuan praktikum

PENENTUAN TETAPAN PENGIONAN INDIKATOR METIL MERAH SECARA SPEKTROFOTOMETRI

BAB I PENDAHULUAN A. Latar Belakang

Katalis 1. Pengertian Katalis 2. Jenis Katalis a. Katalis Homogen

BAB III METODE PENELITIAN. Penelitian ini dimulai dari bulan April 2010 sampai dengan bulan Januari

MODUL I Pembuatan Larutan

LAPORAN PRAKTIKUM KIMIA ANORGANIK 1 PEMISAHAN KOMPONEN DARI CAMPURAN 11 NOVEMBER 2014 SEPTIA MARISA ABSTRAK

Ulben syariffudin Wahyuni Puspa Nilam. Mengetahui, Dosen penanggung jawab. Dra. Hj.Sumiati Side,M.Si (NIP )

Jurnal Praktikum. Kimia Fisika II. Difusi Gas. Tanggal Percobaan: Senin, 08-April Disusun Oleh: Aida Nadia ( ) Kelompok 3 Kloter I:

LAPORAN PRAKTIKUM KIMIA ORGANIK PERCOBAAN II SIFAT-SIFAT KELARUTAN SENYAWA OGANIK

SOAL LAJU REAKSI. Mol CaCO 3 = = 0.25 mol = 25. m Mr

MENYARING DAN MENDEKANTASI

BAB III METODE PENELITIAN

3 Percobaan. Untuk menentukan berat jenis zeolit digunakan larutan benzena (C 6 H 6 ).

I. KEASAMAN ION LOGAM TERHIDRAT

BAB III METODE PENELITIAN

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) KELAS EKSPERIMEN PERTEMUAN KE-1

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah cincau hijau. Lokasi penelitian

Transkripsi:

LAPORAN PRAKTIKUM DINAMIKA KIMIA JUDUL PERCOBAAN : PENENTUAN LAJU REAKSI IODINASI ASETON DALAM SUASANA ASAM Nama : SantiNurAini NRP : 1413100048 Tanggal Praktikum : 28 April 2015 Nama Asisten : Mas Mattius Tanggal Pengumpulan : 12 Mei 2015 Kelompok : 9B LABORATORIUM FUNDAMENTAL KIMIA JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2015

I. TUJUAN PRAKTIKUM aseton Tujuan dilakukannya percobaan ini adalah untuk menentukan laju reaksi iodinasi II.TEORI DASAR 2.1 Laju Reaksi Laju reaksi didefinisikan sebagai perubahan konsentrasi persatuan waktu. Laju rekasi kimia terlihat dari perubahan konsentrasi molekul reaktan atau konsentrasi molekul produk terhadap waktu. Laju rekasi tidak tetap, melainkan berubah terus menerus seiring dengan perubahan konsentrasi (Chang,2006) Gambar 2.1 Grafik Laju Reaksi antara Waktu dengan Konsentrasi Produk dan Reaktan (Atkins, 2010) 2.2 Pengaruh Katalis terhadap Laju Reaksi Katalis adalah zat yang mengambil bagian dalam reaksi kimia, tetapi pada akhir reaksi tidak mempengaruhi produk yang terbentuk. Katalis tidak muncul dalam persamaan kimia. Sifat dari katalis adalah katalis tidak bereaksi secara permanen, katalis tidak mempengaruhi hasil akhir reaksi, katalis bekerja pada suhu optimum. Katalis memumngkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicu oleh atalis terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi(chang, 2006). Katalis dapat dibedakan ke dalam dua golongan utama, yaitu katalis homogen dan katalis heterogen. Katalis heterogen adalah katalis yang fasenya berbeda dengan rektan yang akan dikatalisnya. Katalis homogen adalah katalis yang memiliki fase yang sama dengan reaktan yang akan dikatalisnya.

