2 PEMBUATAN DAN KARAKTERISASI NANOPARTIKEL TITANIUM OXIDE (TiO 2 ) MENGGUNAKAN METODE SOL-GEL

dokumen-dokumen yang mirip
2 SINTESIS DAN KARAKTERISASI NANOSTRUKTUR ZnO

III. METODE PENELITIAN

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

BAB III METODOLOGI PENELITIAN

4 Hasil dan Pembahasan

BAB I PENDAHULUAN Latar Belakang

BAB II TINJAUAN PUSTAKA

dengan panjang a. Ukuran kristal dapat ditentukan dengan menggunakan Persamaan Debye Scherrer. Dilanjutkan dengan sintering pada suhu

HASIL DAN PEMBAHASAN. Keterangan Gambar 7 : 1. Komputer 2. Ocean Optic USB 2000 Spektrofotometer

BAB I PENDAHULUAN. 1.1 Latar Belakang

METODELOGI PENELITIAN. Penelitian ini akan dilakukan di Laboratorium Kimia Anorganik-Fisik Universitas

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen.

BAB III EKSPERIMEN. 1. Bahan dan Alat

Bab III Metodologi Penelitian

I. PENDAHULUAN. kimia yang dibantu oleh cahaya dan katalis. Beberapa langkah-langkah fotokatalis

HASIL DAN PEMBAHASAN

BAB IV HASIL dan PEMBAHASAN

HASIL DAN PEMBAHASAN. Gambar 11. Rangkaian pengukuran karakterisasi I-V.

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Februari hingga Mei 2012 di Laboratorium. Fisika Material, Laboratorium Kimia Bio Massa,

BAB III METODOLOGI PENELITIAN. Lokasi penelitian dilakukan di Laboratorium Fisika Material, Jurusan

BAB V HASIL DAN PEMBAHASAN. karakterisasi luas permukaan fotokatalis menggunakan SAA (Surface Area

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

Metodologi Penelitian

SINTESIS LAPISAN TIPIS SEMIKONDUKTOR DENGAN BAHAN DASAR TEMBAGA (Cu) MENGGUNAKAN CHEMICAL BATH DEPOSITION

BAB IV HASIL DAN PEMBAHASAN. Dalam penelitian ini digunakan TiO2 yang berderajat teknis sebagai katalis.

Tabel 3.1 Efisiensi proses kalsinasi cangkang telur ayam pada suhu 1000 o C selama 5 jam Massa cangkang telur ayam. Sesudah kalsinasi (g)

BAB III METODE PENELITIAN

BAB III METODOLOGI PENELITIAN. A. Metode Penelitian

SINTESIS DAN KARAKTERISASI NANOPARTIKEL TITANIUM DIOKSIDA (TiO 2 ) MENGGUNAKAN METODE SONOKIMIA

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin 2016

Logo SEMINAR TUGAS AKHIR. Henni Eka Wulandari Pembimbing : Drs. Gontjang Prajitno, M.Si

BAB IV DATA DAN PEMBAHASAN

3 Metodologi penelitian

BAB I PENDAHULUAN. Listrik merupakan kebutuhan esensial yang sangat dominan kegunaannya

BAB III METODE PENELITIAN. Metode penelitian yang dilakukan adalah metode eksperimen yang dilakukan di

Pengaruh Temperatur dan Waktu Putar Terhadap Sifat Optik Lapisan Tipis ZnO yang Dibuat dengan Metode Sol-Gel Spin Coating

Efek Doping Senyawa Alkali Terhadap Celah Pita Energi Nanopartikel ZnO

Bab III Metodologi III.1 Waktu dan Tempat Penelitian III.2. Alat dan Bahan III.2.1. Alat III.2.2 Bahan

HASIL DAN PEMBAHASAN. Hasil XRD

4 FABRIKASI DAN KARAKTERISASI SEL SURYA HIBRID ZnO-KLOROFIL

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah

Bab III Metoda Penelitian

III. PROSEDUR PERCOBAAN. XRD dilakukan di Laboratorium Pusat Survey Geologi, Bandung dan

Distribusi Celah Pita Energi Titania Kotor

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB III METODOLOGI PENELITIAN. Mulai. Persiapan alat dan bahan. Meshing AAS. Kalsinasi + AAS. Pembuatan spesimen

4. HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1. Latar Belakang Nanoteknologi adalah ilmu dan rekayasa dalam menciptakan material, struktur fungsional, maupun piranti alam

