Contoh-contoh soal induksi matematika

dokumen-dokumen yang mirip
Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

PENGEMBANGAN METODE INDUKSI MATEMATIKA DAN PENERAPANNYA DALAM RUANG LINGKUP MATEMATIKA DISKRIT

Induksi 1 Matematika

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION

INF-104 Matematika Diskrit

Induksi Matematika. Fitriyanti Mayasari

Induksi Matematik. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

induksi matematik /Nurain Suryadinata, M.Pd

INDUKSI MATEMATIKA PERTEMUAN KE- 4

PERANAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA

1 INDUKSI MATEMATIKA

Induksi Matematik. Bahan Kuliah IF2120 Matematika Diskrit. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB

MATEMATIKA DISKRIT. 1 Induksi Matematik

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

A. PRINSIP INDUKSI SEDERHANA

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

Induksi Matematik Program Studi Teknik Informatika STEI - ITB

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

BAB 2 LANDASAN TEORI

PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA

Contoh : 1..Buktikan bahwa untuk semua bilangan bulat n, jika n adalah bilangan ganjil, maka n 2 adalah bilangan ganjil! Jawab :

Sistem Bilangan Real

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

INDUKSI MATEMATIKA A. Penalaran Induktif dan Deduktif Penalaran dalam matematika ada dua jenis, yaitu penalaran induktif dan penalaran deduktif. 1.

Induksi Matematika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

Matematika Diskret (Induksi Matematik) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

BAB I INDUKSI MATEMATIKA

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

TIM OLIPIADE MATEMATIKA INDONESIA. Olimpade Sains Propinsi 2013 Marking Scheme Uraian

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN

BAB 1. PENDAHULUAN KALKULUS

Relasi, Fungsi, dan Transformasi

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

Logika Pembuktian. Matematika Informatika 3 Onggo

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Keterbagian Pada Bilangan Bulat

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Bilangan Prima dan Teorema Fundamental Aritmatika

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd.

Beberapa Uji Keterbagian Bilangan Bulat

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Prestasi itu diraih bukan didapat!!!

KONSTRUKSI SISTEM BILANGAN

LOMBA MATEMATIKA NASIONAL KE-25

STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

3. Induksi Matematika Source : Rinaldi Munir. Discrete Mathematics 1

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Pembuktian dengan Induksi Matematik

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SOAL DAN PEMBAHASAN OSN MATEMATIKA SMA/MA 2013 AHMAD THOHIR

GLOSSARIUM. A Akar kuadrat

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily)

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

BAB 2 LANDASAN TEORI

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Induksi Matematika. Nur Hasanah, M.Cs

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

Teori Bilangan (Number Theory)

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

1 SISTEM BILANGAN REAL

Tentukan semua bilangan bulat x sedemikian sehingga x 1 (mod 10). Jawab. x 1 (mod 10) jika dan hanya jika x 1 = 10 k untuk setiap k bilangan bulat.

Pembahasan OSN SMP Tingkat Nasional Tahun 2013 Bidang Matematika Oleh Tutur Widodo

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

Transkripsi:

Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah induksi : Misalkan bahwa 2 k > k + 20 adalah benar. Sekarang kita peroleh 2 k+1 = 2.2k > 2(k + 20) = 2k + 40 > (k + 1) + 20 (iii) Konklusi : Maka disimpulkan bahwa 2 n > n + 20 adalah benar untuk n 5. 2. Soal : Buktikan bahwa semua bilangan berbentuk 7 n 2 n dapat dibagi oleh 5 untuk setiap n bilangan asli. (i) Basis induksi : Pernyataan yang akan dibuktikan adalah P n : 7 n 2 n dapat dibagi 5. P 1 bernilai benar sebab 7 1 2 1 = 5. (ii) Langkah induksi : Dengan asumsi ini kita akan menyelidiki kebenaran pernyataan P n+1. Untuk itu kita perhatikan bahwa 7 n+1 2 n+1 = 7.7 n 7.2 n + 7.2 n 2.2 n = 7[7 n 2 n ] + 5.2 n = 7(5m) + 5.2 n m ϵ N (asumsi P n benar) = 5(7m + 2 n ) Karena 7m + 2 n bilangan asli, maka dari kesamaan terakhir kita dapat menyimpulkan bahwa 7 n+1 2 n+1 dapat dibagi dengan 5. (iii) Konklusi : Dengan kata lain, pernyataan P n+1 adalah benar. Dengan demikian, bilangan berbentuk 7 n 2 n dapat dibagi oleh 5 untuk setiap n bilangan asli. A. Prinsip Induksi Matematika Sederhana (dasar) Gunakan induksi matematik untuk membuktikan bahwa jumlah n buah bilangan ganjil positif pertama adalah n 2. (i) Basis induksi : Untuk n = 1, jumlah satu buah bilangan ganjil positif pertama adalah 1 2 = 1. Ini benar karena jumlah satu buah bilangan ganjil positif pertama adalah 1. (ii) Langkah induksi : Seandainya p(n) untuk pernyataan 1 + 3 + 5 + + (2n 1) = n 2

