HASIL DAN PEMBAHASAN. Kadar Asetil (ASTM D )

dokumen-dokumen yang mirip
PEMBUATAN DAN PENCIRIAN PEKTIN ASETAT OBIE FAROBIE

PEMBAHASAN. mengoksidasi lignin sehingga dapat larut dalam sistem berair. Ampas tebu dengan berbagai perlakuan disajikan pada Gambar 1.

Gambar IV 1 Serbuk Gergaji kayu sebelum ekstraksi

4 HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN. selulosa Nata de Cassava terhadap pereaksi asetat anhidrida yaitu 1:4 dan 1:8

Bab IV Hasil dan Pembahasan

4. Hasil dan Pembahasan

Bab III Metodologi. III.1 Alat dan Bahan. III.1.1 Alat-alat

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Juli sampai bulan Oktober 2011 di

4.2. Kadar Abu Kadar Metoksil dan Poligalakturonat

4 Hasil dan Pembahasan

4. Hasil dan Pembahasan

BAHAN DAN METODE Bahan dan Alat Lingkup Penelitian Penyiapan Gliserol dari Minyak Jarak Pagar (Modifikasi Gerpen 2005 dan Syam et al.

Bab IV Hasil dan Pembahasan

KARAKTERISASI DAN UJI KEMAMPUAN SERBUK AMPAS KELAPA ASETAT SEBAGAI ADSORBEN BELERANG DIOKSIDA (SO 2 )

HASIL DAN PEMBAHASAN. Penelitian I. Optimasi Proses Asetilasi pada Pembuatan Selulosa Triasetat dari Selulosa Mikrobial

Bab IV Hasil Penelitian dan Pembahasan. IV.1 Sintesis dan karaktrisasi garam rangkap CaCu(CH 3 COO) 4.6H 2 O

Lampiran 1 Bagan alir penelitian

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor)

Hasil dan Pembahasan

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

4 Hasil dan Pembahasan

Hasil dan Pembahasan

III. METODOLOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Mei sampai dengan Agustus 2014, yang

BAB IV HASIL DAN PEMBAHASAN. pelarut dengan penambahan selulosa diasetat dari serat nanas. Hasil pencampuran

Bab IV Hasil dan Pembahasan

Lampiran 1. Prosedur Karakterisasi Komposisi Kimia 1. Analisa Kadar Air (SNI ) Kadar Air (%) = A B x 100% C

Pengaruh Perbandingan Selulosa dan Asam Asetat Glasial serta Jenis Pelarut pada Pembuatan Membran Selulosa Asetat dari Limbah Kertas

4. Hasil dan Pembahasan

BAB II TINJAUAN PUSTAKA...

Kadar air % a b x 100% Keterangan : a = bobot awal contoh (gram) b = bobot akhir contoh (gram) w1 w2 w. Kadar abu

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN

CELLULOSE ACETATE MEMBRANE SYNTHESIS OF RESIDUAL SEAWEED Eucheuma spinosum. Mutiara Dzikro, Yuli Darni, dan Lia Lismeri

III. METODOLOGI PENELITIAN

III. METODE PENELITIAN

HASIL DAN PEMBAHASAN. Pencirian Membran

BAB IV HASIL DAN PEMBAHASAN. Pada penelitian ini telah disintesis tiga cairan ionik

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi

BAB IV HASIL DAN PEMBAHASAN. 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ 20:1 berturut-turut

x 100% IP (%) = HASIL DAN PEMBAHASAN Ciri Lindi Hitam Kraft

HASIL DAN PEMBAHASAN. Tabel 5 Komposisi poliblen PGA dengan PLA (b) Komposisi PGA (%) PLA (%)

BAB V HASIL PENGAMATAN DAN PEMBAHASAN. A. HASIL PENGAMATAN 1. Identifikasi Pati secara Mikroskopis Waktu Tp. Beras Tp. Terigu Tp. Tapioka Tp.

