MA3081 STATISTIKA MATEMATIKA We love Statistics

dokumen-dokumen yang mirip
Peubah Acak dan Distribusi Kontinu

Pengantar Statistika Matematik(a)

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIKA We love Statistics

Pengantar Statistika Matematik(a)

MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

MA5181 PROSES STOKASTIK

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Proses Stokastik

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Enjoy the Risks

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

Pengantar Proses Stokastik

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

MA5181 PROSES STOKASTIK

Pengantar Proses Stokastik

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

BEBERAPA TEKNIK DISTRIBUSI FUNGSI PEUBAH ACAK

Catatan Kuliah. MA5181 Proses Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Proses Stokastik

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

DISTRIBUSI SATU PEUBAH ACAK

MA2081 Statistika Dasar

Pengantar Statistika Matematika II

Peubah Acak dan Distribusi

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting

Catatan Kuliah. MA5181 Proses Stokastik

MA4183 MODEL RISIKO Control your Risk!

MA4181 MODEL RISIKO Enjoy the Risks

A. Distribusi Gabungan

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

A. Distribusi Gabungan

BAB II LANDASAN TEORI

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MA4181 MODEL RISIKO Risk is managed, not avoided

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

MA4183 MODEL RISIKO Control your Risk!

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

MA1201 KALKULUS 2A Do maths and you see the world

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

STATISTIKA UNIPA SURABAYA

AK5161 Matematika Keuangan Aktuaria

Pengantar Statistika Matematika II

STK 203 TEORI STATISTIKA I

MA4181 MODEL RISIKO Risk is managed, not avoided

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

STK 203 TEORI STATISTIKA I

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Catatan Kuliah. MA4183 Model Risiko

IKG4A2 Kapita Selekta Dosen: Aniq A. Rohmawati, M.Si Data Deret Waktu dan i.i.d

Ekspektasi Satu Peubah Acak Kontinu

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

STATISTIK PERTEMUAN VI

KALKULUS MULTIVARIABEL II

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

MA5181 PROSES STOKASTIK

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4183 MODEL RISIKO Control your Risk!

Pengantar Proses Stokastik

MA1201 MATEMATIKA 2A Hendra Gunawan

MA5181 PROSES STOKASTIK

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di

Sebaran Peubah Acak Bersama

Variabel Banyak Bernilai Real 1 / 1

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

PEUBAH ACAK DAN SEBARANNYA

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

Sebaran Peubah Acak Bersama

Catatan Kuliah. MA4183 Model Risiko

Transkripsi:

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013

Daftar Isi 1 Peubah Acak dan Fungsi Distribusi 1 1.1 Fungsi Distribusi.......................... 1 1.2 Unsur Peluang........................... 3 1.3 Ekspektasi.............................. 5 1.4 Distribusi Bivariat......................... 6 1.5 Distribusi Bersyarat........................ 8 1.6 Fungsi Pembangkit Momen.................... 10 i

BAB 1 Peubah Acak dan Fungsi Distribusi 1.1 Fungsi Distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi distribusi F (x) adalah... 2. Misalkan X peubah acak dengan support S = [a, b], b > 0. Misalkan peluang X akan berada di selang S proporsional terhadap panjang selang. Dengan kata lain, P (x 1 X x 2 ) = λ (x 2 x 1 ), untuk a x 1 x 2 b. Untuk menentukan λ, misalkan x 1 = a dan x 2 = b. Maka, P (a X b) = 1 = λ (b a) λ = 1/(b a) Fungsi distribusinya adalah... Peubah acak X dikatakan berdistribusi Uniform, X U(a, b). Sifat-sifat fungsi distribusi: F () = 0 dan F ( ) = 1 1