Berikut ini adalah skema umum reaksi katalitik : A + C AC.(1) B + AC AB + C (2) C adalah katalis, meskipun katalis C termakan pada tahap reaksi 1, namun selanjutnya dihasilkan kembali oleh reaksi 2, sehingga untuk reaksi keseluruhan menjadi : A + B + C AB + C (3) Katalis homogen terdiri dari katalis asam dan basa, contohnya HCl, H 2 SO 4, NaOH, KOH. Katalis ini umumnya digunakan pada skala laboratorium, karena sulit diakukan secara komersil, operasi pada fase cair dibatasi pada kondisi suh dan tekanan, sehingga peralatan lebih kompleks dan diperlukan pemisahan antara produk dan katalis (Engel, Dkk,2013). 2.3 Hukum Laju Hukum Laju adalah hubungan antara laju reaksi dan konsentrasi yang dapat diperoleh dari data eksperimen. Hukum laju diperoleh secara eksperimen dan tidak bergantung pada stokiometri. Hukum laju dapat dinyatakan sebagai : Dalam suatu reaksi A B, laju reaksinya adalah : V =k[ A ] X... (4) Dalam suatu reaksi A + B C, laju reaksinya adalah : V =k[ A ] X [B] Y (5) dimana : k = tetapan Laju Reaksi x, y = orde reaksi (Petrucci, 1987) 2.4 Orde Reaksi Orde reaksi terhadap suatu komponen merupakan pangkat dari konsentrasi komponen itu dalam hokum laju.orde reaksi tidak dapat dituliskan dari persamaan reaksi, melainkan harus data eksperimen. Beberapa orde reaksi yang umum terdapat dalam persamaan reaksi kimia yaitu:

Reaksi Orde nol Reaksi dikatakan berorde nol terhadap salah satu satu pereaksinya apabila perubahan konsentrasi pereaksi tersebut tidak mempengaruhi lau reaksi. Persamaan laju reaksi yang berorde 0 yaitu v = k [A] 0 (Syukri,1999). [A] V Gambar 2.2 Grafik laju reaksi Orde 0 V = k [A] 0 (Petrucci, 1987) Reaksi Orde satu Suatu reaksi dikatakan berorde satu terhadapsalah satu pereaksinya jika laju reaksi berbanding lurus dengan konsentrasi pereaksi tersebut. Jika konsentrasi pereaksi tersebut dilipat-tigakan maka laju reaksi akan menjadi 3 1 atau tiga kalinya. Persamaan laju reaksi yaitu v = k [A] (Syukri,1999). V [A] Gambar 2.3 Grafik laju reaksi orde 1V = k [A] 1 (Petrucci,1987) Reaksi Orde dua Suatu reaksi dikatakan berorde dua terhadap salah satu pereaksi jika laju reaksi merupakan pangkat dua dari konsentrasi pereaksi itu. Apabila konsentasi zat itu dilipat-tigakan, maka laju pereaksi akan menjadi 3 2 atau 9 kali lebih besar (Syukri,1999). V [A] Gambar 2.4 Grafik laju reaksi Orde 2V = k [A] 2 (Petrucci, 1987) III. PROSEDUR PERCOBAAN 3.1 Peralatan dan Bahan

Peralatan yang digunakan meliputi tabung reaksi, pipet ukur, pipet tetes, kuvet, gelas beker dan stop watch. Sedangkan bahan yang digunakan meliputi larutan aseton 3 M, larutan HCl baku 1 M, larutan I 2 dalam KI 0,1 M. 3.2 Prosedur Percobaan Aseton 3 M HCl 1 M KI 0,1 M dicampurkan dengan variasi tertentu Campuran di dalam kuvet - dicampurkan dengan volume tertentu dan dimulai stopwatch pertama - diaduk - dimasukkan kuvet ke dalam Spektrofotometer UV-Vis (waktu pencampuran larutan hingga dimasukkan ke spektrofotometer 1 menit Campuran di dalam spektrofotometer Uv-Vis - diukur absorbansi pertama dan dimulai stopwatch kedua - dicatat absorbansinya tiap detik ke 0, 60, 90, dan 120 - dilakukan percobaan yang sama untuk setiap variasi volume masing-masing reaktan yang diberikan Data Absorbansi IV. PEMBAHASAN Percobaan ini berjudul laju reaksi iodinasi aseton dalam suasana asam. Percobaan ini bertujuan untuk menentukan persamaan laju reaksi iodinasi aseton. Prinsip dari percobaan adalah kinetika kimia, laju reaksi dan spektrofotometer UV-Vis. Reaksi ini dilakukan dengan

