BAB II MATRIKS POSITIF. Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi

dokumen-dokumen yang mirip
BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:

DIAGONALISASI MATRIKS KOMPLEKS

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

BAB III MENENTUKAN PRIORITAS DALAM AHP. Wharton School of Business University of Pennsylvania pada sekitar tahun 1970-an

Analisis Matriks. Ahmad Muchlis

BAB II TINJAUAN PUSTAKA

SUMMARY ALJABAR LINEAR

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

Matriks biasanya dituliskan menggunakan kurung dan terdiri dari baris dan kolom: A =

Pertemuan 2 & 3 DEKOMPOSISI SPEKTRAL DAN DEKOMPOSISI NILAI SINGULAR

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

Eigen value & Eigen vektor

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

APLIKASI DEKOMPOSISI NILAI SINGULAR PADA KOMPRESI UKURAN FILE GAMBAR

MATRIKS A = ; B = ; C = ; D = ( 5 )

Bab 1 Sistem Bilangan Kompleks

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan

Matriks. Modul 1 PENDAHULUAN

DASAR-DASAR TEORI RUANG HILBERT

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

Teori kendali. Oleh: Ari suparwanto

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI

Lampiran 1 Pembuktian Teorema 2.3

Aljabar Linear Elementer

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

MA5032 ANALISIS REAL

MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT. Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT

BAB II LANDASAN TEORI

MODUL V EIGENVALUE DAN EIGENVEKTOR

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

BAB II LANDASAN TEORI

STABILISASI SISTEM DESKRIPTOR LINIER KONTINU

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Aljabar Linier Elementer. Kuliah 1 dan 2

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

Kode, GSR, dan Operasi Pada

6 Sistem Persamaan Linear

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

Sistem Bilangan Kompleks (Bagian Pertama)

BAB 5 RUANG VEKTOR A. PENDAHULUAN

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Ruang Vektor Euclid R n

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

BAB II LANDASAN TEORI

Fisika Matematika II 2011/2012

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

TINJAUAN PUSTAKA Analisis Biplot Biasa

Ruang Vektor Euclid R 2 dan R 3

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

02-Pemecahan Persamaan Linier (1)

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan

BAB II LANDASAN TEORI

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain

SUBRUANG MARKED. Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang. Abstrak

BAB 2 LANDASAN TEORI

BAB II LANDASAN TEORI

BAB 2 LANDASAN TEORI

Reduksi Rank pada Matriks-Matriks Tertentu

BAB II TINJAUAN PUSTAKA

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT

Bab II Teori Pendukung

KARAKTERISTIK PERSAMAAN ALJABAR RICCATI DAN PENERAPANNYA PADA MASALAH KENDALI

Part II SPL Homogen Matriks

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

UNIVERSITAS INDONESIA SKRIPSI DANIEL SALIM FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK 2012

Perluasan Teorema Cayley-Hamilton pada Matriks

Relasi, Fungsi, dan Transformasi

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

Bagian 2 Matriks dan Determinan

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan

Konstruksi Matriks NonNegatif Simetri dengan Spektrum Bilangan Real

BAB 2 LANDASAN TEORI

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

Transkripsi:

BAB II MATRIKS POSITIF Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi dari seorang matematikawan German, Oskar Perron. Perron menerbitkan tulisannya tentang sifat-sifat yang dimiliki oleh matriks positif pada tahun 1907. Teorema Perron ini akan digunakan dalam pembahasan pada Bab III. Sifat-sifat yang akan dibahas antara lain ; Teorema Perron (1907) berdasar pada A.Horn [1], dan Teorema Jordan berdasar pada R.Fletcher [9]. Sebelum membahas mengenai Teorema Perron berikut ini akan dikenalkan notasi yang akan digunakan dalam pembahasan selanjutnya. Misalkan A M n (C) dengan entri-entri bilangan kompleks, yaitu A = [a ij ] untuk setiap i, j = 1,2,, n dan M n (C) adalah ruang matriks kompleks n n. Matriks A disebut matriks positif dinotasikan A > 0, jika untuk setiap elemen dari matriks A bernilai positif. Pada proyek ini notasi a menyatakan matriks atau vektor yang entri-entri matriks atau vektornya adalah nilai mutlak entri-entri matriks atau vektor a. II.1 Matriks Positif Untuk membahas Teorema Perron akan diawali dengan pembahasan mengenai sifatsifat matriks positif, khususnya untuk matriks persegi. Tujuannya untuk menyelidiki ke arah mana perluasan sifat matriks positif ini diturunkan berdasarkan nilai eigen dan vektor eigen pada matriks A. Pada pembahasan AHP, matriks yang digunakan adalah matriks positif sehingga sifat-sifat yang berlaku dalam matriks positif perlu dikaji terlebih dahulu. 4

5 Definisi II.1.1 Jika A M n (C) dan x C n pandang persamaan Ax = λx, x 0, dengan λ C. Skalar λ disebut nilai eigen matriks A dan x disebut vektor eigen yang berkorespondensi dengan λ. Definisi II.1.2 Misalkan A M n (C). Himpunan semua nilai eigen A disebut spektrum A, dinotasikan σ(a). Spektral radius dari matriks A adalah ρ(a) = max{ λ : λ σ(a)}, Spektral radius dinotasikan ρ(a) merupakan lingkaran terkecil dalam bidang kompleks yang memuat semua nilai eigen dari matriks A. Akibat II.1.1 Misalkan A M n (C), x R n, x > 0 dan A 0, pernyataan di bawah ini benar. Jika α, β 0 sehingga αx Ax βx, maka α ρ(a) β. Jika αx Ax, maka α < ρ(a). Jika Ax < βx, maka ρ(a) < β. Untuk bukti Akibat II.1.1, dapat di lihat di A.Horn [1] Lema II.1.1 Misalkan A M n (C) dengan A > 0. Jika Ax = λx, untuk x C n, λ R, x 0, dan λ = ρ(a), maka A x = ρ(a) x dan x > 0. Bukti: Perhatikan bahwa ρ(a) x = λ x = λx = Ax A x = A x. Misalkan y = A x ρ(a) x 0. Karena x 0 dan x 0 diperoleh A x > 0. Untuk kasus y = 0 didapat A x = ρ(a) x x = ρ(a) 1 A x > 0