F merupakan fungsi tidak turun; F (a) F (b) untuk a b F adalah fungsi kontinu kanan; lim ϵ 0 + F (x + ϵ) = F (x) Misalkan X peubah acak dengan fungsi distribusi F (x). Jika b a, maka P (a < X b) = F (b) F (a) Untuk setiap x, P (X = x) = lim ϵ 0 + P (x ϵ < X ) = F (x) F (x ) (Perhatikan notasi F (x ) dan kasus apabila fungsi distribusi kontinu kiri) Definisi: Distribusi dari peubah acak X dikatakan KONTINU jika fungsi distribusi disetiap x kontinu dan fungsi distribusi tersebut dapat diturunkan. Misalkan X peubah acak kontinu dengan fungsi distribusi F X (x). Misalkan g(x) fungsi naik satu-satu kontinu. Untuk y yang berada di daerah hasil dari g, fungsi invers x = g 1 (y) ada. Misalkan Y = g(x). Fungsi distribusi dari Y adalah... Misalkan g(x) fungsi turun satu-satu kontinu. Untuk y yang berada di daerah hasil dari g, fungsi invers x = g 1 (y) ada. Misalkan Y = g(x). Fungsi distribusi dari Y adalah... Misalkan X U(0, 1) dan Y = g(x) = hx + k, h < 0. Maka X = g 1 (Y ) = F X (x) = F Y (y) = Y Latihan: 1. Misalkan X peubah acak kontinu yang memiliki fungsi distribusi F X (x) yang naik murni. Misalkan Y = F X (X). Tentukan distribusi dari Y. 2. Misalkan U peubah acak berdistribusi U(0, 1). Misalkan F X (x) fungsi distribusi yang naik murni dari X. Tentukan fungsi distribusi dari peubah acak F 1 X (U). 3. Misalkan U 1, U 2,..., U n sampel acak dari U(0, 1). Bangkitkan sampel acak dari F X (x) (ambil contoh misalnya untuk F X (x) = 1 e λ x, x > 0) MA3081 Stat.Mat. 2 K. Syuhada, PhD.

Misalkan X peubah acak kontinu dengan fungsi distribusi F X (x). Misalkan Y = g(x) fungsi kontinu tidak monoton. Kita ketahui bahwa pada fungsi yang monoton, F Y (y) = P (Y y) = P (g(x) y) dimana dalam hal ini setiap solusi inverse x = g 1 (y) digunakan untuk menentukan F Y (y) dengan menggunakan F X (g 1 (y)). Untuk X U( 1, 2) dan g(x) = Y = X 2, kita dapatkan fungsi distribusi dari Y : F Y (y) = 1.2 Unsur Peluang Misalkan X peubah acak kontinu, x bilangan positif kecil. Definisikan h(a, b) = def P (a X a + b) = F X (a + b) F X (a) Untuk h(x, x) = P (x X x + x), maka deret Taylor-nya disekitar x = 0 adalah dimana h(x, x) = F (x + x) F (x) = h(x, 0) + d d x h(x, x) x=0 x + o( x) lim x 0 = = o( x) x = 0 Fungsi df (x) = [ ] d dx F (x) x disebut DIFERENSIAL. Dalam statistika, diferensial dari fungsi distribusi adalah UNSUR PELUANG (yang merupakan pendekatan terhadap h(x, x)). Unsur peluang adalah fungsi linier dari d dx F (x). MA3081 Stat.Mat. 3 K. Syuhada, PhD.

Contoh: Misalkan F (x) = 1 e 3x untuk x 0. Apakah F (x) suatu fungsi distribusi? Hitung unsur peluang di x = 2. Cari pendekatan untuk P (2 X 2.01). Densitas rata-rata pada selang (x, x + x) didefinisikan: def P (x X x + x) Density rata-rata = x Sedangkan fungsi densitas peluang atau fungsi peluang (f.p) di x adalah limit densitas rata-rata saat x 0: f.p = f(x) = def = = lim x 0 = d dx F (x) P (x X x + x) x Catatan: Unsur peluang dituliskan sebagai df (x) = f(x) x. Sifat-sifat fungsi peluang: f(x) 0 untuk semua x f(x) = 1 Hubungan antara fungsi peluang dan fungsi distribusi: f(x) = d dx F (x) F (x) = x f(u)du P (a < X < b) =... =... =... = F (b) F (a) = b a f(x)dx Latihan: 1. Misalkan λ bilangan riil positif. Jika F (x) = 1 e λx, maka f(x) = 2. Jika X U(a, b) maka F (x) = dan f(x) = 3. *Misalkan f(x) = c/(1 + x 2 ) untuk < x < dan c konstanta. Fungsi f(x) tak negatif dan (1 + x2 ) 1 dx = π. Berapa nilai c agar f(x) menjadi fungsi peluang? Tentukan fungsi distribusinya. MA3081 Stat.Mat. 4 K. Syuhada, PhD.