menambahkan iodin pada aseton. Reaksi iodinasi aseton ini berjalan sangat lambat, oleh karena itu diperlukan penambahan katalis asam untuk mempercepat terjadinya reaksi. Ketika larutan iodin direaksikan dengan aseton, dengan adanya asam, maka warna kuning dari iodin perlahan-lahan memudar seiring dengan dikonsumsinya iodin tersebut untuk bereaksi dengan aseton. Laju reaksi pada percobaan ini diikuti dengan mengamati penurunan intensitas warna kuning dari iodin dalam larutan pada waktu tertentu Pada percobaan ini dikaji reaksi iodinasi aseton yang dikatalisa oleh HCl. Laju reaksi diukur dengan mengamati laju perubahan konsentrasi iodin dengan spektrofotometer. Absorbansi larutan diusahakan antara 0,7-0,2 pada panjang gelombang yang sesuai. Oleh karena itu perlu dilakukan variasi konsentrasi awal setiap pereaksi. Percobaan ini dilakukan dengan menggunakan variasi volume untuk masing-masing zat, yaitu Aseton (2,5 ml,5 ml, 7,5 ml,dan 10 ml) untuk run 1-4, HCl (2,5 ml,5 ml, 7,5 ml, dan 10 ml) untuk run 5-8,dan Iodin (2,5 ml,5 ml, 7,5 ml,dan 10 ml) untuk run 9-12. Data percobaan yang didapat berupa absorbansi tiap 0, 60, 90 dan 120. Data yang didapat kemudian diplot ke dalam grafik hubungan absorbansi terhadap waktu, dimana sumbu x sebagai fungsi waktu dan sumbu y sebagai fungsi absorbansi. Sehingga akan didapatkan 12 grafik. Dari grafik tersebut akan didapat persamaan garisnya y = mx + c, dimana m (slope) merupakan laju reaksi. Kemudian untuk mencari orde reaksi tiap zat terlebih dahulu mencari konsentrasi terkoreksi [M ] dengan menggunakan rumus [ [M ' M ]mula x Volume ambil ]= Volume total. Setelah didapatkan hasil konsentrasi terkoreksi kemudian diplot kedalam grafik hubungan antara In V (laju reaksi) sebagai sumbu x dengan In [M ] sebagai sumbu y. Didapat persamaan garisnya y = mx + c, dimana m (slope) merupakan orde reaksi. Dari hasil perhitungan dan grafik yg didapat tiap zatnya, orde reaksi untuk Aseton adalah 2, HCl 1, dan Iodin 0. Orde reaksi yang didapat digunakan untuk menghitung konstanta laju reaksi tiap runnya dengan menggunakan rumus V K= [ Aseton ' ] x x[ HCl ' ] y x[i ' ] z, K yg didapat tiap runnya kemudian dirata-rata sehingga dari hasil perhitungan nilai K diperoleh sebesar 0,0009. Sehingga persamaan laju reaksinya menjadi : V = 0,0009 x [Aseton] 2 x [HCl] 1 Penambahan Aseton dan Iodin berfungsi sebagai reaktan yang akan mengalami reaksi membentuk sebuah produk. Larutan HCl berfungsi sebagai katalis yang berfungsi mempercepat terjadinya reaksi. TUGAS 1. Selain dengan spektrofotometer, laju reaksi iodinasi aseton dapat diikuti dengan cara titrasi volumetri. Terangkan cara tersebut! 2. Terangkan sistem reaksi katalisa asam atau basa secara umum.