BAB I PENDAHULUAN. perindustrian minyak, pekerjaan teknisi, dan proses pelepasan cat (Alemany et al,

Bab III Metodologi Penelitian

BAB I PENDAHULUAN 1.1. Latar Belakang

PENGGUNAAN FIKOSIANIN DARI MIKROALGA Spirulina platensis SEBAGAI LIGHT HARVESTING PADA SEL SURYA NANOPARTIKEL TiO 2 ANATASE IDAWATI SUPU

BENTUK KRISTAL TITANIUM DIOKSIDA

METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

BAB III EKSPERIMEN & KARAKTERISASI

BAB III METODE PENELITIAN

I. PENDAHULUAN. Nanopartikel saat ini menjadi perhatian para peneliti untuk pengembangan dalam

SINTESIS DAN KARAKTERISASI CORE-SHELL ZnO/TiO2 SEBAGAI MATERIAL FOTOANODA PADA DYE SENSITIZED SOLAR CELL (DSSC) SKRIPSI

Bab III Metodologi Penelitian

Bab IV Hasil dan Pembahasan

STUDI AWAL FABRIKASI DYE SENSITIZED SOLAR CELL (DSSC) DENGAN EKSTRAKSI DAUN BAYAM SEBAGAI DYE SENSITIZER DENGAN VARIASI JARAK SUMBER CAHAYA PADA DSSC

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. energi cahaya (foton) menjadi energi listrik tanpa proses yang menyebabkan

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

BAB I PENDAHULUAN 1.1 LatarBelakang

III. METODE PENELITIAN. Penelitian telah dilaksanakan selama tiga bulan, yaitu pada bulan September 2012

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

SIDANG TUGAS AKHIR. Jurusan Teknik Material & Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

BAB I PENDAHULUAN. I.1 Latar Belakang Kebutuhan akan energi semakin berkembang seiring dengan

BAB 4 HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab IV. Hasil dan Pembahasan

SINTESIS LAPISAN TiO 2 MENGGUNAKAN PREKURSOR TiCl 4 UNTUK APLIKASI KACA SELF CLEANING DAN ANTI FOGGING

STRUKTUR DAN SIFAT OPTIK LAPISAN TIPIS TiO 2 (TITANIUM OKSIDA) YANG DIHASILKAN DENGAN MENGGUNAKAN METODE ELEKTRODEPOSISI

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

commit to user BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN. luar biasa dalam penerapan nanosains dan nanoteknologi di dunia industri. Hal ini

BAB V HASIL DAN PEMBAHASAN. cahaya matahari.fenol bersifat asam, keasaman fenol ini disebabkan adanya pengaruh

BAB III METODE PENELITIAN. Anorganik, Departemen Kimia, Fakultas Sains dan Teknologi, Universitas

BAB III METODE PENELITIAN

3.5 Karakterisasi Sampel Hasil Sintesis

I. KEASAMAN ION LOGAM TERHIDRAT

STRUKTUR KRISTAL DAN MORFOLOGI TITANIUM DIOKSIDA (TiO 2 ) POWDER SEBAGAI MATERIAL FOTOKATALIS

HASIL DAN PEMBAHASAN. Pori

BAB 4 DATA DAN PEMBAHASAN

3 METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong,

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

BAB III METODOLOGI PENELITIAN. Untuk mendapatkan jawaban dari permasalahan penelitian ini maka dipilih

Transkripsi:

3 2 PEMBUATAN DAN KARAKTERISASI NANOPARTIKEL TITANIUM OXIDE (TiO 2 ) MENGGUNAKAN METODE SOL-GEL Pendahuluan Bahan semikonduktor titanium oxide (TiO 2 ) merupakan material yang banyak digunakan dalam berbagai aplikasi misalnya sel surya (Qin et al.2013), sensor kimia (Li et al.2013), sel fotoelektrokimia (Koyzyukin et al. 2013), fotokatalis (Macak et al. 2007), dan perangkat elektronik (Bach et al. 2002). Hal itu dikarenakan TiO 2 memiliki fase kristal yang reaktif terhadap cahaya, eksitasi elektron ke pita konduksi dapat dengan mudah terjadi apabila kristal ini dikenai cahaya dengan energi yang lebih besar daripada celah energinya. Aplikasi dari semikoduktor TiO 2 berupa nanopartikel (Kathiravan dan Renganathan 2009, Meen et al. 2009), nanokristal (Wenbing Li et al. 2011), nanorods (Song et al. 2005), nanofiber (Onozuka et al. 2006), nanotubes (Cui et al. 2012) dan nanowires ( Kumar et al. 2010 ) sebagai elektroda pada DSSC mampu menghasilkan efisiensi yang baik. TiO 2 memiliki tiga fase kristal yaitu rutil, anatase, dan brookit. Namun yang paling banyak digunakan dalam proses fotoelektrokimia adalah rutil dan anatase, keduanya memiliki struktur kristal tetragonal, dengan parameter kisi a = 4,593 Ǻ dan c = 2,959Ǻ untuk rutil dengan energi gap sebesar 3,0 serta anatase memiliki parameter kisi a = 3,785 Ǻ dan c = 9,513 Ǻ, energi gap sebesar 3,2 ev. Aplikasi dari nanopartikel TiO 2 sebagai elektroda pada DSSC dengan ukuran partikel 8-10 nm dengan fase anatase (suhu 600 0 C) menunjukkan performa yang sangat bagus. Salah satu metode pembuatan nano TiO 2 yang halus dan berpori dalam bentuk film tipis (ketebalan 4 μm) yaitu melalui metode sol gel spin-coating (Meen et al. 2009). Fase anatase lebih efektif digunakan dalam aplikasi fotokatalisis dan sel surya karena band gap yang lebih lebar jika dibandingkan dengan fase rutil (Mills dan Hunte 1997). Ahmadi (2011) melakukan riset tentang beberapa parameter yang mempengaruhi pembentukan nanopartikel TiO 2, yaitu ph larutan, suhu kalsinasi, waktu aging, suhu aging, serta perbandingan konsentrasi pereaksi. Parameter tersebut berkaitan erat dengan sifat material seperti ukuran partikel dan jenis fase yang terbentuk. Pada penelitian ini, pembentukan nanopartikel TiO 2 dilakukan dengan metode sol gel dengan perlakuan variasi suhu kalsinasi dan menggunakan TiCl 4 sebagai prkursor melalui tahap hidrolisis. Pereaksi logam klorida seperti TiCl 4 cenderung banyak digunakan dalam metode sol gel karena mampu menghasilkan produk akhir berupa oksida logam TiO 2. Proses pembentukan oksida logam tersebut dapat terjadi melalui tiga tahap yaitu: hidrolisis, polimerisasi dan pertumbuhan partikel.

4 Bahan dan Metode Bahan Bahan yang digunakan dalam pembuatan semikonduktor TiO 2 adalah titanium klorida (TiCl 4 ), asam sulfat (H 2 SO 4 ), amonia (NH 3 ), akuabides, kertas saring (whatman 0,45 µm), perak nitrat (AgNO 3 ) 0,1 M. Metode Pembuatan bubuk TiO 2 dilakukan menggunakan metode sol-gel melalui tahap hidrolisis TiCl 4 dengan menggunakan H 2 SO 4 (Wenbing et al. 2011). Pencampuran diawali dengan bahan TiCl 4 (1 ml) sebagai prekursor ditambahkan H 2 SO 4 (2 ml). Kedua bahan dicampur dalam wadah berisi es sambil diaduk dengan stirrer magnetic (350 rpm) selama 30 menit. Selanjutnya dipanaskan pada suhu sekitar 60 0 C selama 1 jam sampai membentuk larutan bening sambil tetap diaduk. Larutan didiamkan pada temperatur ruang, kemudian larutan ditetesi dengan amonia sampai membentuk gel berwarna putih dengan ph 7 sambil tetap diaduk sampai 12 jam sampai homogen. Larutan disaring dengan kertas saring whatman (0,45 μm) sampai bebas klorida. Cairan bening yang keluar dari kertas saring ditetesi dengan larutan AgNO 3 0,1 M (sebagai indikator bebas klorida). Jika tidak berwarna keruh (putih) menandakan bebas klorida. Endapan putih pada kertas saring dikeringkan pada suhu ruang sampai kering. Selanjutnya digerus sampai halus dan dipanaskan pada tanur (furnace) selama 2,5 jam dengan suhu berbeda (400 o C, 600 o C, 800 o C, dan 1000 o C). Pelapisan TiO 2 dilakukan dengan metode casting. Kaca TCO (tebal: 2 mm) dibersihkan dengan aquadest/etanol di dalam ultrasonic bath, kemudian dikeringkan. Sebanyak 0,2 gram bubuk TiO 2 ditetesi dengan 1 ml asam asetat 3% sambil digerus pada mortar sampai homogen membentuk koloid. Kaca TCO dengan permukaan yang konduktif dilapisi dengan selotip Scotch dengan menyisakan bagian tengah berukuran 1 cm x 1cm. Bagian yang terbuka ditetesi dengan koloid TiO 2 dan diratakan menggunakan batang gelas bersih sampai menutupi semua bagian yang terbuka, dibiarkan beberapa menit sampai agak mengering. Lapisan Scoth pada masing-masing tepi kaca TCO dilepas secara perlahan, kemudian dikeringkan pada suhu 400 0 C selama dua jam. Film tipis yang terbentuk dikarakterisasi dengan spektrofotometer UV-Vis (ocean optic spectrophotometer) untuk menentukan sifat optik yaitu nilai absorbansi. Pengukuran kristalintas menggunakan x-ray diffraction (XRD-GBC EMMA) dan scanning electron microscope (SEM) untuk melihat bentuk morfologi serta ukuran partikel TiO 2. Diagram alir proses pembuatan TiO 2 disajikan pada Gambar 2.