Misalkan X peubah acak kontinu dengan fungsi peluang f(x) dan Y = g(x) fungsi yang terdiferensial bernilai tunggal. Maka fungsi peluang dari Y : f Y (y) = f X (g 1 (y)) d dy g 1 (y) untuk support Y = g(x). Komponen J(y) = d dy g 1 (y) adalah transformasi Jacobian. Misalkan g(x) memiliki lebih dari satu fungsi invers maka unsur peluang yang terpisah harus dihitung untuk setiap fungsi invers. Contoh, misalkan X U( 1, 2) dan Y = g(x) = X 2. Maka untuk y [0, 1], terdapat 2 fungsi invers yaitu, dan satu fungsi invers untuk y (1, 4] yaitu. Fungsi peluang dari Y adalah f(y) = 1.3 Ekspektasi Misalkan X peubah acak dengan fungsi peluang f(x). ekspektasi dari X, jika ada, adalah Nilai harapan atau E(X) = µ X = f(x)dx Catatan: nilai ekspektasi dikatakan ada jika nilai integral adalah hingga. Misalkan X p.a. dengan f.p. f(x). Maka nilai harapan/ekspektasi dari g(x), jika ada, adalah. E[g(X)] = g(x)f(x)dx Operator integral bersifat linier. Jika g 1 (X) dan g 2 (X) fungsi-fungsi yang memiliki ekspektasi dan a, b, c konstanta, maka E[ag 1 (X) + bg 2 (X) + c] = ae[g 1 (X)] + be[g 2 (X)] + c MA3081 Stat.Mat. 5 K. Syuhada, PhD.

Contoh/Latihan: 1. Jika distribusi X simetrik di sekitar c dan nilai harapannya ada maka E(X) = c. 2. Misalkan X U(a, b). Tunjukkan bahwa distribusi tersebut simetrik disekitar (a + b)/2. 3. Misalkan X berdistribusi Cauchy dengan fungsi peluang f(x) = 1 [ ], σπ 1 + (x µ)2 σ 2 dengan µ, σ konstanta yang memenuhi µ < dan σ (0, σ). Tunjukkan bahwa fungsi peluang simetrik di sekitar µ namun ekspektasinya bukanlah µ. 4. Misalkan X Exp(λ). Nilai harapan/ekspektasi dari X adalah... 1.4 Distribusi Bivariat Suatu fungsi f X,Y (x, y) dikatakan fungsi peluang bivariat jika f X,Y (x, y) 0, untuk semua x, y f X,Y (x, y) dx dy = 1 Jika f X,Y (x, y) fungsi peluang bivariat maka F X,Y (x, y) = P (X x, Y y) = x y f X,Y (u, v) dvdu Sifat-sifat fungsi distribusi bivariat: 1. F X,Y (x, ) = F X (x) 2. F X,Y (, y) = F Y (y) 3. F X,Y (, ) = 1 4. F X,Y (, y) = F X,Y (x, ) = F X,Y (, ) = 0 5. f X,Y (x, y) = 2 x y F X,Y (x, y) MA3081 Stat.Mat. 6 K. Syuhada, PhD.

f X,Y (x, y) x y adalah unsur peluang bersama, P (x X x + x, y Y y + y) = f X,Y (x, y) x y + o( x y) Contoh/Latihan: 1. Jika (X, Y ) U(a, b, c, d) maka f X,Y (x, y) = 2. Untuk soal no 1 di atas, misalkan a = c = 0, b = 4, d = 6 maka P (2.5 X 3.5, 1 Y 4) = P (X 2 + Y 2 > 16) = 3. Jika f X,Y (x, y) = 6/5(x + y 2 ) untuk x (0, 1) dan y (0, 1). Tentukan P (X + Y < 1). Untuk menentukan fungsi peluang marginal, integralkan peubah yang tidak diinginkan : f X (x) = f X,Y (x, y) dy f Y (y) = f X,Y (x, y) = f X,Y (x, y) dx f W,X,Y,Z (w, x, y, z) dwdz Pada fungsi peluang f X,Y (x, y) = 6/5(x + y 2 ) diperoleh f X (x) = f Y (y) = dan ekspektasi E(g(X, Y )) = E(X) = g(x, y) f X,Y (x, y) dx dy = MA3081 Stat.Mat. 7 K. Syuhada, PhD.