adalah benar (hipotesis induksi) [catat bahwa bilangan ganjil positif ke-n adalah (2n 1)]. Kita harus memperlihatkan bahwa 1 + 3 + 5 + + (2n 1) + (2n + 1) = (n + 1) 2 juga benar. Hal ini dapat kita tunjukkan sebagai berikut : 1 + 3 + 5 + + (2n 1) + (2n + 1) = [1 + 3 + 5 + + (2n 1)] + (2n + 1) = n 2 + (2n + 1) = n 2 + 2n + 1 = (n + 1) 2 (iii) Konklusi : Karena langkah basis dan langkah induksi keduanya telah terbukti benar, maka jumlah n buah bilangan ganjil positif pertama adalah n 2. 2. Soal : Tunjukkan bahwa 1 + 2 + 3 + + n = ½ n (n + 1), untuk semua n bilangan asli. (i) Basis induksi : Pertama-tama kita buktikan bahwa P n : 1 + 2 + 3 + + n = ½ n (n + 1) adalah benar. Dengan demikian P 1 adalah 1 = ½. 1.(1+1), dan untuk P 2 adalah 1 + 2 = ½.2.(2+1) dan seterusnya. (ii) Langkah induksi : Untuk membuktikan pernyataan itu, perhatikan bahwa P 1 adalah benar. Kemudian asumsikan bahwa P n : 1 + 2 + 3 + + n = ½ n (n + 1) adalah benar, dan kita harus membuktikan bahwa P n+1 adalah benar. Untuk ini, kita tambahkan kedua ruas pernyataan P n dengan n + 1 dan diperoleh 1 + 2 + 3 + + n + (n + 1) = ½ n(n + 1) + (n + 1) = ½ [n(n + 1) + 2(n + 1)] = ½ (n 2 + 3n + 2) = ½ (n + 1) (n + 2) = ½ (n + 1) [(n + 1) + 1] (iii) Konklusi : Dari sini kita peroleh bahwa P n+1 adalah benar. Hal ini menunjukkan bahwa pernyataan P n : 1 + 2 + 3 + + n = ½ n (n + 1) adalah benar untuk setiap n bilangan asli. B. Prinsip Induksi Matematika yang Dirampatkan Untuk semua bilangan bulat tidak negatif n, buktikan dengan induksi matematika bahwa 2 0 + 2 1 + 2 2 + + 2 n = 2 n+1 1

(i) Basis induksi : Untuk n = 0 (bilangan bulat tidak negatif pertama), kita peroleh : 2 0 = 2 0+1 1. Hasil tersebut jelas benar, karena 2 0 = 1 = 2 0+1 1 = 2 1 1 = 2 1 = 1 (ii) Langkah induksi : Seandainya p(n) untuk pernyataan 2 0 + 2 1 + 2 2 + + 2 n = 2 n+1 1 adalah benar (hipotesis induksi). Kita harus menunjukkan bahwa p(n +1) juga benar, yaitu 2 0 + 2 1 + 2 2 + + 2 n + 2 n+1 = 2 (n+1) + 1 1 juga benar. Hal ini dapat kita buktikan sebagai berikut : 2 0 + 2 1 + 2 2 + + 2 n + 2 n+1 = (2 0 + 2 1 + 2 2 + + 2 n ) + 2 n+1 = (2 n+1 1) + 2 n+1 (hipotesis induksi) = (2 n+1 + 2 n+1 ) 1 = (2. 2 n+1 ) 1 = 2 n+2 1 = 2 (n+1) + 1 1 (iii) Konklusi : Karena langkah pertama dan kedua, keduanya telah dibuktikan benar, maka untuk semua bilangan bulat tidak-negatif n, terbukti bahwa 2 0 + 2 1 + 2 2 + + 2 n = 2 n+1 1 2. Soal : Tunjukkan bahwa setiap segitiga tidak sama sisi dapat dibagi menjadi n (n 4) segitiga samakaki (i) Basis induksi : Kita nyatakan p(n) sebagai setiap segitiga tidak sama sisi dapat dibagi menjadi n (n 4) segitiga samakaki. Jika n = 4, maka kita cukup menarik garis tinggi dari salah satu sudut sehingga garis tinggi tersebut berpotongan dengan sisi di hadapan sudut tersebut bukan pada perpanjangannya, sehingga kita membagi segitiga tersebut menjadi dua segitiga siku-siku, sedangkan setiap segitiga siku-siku itu dapat kita bagi menjadi dua buah segitiga samakaki, sehingga pada akhirnya kita membagi segitiga tersebut menjadi empat segitiga samakaki. Jadi p(4) benar. (ii) Langkah induksi : Sekarang asumsikan untuk suatu m ϵ N, m 4, p(m) adalah benar. Akan ditunjukkan bahwa p(m + 1) juga benar. Misalkan segitiga yang akan dibagi adalah segitiga ABC dan panjang sisi-sisi segitiga tersebut adalah a, b, c, di mana a b c. Karena segitiga ABC tidak samasisi maka kita bisa memilih dua sisi yang tidak sama panjang, misalkan sisi-sisi tersebut