5 Sampel Sumber cahaya Kabel Fiber Optic Alat spektroskopi Komputer Gambar 1 Pengukuran absorbansi dengan spektroskopi UV-Vis Penentuan karakteristik sifat optik film TiO 2 menggunakan alat spektroskopi OceanOptic TM 4000 untuk rentang frekuensi UV-Vis. Film TiO 2 berbentuk transparan sehingga dapat terukur dengan baik. Performa alat karakterisasi sifat optik dapat dilihat pada gambar 1. Pengukuran absorbansi tersebut dirangkai terlebih dulu dengan menghubungkan spektrofotometer UV-Vis ke komputer yang telah diinstal software SpectraSuite (Ocean Optics). Selanjutnya, holder kuvet dihubungkan langsung dengan spektrofotometer dan sumber cahaya. Proses pengukuran ini diawali dengan membuka program SpectraSuite. Holder sampel berisi kaca TCO sebagai blanko, kemudian lampu sebagai sumber cahaya dinyalakan. Kurva blanko diatur dengan menyesuaikan fiber optic terhadap cahaya lampu. Setelah itu lampu dimatikan tanpa membuat fiber optic bergeser, kemudian kuvet blanko diganti dengan film TiO 2. Lampu dinyalakan kembali dan dapat dilihat kurva absorbansi yang terbentuk pada komputer. Data yang diperoleh dari karakterisasi ini berupa data nilai aborbansi pada masingmasing panjang gelombang (ultraviolet). Pengukuran dilakukan pada setiap sampel dengan suhu kalsinasi yang berbeda. Karakterisasi XRD dilakukan pada TiO 2 dalam bentuk bubuk (powder) pada sudut 2θ : 20 o sampai 80 o. Alat ini menggunakan sinar-x dengan panjang gelombang 0,154059 nm sebagai sumber radiasi. Sampel pada holder diradiasi langsung yang terintegrasi dengan tabung XRD. Alat tersebut terhubung langsung dengan komputer yang dilengkapi dengan software GBC-EMMA. Dari hasil XRD dapat diperoleh intensitas, sistem kristal, ukuran kristal, parameter kisi, jarak antar bidang kristal, jenis fase kristal berdasarkan database (JCPDS) TiO 2. Karakterisasi SEM dilakukan untuk melihat bentuk permukaan film TiO 2 dengan pembesaran seragam pada semua sampel (40.000 kali). Selain ukuran partikel, ketebalan masing-masing film juga dapat diperoleh dari hasil SEM. Nilai ketebalan film tersebut digunakan dalam menentukan energi gap berdasarkan data spektroskopi optik yang diperoleh.

6 TiCl 4 + H 2 SO 4 (10%) Pengadukan (stirring 350 rpm; suhu= 0 o C; waktu=30 menit) Pembentukan larutan sol (stirring 350 rpm; suhu=60 o C; waktu=1 jam Penambahan amonia/nh 3 H 2 O (stirring 350 rpm; suhu ruang) Pembentukan gel (warna putih, ph 7) Pencucian (aquabidest) Penyaringan (Whatman 45μm) Pengujian bebas klorida (AgNO 3 0,1 M) Pengeringan dengan inkubator (suhu= 27 o C; waktu=12 jam) Kalsinasi (suhu=400 o C-1000 o C;laju=5 o C/menit; waktu=2 jam) Nanokristal TiO 2 (bubuk) Pelapisan film tipis (kaca TCO) Karakterisasi XRD Karakterisasi (UV-Vis, SEM) Gambar 2 Diagram alir sintesis nanopartikel TiO 2 metode sol gel