3. Reaksi iodinasi aseton termasuk reaksi substitusi nukleofilik atau elektrofilik. Terangkan mekanismenya! JAWAB : 1. Analisa titrasi asam basa atau volumetri adalah analisa kuantitatif dimana kadar komponen dari zat uji ditetapkan berdasarkan volume pereaksi (konsentrasi diketahui) yang ditambahkan kedalam larutan zat uji hingga komponen yang akan di tetapkan bereaksi secara kuantitatif dengan pereaksi tersebut V. KESIMPULAN DAN SARAN Dari hasil percobaan yang telah dilakukan dapat diambil beberapa kesimpulan antara lain: 1. Orde reaksi untuk Aseton adalah 2, sedangkan orde reaksi untuk HCl adalah 1, dan orde reaksi untuk I adalah 0 2. Konstanta laju percobaan ini adalah 0,0009 3. Persamaan laju pada percobaan ini adalah : V= 0,0009 x [Aseton] 2 x [HCl] 1 DAFTAR PUSTAKA Atkins, P. W F., Julio de Paula. (2010). Physical Chemistry ninth edition. New York :W. H Freeman and Company Chang,Raymond.(2006). Kimia Dasar : Konsep-Konsep Inti Jilid 2. Jakarta : Erlangga Petrucci, Ralph. (1987). Kimia Dasar, Prinsip dan Terapan Modern. Jakarta : Erlangga Syukri.1999. Kimia Dasar 2.Bandung : ITB Press Thomas Engel. Dkk.(2013). Physical chemistry. Kanada : Pearson education inc. (763-765 george woodbury physical chemistry 1997 cole publishing company usa)

LAMPIRAN A. Analisa Data Tabel 1. Data Hasil Pengamatan Percobaan Iodinasi Aseton Run Volume (ml) Absorbansi pada t (s) Aseton HCl I 0 60 90 120 1 2.5 10 10 1.807 1.783 1.776 1.746 2 5 10 10 2.74 2.637 2.568 2.513 3 7.5 10 10 2.409 2.25 2.176 2.099 4 10 10 10 2.049 1.905 1.829 1.751 5 10 2.5 10 3.639 3.541 3.529 3.508 6 10 5 10 1.616 1.559 1.529 1.5 7 10 7.5 10 1.417 1.349 1.323 1.276 8 10 10 10 2.116 1.941 1.856 1.769 9 10 10 2.5 0.331 0.221 0.16 0.1 10 10 10 5 0.665 0.569 0.517 0.469 11 10 10 7.5 1.566 1.405 1.323 1.23 12 10 10 10 2.097 1.958 1.886 1.809 B. Grafik Dari data hasil pengamatan yang diperoleh pada tabel 1, diplotkan ke dalam grafik untuk tiap run sehingga diperoleh 12 grafik hubungan absorbansi terhadap waktu, adapun grafiknya sebagai berikut : 1.82 1.8 1.78 f(x) = - 0x + 1.81 R² = 0.93 1.76 1.74 1.72 1.7 Grafik 1. Grafik hubungan Absorbansi terhadap waktu Run 1

2.8 2.75 2.7 2.65 2.6 2.55 2.5 2.45 2.4 f(x) = - 0x + 2.74 R² = 1 2.35 Grafik 2. Grafik hubungan Absorbansi terhadap waktu Run 2 2.5 2.4 2.3 f(x) = - 0x + 2.41 R² = 1 2.2 2.1 2 1.9 Grafik 3. Grafik hubungan Absorbansi terhadap waktu Run 3 f(x) = - 0x + 2.05 R² = 1 Grafik 4. Grafik hubungan Absorbansi terhadap waktu Run 4

3.7 3.65 3.6 3.55 f(x) = - 0x + 3.63 R² = 0.93 3.5 3.45 3.4 Grafik 5. Grafik hubungan Absorbansi terhadap waktu Run 5 1.64 1.62 1.6 1.58 1.56 1.54 1.52 1.5 1.48 1.46 f(x) = - 0x + 1.62 R² = 1 1.44

Grafik 6. Grafik hubungan Absorbansi terhadap waktu Run 6 1.45 1.4 1.35 f(x) = - 0x + 1.42 R² = 0.99 1.3 1.25 1.2 Grafik 7. Grafik hubungan Absorbansi terhadap waktu Run 7 2.2 2.1 2 f(x) = - 0x + 2.12 R² = 1 1.9 1.8 1.7 1.6 1.5 Grafik 8. Grafik hubungan Absorbansi terhadap waktu Run 8