Untuk mengetahui pengaruh ph medium terhadap profil disolusi. atenolol dari matriks KPI, uji disolusi juga dilakukan dalam medium asam

BAB IV HASIL PERCOBAAN DAN PEMBAHASAN

4 Hasil dan pembahasan

BAB 17 ALKOHOL DAN FENOL

BAB III ALAT, BAHAN, DAN CARA KERJA. Penelitian ini dilakukan di Laboratorium Kimia Farmasi Kuantitatif

BAB IV HASIL DAN PEMBAHASAN. Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo,

TINJAUAN PUSTAKA. di Indonesia dengan angka sebesar ton pada tahun Durian (Durio

4 Hasil dan Pembahasan

Bab IV Hasil Penelitian dan Pembahasan

PENGARUH MODIFIKASI PERMUKAAN SELULOSA NATA DE COCO DENGAN ANHIDRIDA ASETAT DALAM MENGIKAT ION LOGAM BERAT Cd 2+ DALAM CAMPURAN Cd 2+ DAN Pb 2+

PENGAMBILAN PEKTIN DARI AMPAS WORTEL DENGAN EKSTRAKSI MENGGUNAKAN PELARUT HCl ENCER

MEMBRAN SELULOSA ASETAT DARI MAHKOTA BUAH NANAS (Ananas Comocus) SEBAGAI FILTER DALAM TAHAPAN PENGOLAHAN AIR LIMBAH SARUNG TENUN SAMARINDA

KIMIA. Sesi HIDROKARBON (BAGIAN II) A. ALKANON (KETON) a. Tata Nama Alkanon

4 Pembahasan. 4.1 Sintesis Resasetofenon

BAB IV. HASIL DAN PEMBAHASAN. Pragel pati singkong yang dibuat menghasilkan serbuk agak kasar

Bab IV Hasil dan Pembahasan

HASIL DAN PEMBAHASAN. Analisis Struktur. Identifikasi Gugus Fungsi pada Serbuk Gergaji Kayu Campuran

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar

Struktur Aldehid. Tatanama Aldehida. a. IUPAC Nama aldehida dinerikan dengan mengganti akhiran a pada nama alkana dengan al.

SINTESIS DAN KARAKTERISASI SELULOSA ASETAT DARI ALFA SELULOSA TANDAN KOSONG KELAPA SAWIT

BAB 3 BAHAN DAN METODE PENELITIAN. Alat-alat yang digunakan dalam penelitian ini adalah : - Labu leher tiga Pyrex - Termometer C

HASIL DAN PEMBAHASAN. 4.1 Karakterisasi Bahan Baku Karet Crepe

BAB IV. karakterisasi sampel kontrol, serta karakterisasi sampel komposit. 4.1 Sintesis Kolagen dari Tendon Sapi ( Boss sondaicus )

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak

Analisis Sifat Kimia dan Fisika dari Maleat Anhidrida Tergrafting pada Polipropilena Terdegradasi

PENDAHULUAN. Latar belakang. digunakan pada industri antara lain sebagai polimer pada industri plastik cetakan

BAB III METODE PENGUJIAN. Rempah UPT.Balai Pengujian dan Sertifikasi Mutu Barang (BPSMB) Jl. STM

HASIL DAN PEMBAHASAN

Chapter 20 ASAM KARBOKSILAT

Desikator Neraca analitik 4 desimal

IV. HASIL DAN PEMBAHASAN

Kata kunci: surfaktan HDTMA, zeolit terdealuminasi, adsorpsi fenol

BAB I PENDAHULUAN LATAR BELAKANG

LAPORAN PRAKTIKUM KIMIA ORGANIK

A = log P dengan A = absorbans P 0 = % transmitans pada garis dasar, dan P = % transmitans pada puncak minimum

BAB III METODE PENELITIAN. Pelaksanaan penelitian dimulai sejak Februari sampai dengan Juli 2010.

BAB II TINJAUAN PUSTAKA. Tanaman semangka (Citrullus vulgaris) merupakan tanaman yang berasal

BAB III METODE PENELITIAN. Penelitian ini akan dilakukan pada bulan Januari Februari 2014.