7 Hasil dan Pembahasan Pola XRD TiO 2 Pola XRD pada Gambar 3 menunjukkan fase TiO 2 yang muncul pada pemanasan dari suhu 400 o C-800 o C hanya anatase, semua puncak muncul dengan jelas. Ketika suhu dinaikkan sampai 1000 o C, terjadi transformasi fase dari anatase menjadi rutil. Puncak anatase tertinggi pada sudut 2θ= 25,33 o yang bersesuain dengan bidang difraksi (101) (JCPDS 21-1272) dan rutil dengan intensitas tertinggi pada sudut 2θ= 27,46 o yang bersesuain dengan bidang difraksi (110) (JCPDS 21-1276). Pada setiap kenaikan suhu, hanya terdapat satu jenis fase yang muncul disebut fase tunggal (single phase), karena tidak terdapat puncak difraksi lain (pengotor). D R (110) R (101) R (200) R (111) R (210) R (211) R (220) R (002) R (310) R (301) R (112) R (202) Intensitas (a.u.) C A (101) A (103) A (004) A (112) A (200) A (105) A (211) A (204) A (116) A (220) A (215) B A 20 40 60 80 2 (derajat) Ganbar 3 Pola difraksi sinar-x pada TiO 2 fase antase (A) dan rutil (R) untuk setiap kenaikan suhu kalsinasi (A) 400 o C, (B) 600 o C, (C) 800 o C dan (D) 1000 o C Ukuran kristal dihitung dengan persamaan Debye Scherrer: 0,9 λ σ = (1) β cos θ σ adalah ukuran kristal, λ adalah panjang gelombang sumber sinar-x ( Cu Kα adalah 0,154059 nm). Nilai β yang digunakan adalah setengah nilai puncak difraksi (dalam radian), nilai puncak maksimum disebut FWHM (full width at half maximum ) dan θ adalah sudut difraksi Bragg.

8 Ukuran kristal (Tabel 1) pada suhu 800 o C lebih besar dibanding dengan ukuran kristal pada suhu 400 o C. Ukuran kristal bertambah besar karena proses sintering yaitu peningkatan suhu akibat adanya energi tambahan pada material tersebut berupa energi panas. Energi panas menyebabkan material-material tersebut memiliki energi lebih untuk memperbesar ukuran kristal (penumbuhan kristal) melalui proses difusi antar partikel-partikel TiO 2. Suhu kalsinasi yang semakin meningkat akan merubah ikatan interatomik di dalam partikel dan merusak ikatan OH, sehingga ukuran semakin bertambah besar. Hal ini sesuai dengan hasil penelitian sebelumnya. Beberapa penelitian tentang pengaruh suhu kalsinasi terhadap ukuran kristal TiO 2 disajikan pada Tabel 1. Tabel 1 Beberapa penelitian tentang perubahan ukuran kristal TiO 2 akibat pengaruh suhu kalsinasi Suhu kalsinasi ( o C) Ukuran kristal (A ) 400 13,75 600 20,79 800 25,25 1000 48,88 Penelitian sekarang Suhu kalsinasi ( o C) Ukuran kristal (A) Suhu kalsinasi ( o C) Ukuran kristal (nm) 350 400 450 500 525 15,6 16,1 16,3 17,9 20 400 500 600 700 13,96 17,60 20,68 26,44 Gonzales dan Santiago (2007) Ahmadi et al. 2011 Morfologi TiO 2 Bentuk permukaan film TiO 2 pada suhu kalsinasi berbeda yaitu 400 o C, 600 o C dan 800 o C memiliki ketebalan yang berbeda berturut-turut adalah 780,16 nm, 328,57 nm, dan 588,27 nm. Bentuk morfologi permukaan dari film TiO 2 dengan pembesaran 40.000 kali dapat diamati pada Gambar 3. Hasil SEM menunjukkan permukaan dari film tipis TiO 2 pada suhu yang berbeda dari 400 o C, 600 o C, 800 o C dan 1000 o C. Pada Gambar 4 dapat diketahui bahwa ukuran butir partikel TiO 2 semakin bertambah besar dengan meningkatnya suhu kalsinasi yaitu 43,06 nm, 44,91 nm dan 64,99 nm dan 80,40 nm. Pada suhu 400 o C belum terlihat batas antar butir dengan jelas karena permukaan yang hampir seragam dan rapat sehingga permukaan film terlihat rata, sedangkan pada suhu 1000 o C terlihat batas antar butir secara jelas sehingga membentuk pori.