(iii) adalah a dan c. Sekarang kita bagi segitiga ABC menjadi segitiga samakaki DCB dan segitiga DCA, dimana D terletak pada sisi AB, dan BC = BD. Sekarang berdasarkan asumsi induksi, segitiga DCA dapat dibagi menjadi m buah segitiga samakaki (karena DCA bukan segitiga samasisi). Konklusi : Sehingga kita dapat menarik kesimpulan dari langkah induksi di atas bahwa segitiga ABC dapat dibagi menjadi m + 1 buah segitiga samakaki. Berdasarkan hasil tersebut maka p(n) benar untuk semua m ϵ N, m 4. C. Prinsip Induksi Matematika Kuat Tunjukkan bahwa setiap bilangan bulat yang lebih besar dari 1 dapat dituliskan sebagai hasil kali bilangan-bilangan prima. (i) Basis induksi : p(n) = proposisi setiap bilangan bulat yang lebih besar dari 1 dapat dituliskan sebagai hasil kali bilangan-bilangan prima. Dimisalkan p(2), bernilai benar, karena 2 adalah hasil kali dari satu bilangan prima, dirinya sendiri. (ii) Langkah induksi : Asumsikan p(j) benar untuk semua bilangan bulat j, 1 < j²k. Harus ditunjukkan bahwa p(k+1) juga benar. Ada dua kasus yang mungkin : a. Jika (k + 1) bilangan prima, maka jelas p(k + 1) benar. b. Jika (k + 1) bilangan komposit, (k+1) dapat ditulis sebagai perkalian dua buah bilangan bulat a dan b sehingga 2 a b < k + 1. Oleh hipotesa induksi, a dan b keduanya dapat dituliskan sebagai hasil kali bilangan prima. Jadi, k + 1 = a b dapat ditulis sebagai hasil kali bilangan prima. (iii) Konklusi : Karena dari tahap pertama dan kedua telah dibuktikan maka hasilnya adalah setiap bilangan bulat yang lebih besar dari 1 dapat dituliskan sebagai hasil kali bilangan-bilangan prima. 2. Soal : Buktikan untuk n, m ϵ N, n > 1 berlaku identitas F n+m = F n 1 F m + F n F m+1 (i) Basis induksi : Kita umpamakan untuk m = 1, maka F n+1 = F n 1 + F n = F n 1 F 1 + F n F 2 adalah benar untuk sembarang nilai n. Sedangkan untuk m = 2, maka F n+2 = F n+1 + F n = F n 1 + 2F n = F n 1 F 2 + F n F 3 adalah juga bernilai benar untuk sembarang nilai n. (ii) Langkah induksi : sekarang kita asumsikan bahwa identitas berlaku untuk semua m k, untuk semua k ϵ N, k > 1. Maka, F n+k+1 = F n+k + F n+k 1 = F n 1 F k + F n F k+1 + F n 1 F k 1 + F n F k