IV. HASIL DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

4. Hasil dan Pembahasan

4 Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN

1.3 Tujuan Percobaan Tujuan pada percobaan ini adalah mengetahui proses pembuatan amil asetat dari reaksi antara alkohol primer dan asam karboksilat

LAPORAN PENDAHULUAN PRAKTIKUM KIMIA ORGANIK II

Lampiran 1. Prosedur Analisis Karakteristik Pati Sagu. Kadar Abu (%) = (C A) x 100 % B

REAKSI SAPONIFIKASI PADA LEMAK

BAB III METODE PENELITIAN. Untuk mengetahui kinerja bentonit alami terhadap kualitas dan kuantitas

MATERI DAN METODE Lokasi dan Waktu Materi Metode Pembuatan Petak Percobaan Penimbangan Dolomit Penanaman

BAB V HASIL DAN PEMBAHASAN

EKSTRAKSI PEKTIN DARI KULIT MANGGA

BAB III METODE PENELITIAN

Transkripsi:

5 Kadar Asetil (ASTM D-678-91) Kandungan asetil ditentukan dengan cara melihat banyaknya NaH yang dibutuhkan untuk menyabunkan contoh R(-C-CH 3 ) x xnah R(H) x Na -C-CH 3 Contoh kering sebanyak 1 g dimasukkan ke dalam erlenmeyer kemudian ditambahkan 40 ml etanol 75% (v/v) dan dipanaskan pada penangas air selama 30 menit pada suhu 60 C. Ke dalam contoh ditambahkan 40 ml NaH 0,5 N dan dipanaskan selama 30 menit pada suhu yang sama. Contoh didiamkan selama 72 jam dan kelebihan NaH dititrasi dengan HCl 0,5 N menggunakan indikator fenolftalein sampai warna merah muda lenyap. Contoh didiamkan selama 24 jam untuk memberi kesempatan bagi NaH berdifusi. Selanjutnya contoh dititrasi dengan NaH 0,5 N sampai terbentuk warna merah muda. Pengukuran blanko dilakukan sama dengan contoh. Kadar asetil (KA) dihitung dengan rumus: KA (%) = [(D-C)Na + (A-B)Nb] (F/W) dengan A = volume NaH yang dibutuhkan untuk titrasi contoh B = volume NaH yang dibutuhkan untuk titrasi blanko C = volume HCl yang dibutuhkan untuk titrasi contoh D = volume HCl yang dibutuhkan untuk titrasi blanko Na = Normalitas HCl Nb = Normalitas NaH F = 4.305 untuk kadar asetil W = bobot contoh Rancangan Percobaan Pengaruh waktu aktivasi dan asetilasi terhadap kadar asetil pektin asetat dianalisis secara statistik dengan metode Rancangan Acak Lengkap (RAL) lalu dilanjutkan dengan uji Duncan dan kontras polinomial ortogonal (Mattjik & Sumertajaya 2002). Model rancangan tersebut adalah Yijk = µ + τi + βj + (τβ)ij + εijk Keterangan: Yijk = kadar asetil pektin asetat pada waktu aktivasi ke-i, waktu asetilasi ke-j, serta ulangan ke-k, dengan i = 1, 2, 3, j = 1, 2, 3, dan k = 1, 2, 3, 4. µ = rataan umum τi = pengaruh waktu aktivasi ke-i βj = pengaruh waktu asetilasi ke-j (τβ)ij = pengaruh interaksi waktu aktivasi ke-i serta waktu asetilasi ke-j εijk = pengaruh acak dari waktu aktivasi ke-i, waktu asetilasi ke-j, serta ulangan ke-k. Hipotesis yang diuji 1 Pengaruh waktu aktivasi H o = τ 1 = τ 2 = τ 3 = 0 (waktu aktivasi memberikan pengaruh yang sama terhadap kadar asetil) H 1 = setidaknya ada satu i dengan τi 0, i = 1, 2, 3 2 Pengaruh waktu asetilasi H o = β 1 = β 2 = β 3 = 0 (waktu asetilasi memberikan pengaruh yang sama terhadap kadar asetil) H 1 = setidaknya ada satu j dengan βj 0, j = 1, 2, 3 3 Pengaruh interaksi antara waktu aktivasi dan waktu asetilasi H o = (τβ)ij = 0 untuk semua ij H 1 = setidaknya ada satu (τβ)ij 0 HASIL DAN PEMBAHASAN Ciri Bahan Baku Fungsi pencirian bahan baku ialah menentukan kemurnian dan kelayakan pektin terhadap proses asetilasi. Hasil pencirian disajikan pada Tabel 1. Tabel 1 Ciri bahan baku Pencirian Pektin p.a. SNI Kadar air (%) 8,48±0,03 maks. 12 Kadar abu (%) 2,19±0,03 maks. 10 Bobot Ekuivalen 2,56 10 3 ±70,27 - Kadar Metoksil (%) 6,38±0,07 maks. 7 Kadar Galakturonat (%) 43,11±0,57 min. 35 Kadar air yang diperoleh pada pektin sebesar 8,48%±0,03 (Lampiran 2). Kadar air ini sesuai dengan kadar air yang ditetapkan SNI (1979), yaitu maksimum 12%. Kadar air pektin berpengaruh pada jalannya reaksi asetilasi. Reaksi asetilasi bersifat reversibel sehingga kadar air pektin yang terlalu tinggi akan menyebabkan hasil reaksi yang digunakan tidak tercapai karena pektin asetat akan terhidrolisis. Kadar air juga berpengaruh pada anhidrida asetat. Kadar air yang tinggi akan menghidrolisis anhidrida asetat menjadi