0.35 0.3 0.25 f(x) = - 0x + 0.33 R² = 1 0.2 0.15 0.1 0.05 0 Grafik 9. Grafik hubungan Absorbansi terhadap waktu Run 9 0.7 0.6 0.5 f(x) = - 0x + 0.67 R² = 1 0.4 0.3 0.2 0.1 0 Grafik 10. Grafik hubungan Absorbansi terhadap waktu Run 10 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 f(x) = - 0x + 1.57 R² = 1 0 Grafik 11. Grafik hubungan Absorbansi terhadap waktu Run 11

2.15 2.1 2.05 2 1.95 1.9 1.85 1.8 1.75 1.7 f(x) = - 0x + 2.1 R² = 1 1.65 Grafik 12. Grafik hubungan Absorbansi terhadap waktu Run 12 Dari persamaan grafik yang diperoleh pada grafik diatas didapatkan laju reaksi untuk masing-masing run sebagai berikut : Tabel 2. Tabel hasil laju reaksi tiap run Run Volume (ml) Aseton HCl I V 1 2.5 10 10 0.0005 2 5 10 10 0.0019 3 7.5 10 10 0.0026 4 10 10 10 0.0025 5 10 2.5 10 0.001 6 10 5 10 0.0011 7 10 7.5 10 0.0011 8 10 10 10 0.0029 9 10 10 2.5 0.0019 10 10 10 5 0.0016 11 10 10 7.5 0.0028 12 10 10 10 0.0024 C. Perhitungan 1. Perhitungan untuk mencari konsentrasi terkoreksi [M ]: Diketahui : [Aseton] = 3 M [HCl] = 1 M [I 2 ] = 0,1 M Ditanya : [Aseton ], [HCl ], [I 2 ] =.? Jawab : Untuk mencari konsentrasi terkoreksi menggunakan rumus dibawah ini:

[M ] : [M ] mula x Volume ambil Volume total Konsentrasi terkoreksi Aseton [Aseton ] tiap run : Run 1: Run 2: [Aseton ] = 3 M x2,5ml 22,5 ml [Aseton ] = 3 M x5ml 25ml = 0,3333 M = 0,6000 M Run 3: Run 4: [Aseton ] = 3 M x7,5ml 27,5 ml [Aseton ] = 3 M x10ml 30ml = 0,8182 M = 1,0000 M Run 5 dan 9 (volume sama): [Aseton ] = Run 6 dan 10 (volume sama): 3 M x10ml 22,5 ml [Aseton ] = = 1,3333 M = 1,2000 M Run 7 dan 11(volume sama): [Aseton ] = 3 M x10ml 27,5 ml [Aseton ] = 3 M x10ml 25ml Run 8 dan 12 (volume sama): 3 M x10ml 30ml = 1,0909 M = 1,0000 M Tabel 2. Tabel hasil perhitungan [Aseton ] Run [Aseton'] In [Aseton'] V In V 1 0.3333-1.0986 0.0005-7.6009 2 0.6000-0.5108 0.0019-6.2659 3 0.8182-0.2007 0.0026-5.95224 4 1.0000 0.0000 0.0025-5.99146 5 1.3333 0.2877 0.001-6.90776 6 1.2000 0.1823 0.0011-6.81245 7 1.0909 0.0870 0.0011-6.81245 8 1.0000 0.0000 0.0029-5.84304 9 1.3333 0.2877 0.0019-6.2659 10 1.2000 0.1823 0.0016 -