= F n 1 (F k + F k 1 ) + F n (F k+1 + F k ) = F n 1 F k+1 + F n F k+2 yang berarti identitas juga berlaku untuk m = k +1. Berdasarkan prinsip induksi kuat, identitas berlaku untuk sebarang nilai m, n ϵ N, n > 1. (iii) Konklusi : Dari persoalan yang baru saja kita selesaikan, terdapat suatu hal yang menarik dimana terdapat lebih dari satu parameter dalam proposisi. Sangat membingungkan, tapi perhatikan bahwa dalam identitas tersebut, kedua parameter m dan n muncul secara simetri, yang berarti kita bebas memilih salah satu dari keduanya untuk dijadikan parameter induksi. D. Prinsip Induksi Matematika Berjeda Tak-satu Buktikan dengan induksi matematika bahwa semua bilangan berbentuk x = 11 1 n (n adalah jumlah pengulangan angka 1, misalnya n = 4 maka x = 1111) pasti kongruen dengan 0(mod 11) atau 1(mod 11). [misalnya 111 1(mod 11) dan 111111 0(mod 11)]. (i) Basis induksi : Kita akan menggunakan prinsip induksi matematika berjeda taksatu sebanyak 2 kali secara terpisah namun dengan p(n) yang sama. Nyatakan p(n) sebagai bilangan 11 1 n kongruen dengan 0(mod 11) atau 1(mod 11). Di sini kita akan membuktikan dua pernyataan : Jika n bilangan ganjil positif, maka 11 1 n 1(mod 11). Jika n bilangan genap positif, maka 11 1 n 0(mod 11). P(1) benar karena 1 1(mod 11). Jadi kita memiliki basis untuk pernyataan (i). P(2) juga benar karena 11 0(mod 11), jadi kita memiliki basis untuk pernyataan (ii). (ii) Langkah induksi : Sekarang asumsikan bahwa untuk suatu m ϵ N, P(a + 2(m 1)) benar. Akan ditunjukkan bahwa P(a + 2m) juga benar. Perhatikan bahwa : 11 1 a+2m = 100 x 11 1 a+2(m-1) + 11 11 1 a+2(m-1) (mod 11) Karena 100 1(mod 11) dan 11 0(mod 11). Jadi, jika 11 1 a+2(m-1) 0(mod 11), maka 11 1 a+2m 0(mod 11). Begitu pula jika 11 1 a+2(m-1) 1(mod 11), maka 11 1 a+2m 1(mod 11). Jadi terbukti jika P(a + 2(m 1)) benar, maka P(a + 2m) juga benar. (iii) Konklusi : Dengan menyulihkan a =1, maka berdasarkan prinsip induksi matematika berjeda tak-satu, pernyataan (i) kita terbukti, dan dengan menyulihkan a = 2, maka berdasarkan prinsip induksi matematika berjeda taksatu, pernyataan (ii) kita terbukti. Karena kita telah membuktikan untuk semua bilangan ganjil dan semua bilangan genap P(n) benar, maka kita simpulkan P(n) benar untuk semua n ϵ N.

E. Prinsip Aturan Rapi Sebuah bilangan bulat n dikatakan baik jika kita dapat menuliskan n sebagai a 1 + a 2 + + a k = n dimana a 1 + a 2 + + a k adalah bilangan bulat positif (tidak harus berbeda) sehingga Diketahui bahwa seluruh bilangan bulat dari 33 hingga 73 adalah baik, tunjukkan bahwa setiap bilangan bulat lebih besar dari 32 adalah baik. (i) Basis induksi : Sebuah bilangan bulat kita katakan buruk jika tidak baik. Apa yang ingin kita buktikan adalah tidak ada bilangan buruk yang lebih besar dari 32. Untuk membentuk kontradiksi, andaikan himpunan S dengan elemen bilanganbilangan buruk lebih besar dari 32 adalah tidak kosong. Berdasarkan prinsip induksi rapi ini, himpunan ini memiliki elemen terkecil, katakanlah m. Dengan informasi yang diberikan, kita ketahui bahwa m 74. (ii) Langkah induksi : Sekarang andaikan m genap. Misalkan p =. Kita punya p 33, dan karena m adalah elemen terkecil di S, dan p < m, maka p adalah bilangan baik. Jadi terdapat a 1, a 2,, a k sehingga a 1 + a 2 + + a k = p dan. Perhatikan bahwa 4 + 4 + 2a 1 + 2a 2 + + 2a k = m, dan, yang berarti m adalah bilangan baik, kontradiksi dengan asumsi semula. Dengan cara serupa, kita bisa mencapai kontradiksi yang sama jika m ganjil. Kali ini dengan mengambil p =, menggunakan fakta bahwa serta 3 + 6 + 2a 1 + 2a 2 + + 2a k = m. (iii) Konklusi : Jadi kedua kasus membawa kita pada kontradiksi, sehingga kita simpulkan S adalah himpunan kosong, yang berarti semua bilangan bulat lebih besar daripada 32 adalah baik. F. Prinsip Induksi Matematika Bekerja Mundur Untuk semua n ϵ N, tunjukkan ketaksamaan berikut selalu berlaku: ( )