6 asam asetat. Asam asetat ini tidak mampu mengasetilasi gugus hidroksil pektin. Kadar abu yang diperoleh pada pektin sebesar 2,19%±0,03 (Lampiran 2). Kadar abu yang diperoleh masih memenuhi standar mutu kadar abu yang ditetapkan dalam SNI (1979), yaitu tidak melebihi 10%. Nilai bobot ekuivalen pektin yang diperoleh sebesar 2,56 10 3 g/ek±70,27. Hal tersebut menunjukkan bahwa pektin merupakan makromolekul. Kadar metoksil yang dihasilkan sebesar 6,38%±0,07 (Lampiran 3) berarti pektin tersebut termasuk ke dalam jenis pektin bermetoksil rendah. Kandungan metoksil merupakan faktor yang penting bagi setting time dari pektin, sensitifnya terhadap kation polivalen, dan penggunaannya. Pektin dengan kadar metoksil rendah adalah pektin yang sebagian gugus karboksilnya tidak teresterifikasi. Pektin jenis ini dapat membentuk gel yang baik dengan adanya ion polivalen seperti ion kalsium. Ion kalsium akan membentuk ikatan silang ionik di antara gugus karboksil molekul-molekul pektin yang berdekatan. Kadar galakturonat dari pektin yang diperoleh sebesar 43,11%±0,57 (Lampiran 3). Hal ini sesuai menurut SNI (1979) kadar galakturonat minimum adalah 35%. Pektin yang sebagian asam galakturonatnya teresterifikasi mengandung 10% atau lebih komponen organik seperti arabinosa, galaktosa, dan gula. Perhitungan kandungan asam galakturonat sangat penting untuk mengetahui kemurnian pektin (Ranganna 1977). Hasil pencirian bahan baku menunjukkan bahwa pektin yang digunakan sudah memenuhi SNI (1979). Kenampakan Pektin Asetat Pektin asetat yang dihasilkan pada penelitian ini berbentuk serbuk yang berwarna kuning kecokelatan (Gambar 5). Menurut Fengel dan Wegener (1995), perubahan warna ini disebabkan oleh perubahan-perubahan oksidatif pada molekul pektin yang terbentuk selama proses asetilasi. Perubahan warna yang terjadi dari kuning muda menjadi kuning kecokelatan sudah terlihat ketika dilakukan penambahan anhidrida asetat. Gambar 5 Pektin asetat hasil sintesis. Reaksi asetilasi diawali dengan aktivasi pektin menggunakan asam asetat glasial dan katalis H 2 S 4. Menurut Sjostorm (1993), asam asetat glasial dapat membengkakkan serat-serat polimer sehingga reaktivitasnya semakin meningkat. Kecepatan proses asetilasi dari polisakarida yang sudah teraktivasi tiga kali lebih tinggi dari polisakarida yang tidak teraktivasi. Reaksi esterifikasi yang terjadi berupa penggantian satu atau dua gugus hidroksil dari unit galakturonat dengan gugus asetil dari anhidrida asetat (Gambar 6). Ada beberapa senyawa yang digunakan untuk mengasetilasi gugus -H dari pektin, yaitu: R-C-NH 2 R-C-R' R-C--C-R R-C-Cl bertambahnya kereaktifan Amida dan ester sangat lambat untuk bereaksi dengan gugus -H pektin sedangkan halida asam mempunyai reaktivitas yang sangat tinggi. leh karena itu, pereaksi yang dipilih untuk mengasetilasi gugus -H pektin ialah anhidrida asetat. Hal ini disebabkan anhidrida asetat mempunyai gugus pergi (R-C - ) yang baik dan selektivitasnya lebih besar dibandingkan dengan halida asam. Syarat terpenting dari proses asetilasi ialah kondisi reaksinya harus bebas air. Apabila terdapat air maka anhidrida asetat akan terhidrolisis menjadi asam asetat (Gambar 7). Asam asetat ini tidak mampu mengasetilasi gugus -H dari pektin. CH 3 -C--C-CH 3 H 2 2 CH 3 -C-H Gambar 7 Reaksi hidrolisis anhidrida asetat. H H CCH 3 CH H H H 3 C CH 3 H 2 S 4 R Gambar 6 Reaksi sintesis pektin asetat, dengan R = H atau -CCH 3. R CCH 3 CH R R