9 (a) (b) (c) (d) (e) Ganbar 4 Foto SEM dari film TiO 2 (a) dengan perbedaan suhu kalsinasi (fase anatase) 400 o C (b), 600 o C (c), 800 o C (d), dan fase rutil 1000 o C (e) Sifat Optik dan Energi Band Gap TiO 2 Film TiO 2 yang ditumbuhkan di atas substrat kaca dikarakterisasi sifat optik untuk mengetahui spektrum serapan, dilanjutkan dengan penentuan energi celah pita optik. Spektrum serapan TiO 2 anatase dikalsinasi pada suhu yang berbeda ditunjukkan pada Gambar 5. Daerah absorpsi pada kisaran ultraviolet (UV) bergeser pada setiap kenaikan suhu. Perbedaan nilai tersebut menunjukkan adanya serapan optik pada panjang gelombang UV. Tepi pita serapan bergeser ke

10 wilayah panjang gelombang lebih panjang atau frekuensi lebih kecil. Ketika TiO 2 menyerap energi foton yang lebih besar atau sama dengan energi gap yang dimiliki, maka elektron akan tereksitasi dari pita valensi menuju pita konduksi, kemampuan absorpsi menjadi meningkat untuk panjang gelombang yang sesuai dengan energi celah. Energi celah dapat ditentukan berdasarkan koefisien absorpsi dalam persamaan Tauc (1972) yaitu: αhv = A hv E g n (2) dimana A adalah konstanta optik, α adalah koefisien absorpsi, hv adalah energi foton, E g adalah energi celah, dan n adalah nilai transisi yang bergantung pada jenis transisi (transisi langsung n=1/2 dan transisi tidak langsung n=2). Jika dalam proses transisi, momen elektron kekal (konservatif) maka terjadi transisi langsung, namun jika sebaliknya dalam proses transisi tidak konservatif maka harus disertai dengan energi fonon disebut sebagai transisi tidak langsung (Islam et al. 2012). 2,5 2,0 Absorbansi (a.u) 1,5 1,0 400 o C 600 o C 800 o C 0,5 0,0 300 400 500 600 700 800 900 Panjang gelombang (nm) Gambar 5 Spektrum absorpsi film TiO 2 anatase pada suhu kalsinasi masingmasing 400 o C, 600 o C dan 800 o C Jenis transisi film TiO 2 dapat ditentukan berdasarkan nilai koefisien absorpsi. Jika nilai koefisien lebih besar dari 10 4 termasuk transisi tidak langsung, sebaliknya jika koefisien absorpsi kurang dari 10 4 merupakan transisi langsung (Tauc 1972). Pada penelitian ini, hasil perhitungan koefisien absorpsi rata-rata dari masing-masing suhu kalsinasi 400 o C, 600 o C, 800 o C berturut-turut adalah 8,160x10 2, 1,754x10 3, dan 4,015x10 2 lebih kecil dari 10 4 sehingga termasuk transisi langsung. Koefisien absorpsi dapat ditentukan menggunakan persamaan, 2,303 A α = (3) d A adalah absorbansi, α adalah koefisiens absorpsi, dan d adalah ketebalan film TiO 2.

11 4e+8 3e+8 ( hv) 2 (cm -1. ev) 2 2e+8 1e+8 400 0 C 600 0 C 800 0 C 0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 hv (ev) Gambar 6 Plot energi (hv) terhadap (αhv) 2 film TiO 2 pada suhu kalsinasi masingmasing 400 o C, 600 o C dan 800 o C 3.8 3.7 hv (ev) 3.6 3.5 3.4 3.3 300 400 500 600 700 800 900 Suhu ( o C) Gambar 7 Plot energi foton (hv) terhadap perubahan suhu kalsinasi film TiO 2 pada suhu kalsinasi yang berbeda Energi celah (Gambar 6) ditentukan berdasarkan perpotongan kurva bagian linear dengan sumbu energi (hv). Nilai energi celah pada kalsinasi 400 o C, 600 o C, 800 o C masing-masing 3,79 ev, 3,58 ev dan 3,35 ev. Berdasarkan hasil tersebut dapat diketahui bahwa perubahan suhu kalsinasi menyebabkan perubahan