(i) Basis induksi : Mungkin kita akan langsung terpikirkan untuk menggunakan prinsip induksi dasar dan menggunakan parameter induksi n dalam menyelesaikan soal ini. Tapi kalaupun kita telah mengetahui bahwa ( ), kita tidak dapat menyimpulkan apa-apa tentang, Disini terlihat bahwa pemilihan n sebagai parameter induksi tidak membawa hasil yang diharapkan. Alih-alih membuktikan ketaksamaan di atas, kita akan membuktikan ketaksamaan yang lebih umum. (ii) Langkah induksi : Kita akan membuktikan bahwa ketidaksamaan ( ) ( ) ( ), berlaku untuk C dengan prinsip induksi matematika bekerja terbalik. Kali ini kita akan membuktikan bahwa ketaksamaan berlaku untuk m = n lalu mundur hingga ke m = 2. Untuk m = n, ketidaksamaan jelas berlaku karena. Sekarang kita asumsikan untuk suatu k ϵ N, k < n, ketidaksamaan berlaku untuk m = k + 1, yaitu : ( ) ( ), maka ( ) ( ). Jadi ketaksamaan juga berlaku untuk m = k. (iii) Konklusi : Berdasarkan prinsip induksi matematika bekerja mundur kita dapat menyimpulkan ketidaksamaan berlaku untuk semua m ϵ N, m 2. G. Prinsip Induksi Matematika Bentuk Umum Tinjau runtunan nilai yang didefinisikan sebagai berikut : S 1,1 = 5, dan untuk semua pasangan bilangan bulat positif (m,n), kecuali (1,1) didefinisikan S m,n = { }, Buktikan dengan induksi matematika bahwa untuk semua pasangan bilangan bulat positif (m,n), S m,n = 2(m + n) + 1.

(i) Basis induksi : Nyatakan P(m,n) sebagai pernyataan untuk suatu pasangan bilangan bulat positif (m,n), S m,n = 2(m + n) + 1. Sebagai basis induksi kita punya (1,1) adalah elemen terkecil dalam himpunan pasangan bilangan bulat positif, dan kita juga punya S 1,1 = 2(1 + 1) + 1 = 5. Jadi P(m,n) benar. (ii) Langkah induksi : Sekarang kita asumsikan untuk semua (m,n ) < (m,n), P(m,n ) benar. Akan ditunjukkan bahwa P(m,n) juga benar. Kita bagi ke dalam dua kasus : Jika n = 1, maka sesuai definisi kita punya S m,n = S m-1,n + 2. Karena (m + 1,n) < (m,n), maka S m-1,n = 2(m 1 + n) + 1. Jadi S m,n = 2(m 1 + n) + 1 = 2(m + n) + 1. Dalam kasus ini P(m,n) terbukti benar. Jika n 1, maka sesuai definisi kita punya S m,n = S m,n-1 + 2. Karena (m,n 1) < (m,n), maka S m,n-1 = 2(m + n 1) + 1. Jadi S m,n = 2(m + n 1) + 1 = 2(m + n) + 1. Dalam kasus ini P(m,n) juga terbukti benar. (iii) Konklusi : Dalam kedua kasus di atas, kita telah tunjukkan bahwa P(m,n) benar, yang berarti P(m,n) benar untuk semua pasangan bilangan bulat positif (m,n). Latihan soal : Gunakan induksi matematika untuk membuktikan persamaan berikut ini benar untuk setiap bilangan asli n. 1. 1.2 + 2.3 + 3.4 + + n(n + 1) = ( )( ) 2. 1(1!) + 2(2!) + + n(n!) = (n + 1)! 1 3. 1 2 2 2 + 3 2 + (-1) n+1 n 2 = ( ) ( ) Gunakan induksi matematika untuk membuktikan pertidaksamaan berikut ini : 4. 2n + 1 2 n, untuk n = 3, 4, 5. (1 + x) n 1 + nx, untuk x -1 dan n = 1, 2, Gunakan induksi matematika untuk membuktikan pernyataan berikut ini : 6. 11 n 6 habis dibagi 5, untuk n = 1, 2, 7. 6.7 n 2.3 n habis dibagi 4, untuk n = 1, 2,