7 Waktu asetilasi yang digunakan diragamkan selama 60, 90, dan 120 menit. Setelah 60 menit berlangsung, larutan menjadi kental dan warna berubah dari kuning muda menjadi kuning kecokelatan yang menunjukkan pektin sudah terasetilasi. Setelah 120 menit larutan pektin berubah menjadi cokelat tua. Hal ini yang mendasari penggunaan waktu asetilasi selama 60, 90, dan 120 menit. Kelarutan Uji kelarutan dilakukan dengan tujuan mengetahui apakah pektin sudah termodifikasi menjadi pektin asetat. Hasil uji kelarutan pada beberapa pelarut polar dan nonpolar disajikan pada Tabel 2. Tabel 2 Kelarutan pektin dan pektin asetat Pelarut Pektin Pektin asetat Air larut tidak larut Etanol tidak larut tidak larut DMS tidak larut larut Aseton tidak larut tidak larut Kloroform tidak larut tidak larut n-heksana tidak larut tidak larut Berdasarkan uji kelarutan, pekin asetat tidak larut dalam air tetapi larut dalam DMS. Hal ini menunjukkan bahwa pektin telah terasetilasi menjadi pektin asetat. Secara teoretis, pektin dapat larut dalam air karena mempunyai banyak gugus hidroksil. Setelah pektin diasetilasi, terjadi penggantian satu atau dua gugus hidroksil dengan gugus asetil dari anhidrida asetat sehingga hasil sintesis tidak larut dalam air. Kadar Asetil Kadar asetil merupakan ukuran jumlah anhidrida asetat yang diesterifikasi pada rantai pektin. Kadar asetil yang diperoleh pada perlakuan ini berkisar antara 26,57%±0,13 sampai 62,86%±0,20 (Lampiran 4). Kadar asetil pektin asetat yang diperoleh berbeda dengan kadar asetil selulosa asetat, yaitu sebesar 39,0-40,0% (SNI 1991). Perbedaan ini dikarenakan struktur pektin awal mengandung gugus metil ester sedangkan selulosa tidak. Pada waktu aktivasi 2 jam, kadar asetil pektin asetat semakin menurun sedangkan pada waktu aktivasi 3 dan 4 jam kadar asetil menurun pada selang waktu 60 sampai 90 menit dan meningkat tajam pada selang waktu 90 sampai 120 menit (Gambar 8). Persentase kadar asetil tertinggi didapatkan pada lama aktivasi 3 jam dan lama asetilasi 120 menit. Hal ini diduga bahwa pada waktu aktivasi 3 jam dan asetilasi 120 menit gugus -H dari pektin secara maksimum sudah digantikan oleh gugus asetil dari anhidrida asetat. kadar asetil (%) 70 60 50 40 30 20 10 0 60 90 120 waktu asetilasi (menit) aktivasi 2 jam aktivasi 3 jam aktivasi 4 jam Gambar 8 Hubungan waktu aktivasi dan asetilasi terhadap kadar asetil. Hasil analisis ragam pada α = 5% menunjukkan bahwa waktu aktivasi, waktu asetilasi, serta interaksi antara keduanya memberikan pengaruh yang nyata terhadap kadar asetil pektin asetat (Lampiran 5). Hal ini menunjukkan bahwa kadar asetil pektin asetat dipengaruhi oleh lama waktu aktivasi dan asetilasi. Uji lanjut Duncan pada α = 5% menunjukkan bahwa pada waktu aktivasi 2 jam, ketiga waktu asetilasi memberikan pengaruh yang berbeda satu sama lain (Lampiran 6). Waktu asetilasi 60 menit menghasilkan kadar asetil 54,89%±0,20 berbeda nyata dengan waktu asetilasi 90 menit dengan kadar asetil 45,62%±0,41. Waktu asetilasi 90 menit kadar asetil juga berbeda nyata dengan waktu asetilasi 120 menit dengan kadar asetil 42,22%±0,34. Hal tersebut juga terjadi antara waktu asetilasi 60 menit dengan 120 menit yang menghasilkan kadar asetil pektin asetat berbeda nyata. Uji lanjut Duncan pada waktu aktivasi 3 dan 4 jam menunjukkan kesimpulan yang sama dengan waktu aktivasi 2 jam, yaitu bahwa ketiga waktu asetilasi (60, 90, dan 120 menit) memberikan pengaruh yang berbeda satu sama lain (Lampiran 6). Uji kontras polinomial ortogonal pada α = 5% menunjukkan bahwa hubungan antara waktu aktivasi dengan kadar asetil pektin asetat yang dihasilkan berbentuk kuadratik dengan persamaannya y = 4,47x 2-30,41x + 79,74. Hal tersebut juga terjadi pada hubungan antara waktu asetilasi dan kadar asetil, yaitu berbentuk kuadratik dengan persamaan y = 1,258x 2-2,0978x + 121,82 (Lampiran 7).