11 1.0909 0.0870 0.0028 12 1.0000 0.0000 0.0024 6.43775-5.87814-6.03229 Dari data tabel 2 diplotkan kedalam grafik hubungan antara In [Aseton ] dengan In V untuk mencari orde reaksi [Aseton ], sehingga didapatkan grafik dibawah ini : 0-1.2000-1.0000-0.8000-0.6000-0.4000-0.2000 0.0000-1 f(x) = 1.55x - 5.75 R² = 0.91 Grafik 13. Grafik hubungan antara In [Aseton ] dengan In V Dari slope grafik di atas didapatkan orde reaksi untuk [Aseton ] adalah 1,54 atau dibulatkan menjadi 2. Konsentrasi terkoreksi HCl [HCl ] tiap run : -2-3 -4-5 -6-7 -8 Run 1 dan 9 (volume sama): Run 2 dan 10 (volume sama): [HCl ] = 1 M x 10ml 22,5 ml [HCl ] = 1 M x 10ml 25ml = 0,4444 M = 0,4000 M Run 3 dan 11 (volume sama): sama) : [HCl ] = 1 M x 10ml 27,5 ml [HCl ] = Run 4, 8 dan 12 (volume 1 M x 10ml 30ml = 0,3636 M = 0.3333 M Run 5: Run 6: [HCl ] = 1 M x 2,5ml 22,5 ml [HCl ] = 1 M x 5ml 25ml = 0,1111 M = 0,2000 M

Run 7: [HCl ] = 1 M x 7,5ml 27,5 ml = 0,2727 M Tabel 3. Tabel hasil perhitungan [HCl ] Run [HCl'] In [HCl'] V In V 1 0.4444-0.8109 0.0005-7.6009 2 0.4000-0.9163 0.0019-6.2659 3 0.3636-1.0116 0.0026-5.9522 4 0.3333-1.0986 0.0025-5.9915 5 0.1111-2.1972 0.001-6.9078 6 0.2000-1.6094 0.0011-6.8124 7 0.2727-1.2993 0.0011-6.8124 8 0.3333-1.0986 0.0029-5.8430 9 0.4444-0.8109 0.0019-6.2659 10 0.4000-0.9163 0.0016-6.4378 11 0.3636-1.0116 0.0028-5.8781 12 0.3333-1.0986 0.0024-6.0323 Dari data tabel 3 diplotkan kedalam grafik hubungan antara In [HCl ] dengan In V untuk mencari orde reaksi [HCl ], sehingga didapatkan grafik dibawah ini : -5.2000-2.5000-2.0000-1.5000-5.4000-1.0000 f(x) = 0.73x - 5.47 R² = 0.48-5.6000-5.8000-6.0000-6.2000-6.4000-6.6000-6.8000-7.0000 Grafik 14. Grafik hubungan antara In [HCl ] dengan In V Dari slope grafik di atas didapatkan orde reaksi untuk [HCl ] adalah 0,72 atau dibulatkan menjadi 1.

Konsentrasi terkoreksi KI [Kl ] tiap run : Run 1 dan 5 (volume sama): Run 2 dan 6 (volume sama): [Kl ] = 0,1M x10ml 22,5 ml [Kl ] = 0,1M x10ml 25ml = 0,0444 M = 0,0400 M Run 3 dan 7 (volume sama): sama): [Kl ] = 0,1M x10ml 27,5 ml [Kl ] = Run 4,8, dan 12 (volume 0,1M x10ml 30ml = 0,0364 M = 0.0333 M Run 9: Run 10: [Kl ] = 0,1 M x2,5ml 22,5 ml = 0,0111 M [Kl ] = 0,1M x5ml 25 ml = 0,0200 M Run 11 : [Kl ] = 0,1M x7,5ml 27,5 ml = 0,0200 M Tabel 4. Tabel hasil perhitungan [KI ] Run [I'] In [I'] V In V 1 0.0444-3.1135 0.0005-7.6009 2 0.0400-3.2189 0.0019-6.2659 3 0.0364-3.3142 0.0026-5.9522 4 0.0333-3.4012 0.0025-5.9915 5 0.0444-3.1135 0.001-6.9078 6 0.0400-3.2189 0.0011-6.8124 7 0.0364-3.3142 0.0011-6.8124 8 0.0333-3.4012 0.0029-5.8430 9 0.0111-4.4998 0.0019-6.2659 10 0.0200-3.9120 0.0016-6.4378 11 0.0273-3.6019 0.0028-5.8781 12 0.0333-3.4012 0.0024-6.0323 Dari data tabel 4 diplotkan kedalam grafik hubungan antara In [Kl ] dengan In V untuk mencari orde reaksi [Kl ], sehingga didapatkan grafik dibawah ini :