1.5 Distribusi Bersyarat Misalkan f X,Y (x, y) adalah fungsi peluang bersama, maka fungsi peluang Y, diberikan X = x, adalah f Y X (y x) = def f X,Y (x, y), f X (x) asalkan f X (x) > 0. Contoh: Misalkan X dan Y memiliki distribusi bersama maka f X,Y (x, y) = 8xy, 0 < x < y < 1, f X (x) = E(X r ) = f Y (y) = E(Y r ) = f X Y (x y) = f Y X (y x) = E(X r Y = y) = E(Y r X = x) = Misalkan (X, Y ) adalah peubah acak berpasangan dengan fungsi peluang bersama f X,Y (x, y). Pandang persoalan memprediksi Y setelah X = x terobservasi. Prediktor dinotasikan sebagai ŷ(x). Prediktor terbaik didefinisikan sebagai fungsi Ŷ (X) yang meminimumkan ] 2 E [Y Ŷ (X) = Prediktor terbaik adalah ŷ(x) = E(Y X = x). Contoh/Latihan: (y ŷ(x)) 2 f X,Y (x, y) dydx 1. Misalkan X dan Y memiliki distribusi bersama f X,Y (x, y) = 8xy, 0 < x < y < 1, MA3081 Stat.Mat. 8 K. Syuhada, PhD.

maka f Y X (y x) = ŷ(x) = 2. Misalkan (Y, X) berdistribusi normal bivariat dengan E(Y ) = µ Y, E(X) = µ X, V ar(y ) = σ 2 Y, V ar(x) = σ2 X, Cov(X, Y ) = ρ X,Y σ X σ Y. Distribusi bersyarat Y, diberikan X, adalah (Y X = x) 3. Tunjukkan bahwa ] E X [f Y X (y X) = f Y (y) 4. Buktikan E X {E [ ]} [ ] h(y ) X = E h(y ) 5. Buktikan ] V ar(y ) = E X [V ar(y X) [ ] + V ar E(Y X) 6. Misalkan X dan Y memiliki distribusi bersama Maka f X,Y (x, y) = 3y2 x 3, 0 < y < x < 1 f Y (y) = E(Y r ) =, E(Y ) =, V ar(y ) = f X (x) = f Y X (y x) = E(Y r X = x) =, E(Y X = x) =, V ar(y X = x) = V ar(e(y X)) = E(V ar(y X)) = MA3081 Stat.Mat. 9 K. Syuhada, PhD.

1.6 Fungsi Pembangkit Momen Misalkan X peubah acak kontinu, fungsi pembangkit momen dari X adalah M X (t) = E(e tx ) = e tx f(x)dx, asalkan ekspektasi ada untuk t disekitar 0. Jika semua momen dari X tidak ada, maka fungsi pembangkit momen juga tidak ada. Fungsi pembangkit momen berkaitan dengan fungsi pembangkit peluang M X (t) = G X (e t ) asalkan G X (t) ada untuk t disekitar 1. Jika M X (t) adalah fungsi pembangkit peluang maka M X (0) = 1. Contoh/Latihan: 1. Jika f X (x) = λe λx I 0, (x), maka M X (t) = 2. Jika M X (t) ada maka M a+bx (t) = 3. Jika X i, i = 1,..., n saling bebas, M Xi (t) ada untuk setiap i, dan S = Xi, maka M S (t) = 4. Fungsi pembangkit momen bersifat unik. Setiap distribusi memiliki fungsi pembangkit momen yang unik, dan setiap fungsi pembangkit momen berkorespondensi dengan tepat satu distribusi. Akibatnya, jika fungsi pembangkit momen ada maka fungsi pembangkit momen tersebut secara unik menentukan distribusinya. Beri contoh. 5. Pandang turunan dari M X (t) yang kemudian dievaluasi di t = 0. Apa yang dapat anda katakan? Dapatkah kita mendapatkan momen orde tinggi? 6. Dapatkah hasil diatas digunakan untuk distribusi diskrit? Ambil contoh distribusi Geometrik dengan parameter p. MA3081 Stat.Mat. 10 K. Syuhada, PhD.

7. Misalkan Y U(a, b). Gunakan fungsi pembangkit momen untuk mendapatkan momen pusat (( E((Y µ Y ) 2 ) = E Y a + b ) r ) 2 MA3081 Stat.Mat. 11 K. Syuhada, PhD.