8 Spektrum FTIR Gugus fungsi antara pektin dan pektin asetat tidak ada perbedaan yang signifikan (Gambar 6). Keduanya memiliki gugus fungsi -H karboksilat dan karbonil. Perbedaannya hanya terdapat pada perubahan gugus -H dari pektin menjadi gugus asetil (-CCH 3 ). Spektrum FTIR pektin standar dan pektin asetat dapat dilihat pada Gambar 9 dan 10. Kedua spektrum tesebut menunjukkan adanya beberapa perbedaan serapan, yaitu pada bilangan gelombang 3700-3100 dan 1700 cm -1. Pada daerah bilangan gelombang 3700-3100 cm -1, pektin asetat memiliki serapan yang sangat lebar. Hal tersebut diduga ada pengaruh air pada saat preparasi serta menunjukkan bahwa tidak semua gugus -H pektin dapat terasetilasi menjadi gugus asetil. Selain itu, serapan tersebut juga menunjukkan bahwa gugus karboksil (-CH) pektin diduga tidak terasetilasi dengan anhidrida asetat melalui persamaan berikut: Tidak terasetilasinya gugus karboksil disebabkan oleh meruahnya gugus di sekitarnya sehingga anhidrida asetat tidak mampu mengasetilasi gugus karboksil tersebut. Spektrum FTIR pektin asetat (Gambar 10) memperlihatkan pita serapan pada bilangan gelombang 1699,4 cm -1 yang menunjukkan adanya gugus karbonil (-C=). Hal tersebut menunjukkan bahwa gugus -H pektin telah terasetilasi menjadi gugus asetil. Serapan pada bilangan gelombang 2920,3 cm -1 merupakan vibrasi ulur dari -CH 3 dan pada bilangan gelombang 1456,2 cm -1 dengan puncak yang tajam merupakan ciri khas dari serapan vibrasi tekuk -C-H (Shriner et al. 2004). Serapan lainnya ada pada daerah bilangan gelombang 1310,3-1398 cm -1 untuk vibrasi ulur -C-H dan pada daerah 1310,3 cm -1 untuk vibrasi ulur -C-. 2 R-C-H CH 3 -C--C-CH 3 R-C--C-R 2 CH 3 -C-H (Fessenden RJ & Fessenden JS 2005) Gambar 9 Spektrum FTIR pektin standar.

9 Gambar 10 Spektrum FTIR pektin asetat. Analisis Termogravimetri Kurva TGA dari analisis ini memberikan informasi tentang perubahan massa pektin asetat selama proses pemanasan. Selama peningkatan suhu, sampel mungkin mengalami kenaikan massa akibat proses oksidasi. Akan tetapi, kebanyakan kurva TGA memperlihatkan indikasi pengurangan massa pada suhu 100 C dan dekomposisi termal pada suhu > 250 C (Zhang 2004). Gambar 11 memperlihatkan pengurangan massa pektin asetat selama analisis termal. Perubahan massa dapat dibagi menjadi tiga daerah. Daerah pertama, yaitu mulai dari suhu ruang hingga suhu 200 C terjadi pengurangan massa akibat proses penguapan air. Pada daerah ini perubahan massa tidak signifikan dan sampel stabil secara termal. Daerah kedua yang mulai dari suhu 200 C hingga 800 C pektin asetat memperlihatkan kehilangan massa yang besar akibat terjadinya dekomposisi termal. Pada proses ini sebanyak 32,70% dari sampel terdekomposisi sampai menguap. Daerah terakhir terjadi pada suhu 800 C hingga 900 C pektin asetat mengalami dekomposisi termal secara lambat. TGA mg Suhu ( C) 900 800 90 700 600 80 500 400 300 70 200 100 Gambar 11 Kurva TGA pektin asetat.