-5.5000-5.0000-4.5000-4.0000-3.5000-5.6000-3.0000 f(x) = 0.31x - 4.96 R² = 0.36-5.7000-5.8000-5.9000-6.0000-6.1000-6.2000-6.3000-6.4000-6.5000 Grafik 15. Grafik hubungan antara In [Kl ] dengan In V Dari slope grafik di atas didapatkan orde reaksi untuk [Kl ] adalah 0,30 atau dibulatkan menjadi 0. 2. Perhitungan untuk mencari nilai K Diketahui : orde reaksi [Aseton ] = 2 orde reaksi [HCl ] =1 orde reaksi [I ] = 0 Ditanya : K=? Jawab : Unruk mencari nilai K digunakan rumus dibawah ini : V K= [ Aseton ' ] x x[ HCl ' ] y x[i ' ] z Run 1 : Run 9 : 0.0005 K= [0.3333] 2 x[0.4444] 1 x[0.0444 ] K = 0.0019 0 [1.3333 ] 2 x[0.4444] 1 x[0.0111] 0 = 0.0020 = 0.0005 Run 2 : Run 10 : 0.0019 K= [0.6000] 2 x[0.4000] 1 x[0.0400] K= 0.0016 0 [1.2000] 2 x[0.4000] 1 x[0.0200] 0 = 0.0021 = 0.0004 Run 3 : Run 11 : 0.0026 K= [0.8182] 2 x[0.3636 ] 1 x[0.0364] K= 0.0028 0 [1.0909] 2 x[0.3636 ] 1 x[0.0273] 0 = 0.0014 = 0.0009 Run 4 : Run 12 :

0.0025 K= [1.0000] 2 x[0.3333] 1 x[0.0333] K = 0.0024 0 [1.0000] 2 x[0.3333] 1 x[0.0333] 0 = 0.0008 = 0.0008 Run 5 : 0.001 K= [1.3333] 2 x[0.1111 ] 1 x[0.0444] 0 = 0.0001 Run 6 : 0.0011 K= [1.2000] 2 x[0.2000] 1 x[0.0400] 0 = 0.0002 Run 7 0.0011 K= [1.0909] 2 x[0.2727 ] 1 x[0.0364] 0 = 0.0003 Run 8 : 0.0029 K= [1.0000] 2 x[0.3333] 1 x[0.0333] =0.0010 0 Tabel 6. Tabel hasil perhitungan Konstanta Laju (K) Run V (m/s) [Aseton'] 2 [HCl'] 1 [I'] 0 K 1 0.0005 0.1111 0.4444 1.0000 0.0020 2 0.0019 0.3600 0.4 1.0000 0.0021 3 0.0026 0.6694 0.3636 1.0000 0.0014 4 0.0025 1.0000 0.3333 1.0000 0.0008 5 0.001 1.7778 0.1111 1.0000 0.0001 6 0.0011 1.4400 0.2 1.0000 0.0002 7 0.0011 1.1901 0.2727 1.0000 0.0003 8 0.0029 1.0000 0.3333 1.0000 0.0010 9 0.0019 1.7778 0.4444 1.0000 0.0005 10 0.0016 1.4400 0.4 1.0000 0.0004 11 0.0028 1.1901 0.3636 1.0000 0.0009 12 0.0024 1.0000 0.3333 1.0000 0.0008 K rata-rata 0.0009 Dari hasil perhitungan, didapat konstanta laju reaksinya adalah 0,0009. Sehingga persamaan laju reaksi untuk percobaan ini adalah :

V = 0,0009 x [Aseton] 2 x [HCl] 1 NILAI PERCOBAAN : Tes Pendahulua n Kerja Laporan Praktikum Nilai Akhir (0-100) (0-100) (0-100) Mengetahui Praktikan, Asisten, Matius SantiNurAini 1413100048