10 Mikroskop Fotostereo Struktur permukaan pektin asetat dapat dilihat dengan mikroskop fotostereo. Hasil mikroskop fotostereo (Gambar 12) memperlihatkan struktur permukaan yang tidak seragam. Struktur permukaan dari masing-masing perlakuan berbeda satu sama lain. Pektin asetat dengan perlakuan lama waktu aktivasi 2 jam dan asetilasi 120 menit dengan kadar asetil 42.22%±0.34 memiliki struktur permukaan yang paling rapat. Hal ini dikarenakan kadar asetil pektin asetat dengan perlakuan waktu aktivasi 2 jam dan asetilasi 120 menit mendekati kadar asetil selulosa asetat menurut SNI (1991), yaitu 39,0-40,0%. Pektin asetat dengan kadar asetil tertinggi, yaitu pada perlakuan waktu aktivasi 3 jam dan asetilasi 120 menit memiliki struktur permukaan yang menggumpal dan memadat. Struktur permukaan pektin asetat dengan kadar asetil terendah (waktu aktivasi 3 jam dan asetilasi 90 menit) cenderung retak-retak. 2j, 60 2j, 90 2j, 120 3j, 60 SIMPULAN DAN SARAN Simpulan Dari hasil penentuan kadar asetil dan uji kelarutan dapat disimpulkan bahwa pektin dapat terasetilasi menjadi pektin asetat. Kadar asetil tertinggi didapatkan pada pektin dengan lama aktivasi 3 jam dan asetilasi 120 menit, yaitu 62,86%±0,20. Hasil analisis ragam pada α = 5% menunjukkan bahwa waktu aktivasi, waktu asetilasi, serta interaksi antara keduanya memberikan pengaruh yang nyata terhadap kadar asetil pektin asetat. Analisis TGA menunjukkan bahwa selama asetilasi tidak ada massa pektin asetat yang hilang. Hasil interpretasi mikroskop fotostereo menunjukkan pektin asetat dengan lama waktu aktivasi 2 jam dan asetilasi 120 menit memiliki struktur permukaan yang paling rapat. Saran Perlu dilakukan penelitian lanjutan mengenai aplikasi pektin asetat yang dihasilkan. Pektin asetat dapat dicoba dibuat melalui reduksi gugus -CH dan -CCH 3 terlebih dahulu dengan menggunakan LiAlH 4 sebelum tahap aktivasi dan asetilasi. DAFTAR PUSTAKA 3j, 120 4j, 90 3j, 90 4j, 60 Gambar 12 Hasil mikroskop fotostereo pektin asetat. Interpretasi mikroskop fotostereo pektin asetat digunakan untuk tahap lanjut, yaitu pembuatan membran. Pektin asetat yang dipilih sebagai bahan dasar pembuat membran adalah yang memiliki permukaan yang paling rapat, dalam hal ini dipilih pektin asetat dengan perlakuan lama waktu aktivasi 2 jam dan asetilasi 120 menit. AAC. 1995. fficial Methods of Analysis of the Association of fficial Analytical Chemist. Vol IA. Washington DC: AAC Int. ASTM. 1991. ASTM D871: Standard Methods of Testing Cellulose Acetate. Philadelphia: American Society for Testing and Materials. Caplin M. 2004. Pectin. http://www.isbu. ac.uk/water/hypec.html. [2 Februari 2006]. Fengel D, Wegener G. 1995. Kayu: Kimia, Ultrastruktur, dan Reaksi-Reaksi. Sastrohamidjojo H, penerjemah; Yogyakarta: UGM Pr. Terjemahan dari: Wood: Chemistry, Ultrstructure and Reactions.