6 Untuk kasus y 0, terlebih dahulu definisikan z = A x > 0 sehingga 0 < y = Az ρ(a)z berarti Az > ρ(a)z. Berdasar Akibat II.1.1 didapat ρ(a) > ρ(a). Hal ini tidak mungkin. Haruslah y = 0 sehingga kesimpulannya x > 0. Teorema II.1.2 Misalkan A M n (C) dan A > 0, dan ρ(a) > 0, maka terdapat vektor positif x C n sehingga Ax = ρ(a)x Bukti: Terdapat λ dengan λ = ρ(a) > 0 berdasar Definisi II.1.2 dan bersesuaian dengan vektor eigen x 0. Dari Lema II.1.1 vektor tersebut adalah x. Lema II.1.3 Misalkan A M n (C) dan A > 0. Jika Ax = λx, x 0, dan λ = ρ(a), maka untuk suatu θ R, e iθ x = x > 0, Bukti: Berdasarkan hipotesis diperoleh Ax = λx = ρ(a) x, berdasarkan Lema II.1.1 diperoleh A x = ρ(a) x dan x > 0. Perhatikan bahwa untuk setiap k = 1,, n, berlaku n ρ(a) x k = λ x k = λx k = a kp x p n a kp x p = p=1 p=1 p=1 n a kp x p = ρ(a) x p = ρ(a) x k (2.1) Dengan demikian, ketaksamaan (2.1) mengakibatkan bilangan kompleks tak nol a kp x p, p = 1,..., n semuanya harus terletak dalam satu garis di bidang kompleks. Selanjutnya, tulis e iθ a kp x p > 0 untuk semua p = 1,, n dan untuk suatu θ R. Karena a kp > 0, kita dapatkan e iθ x p > 0.

Teorema II.1.4 Misalkan A M n (C), A > 0, dan λ σ(a), maka λ < ρ(a), untuk setiap nilai eigen λ ρ(a). 7 Bukti: Berdasar Definisi II.1.2, λ ρ(a) untuk semua nilai eigen λ dari A. Selanjutnya untuk kasus λ = ρ(a) dan Ax = λx, x 0, berdasarkan Lema II.1.3 terdapat x = e iθ x > 0, untuk suatu θ R. Dengan demikian ρ(a) x = A x = Ae iθ x = e iθ Ax = e iθ λx = λe iθ x = λ x Akibatnya diperoleh λ = ρ(a). Teorema II.1.5 Misalkan A M n (C) dengan A > 0, w dan z adalah vektor-vektor tak nol di C sehingga Aw = ρ(a)w dan Az = ρ(a)z, maka terdapat suatu α C sehingga w = αz. Bukti: Berdasarkan Lema II.1.3 terdapat bilangan real θ 1 dan θ 2 sehingga p = e iθ 1 z > 0 q = e 1iθ 2 w > 0

8 Tulis β = min 1 i n q i p i, dengan q i adalah entri ke-i dari vektor q dan p i adalah entri ke-i dari vektor p Definisikan pula r = q βp dengan r, p, q adalah vektor C. Diperoleh r 0 dan paling sedikit satu koordinat dari r adalah 0, ini berarti r bukan merupakan vektor positif, selanjutnya pandang Ar = Aq βap = ρ(a)q βρ(a)p = ρ(a)(q βp) = ρ(a)r Andaikan r 0, maka Ar = ρ(a)r > 0, sehingga r = ρ(a) 1 Ar > 0. Karena kondisi ini tidak benar maka haruslah r = 0. Dengan demikian : q = βp e 1iθ 2 w = βe iθ 1 z w = βe iθ 2 iθ 1 z = βe i(θ 2 θ 1 ) z = αz, (dengan α = βe i(θ 2 θ 1 ) )

Akibat II.1.6 Misalkan A M n (C) dan misalkan pula A > 0,maka terdapat vektor tunggal x C n sehingga Ax = ρ(a)x, x > 0, dan x 1 = n i=1 x i = 1 Bukti: Misalkan x 1 dan x 2 adalah vektor-vektor yang memenuhi 9 Ax = ρ(a)x, x > 0, x 1 = n x i = 1 (2.2) i=1 Berdasarkan Teorema II.1.5 x 1 = αx 2, untuk suatu α C. Karena x 1 > 0 dan x 2 > 0 maka α > 0, x 1 1 = x 2 1 = 1. Dengan demikian x 1 1 = α x 2 1 x 1 1 = x 2 1, untuk α = 1 sehingga x 1 = x 2. Jadi, terbukti bahwa x yang memenuhi persamaan (2.2) adalah tunggal. Lema II.1.7 Misalkan A M n (C), A > 0, λ C dan x, y C. Jika L = xy T dan berlaku ; (1.) Ax = λx (2.) A T y = λy (3.) x T y = 1 maka (a.) Lx = x dan y T L = y T (b.) L m = L untuk setiap m = 1, 2,... (c.) A m L = LA m = λ m L untuk setiap m = 1,2,...

10 Bukti: (d.) L(A λl) = 0 (e.) (A λl) n = A m λ m L untuk setiap m =1,2,... dan (f.) semua nilai eigen tak nol dari A λl, merupakan nilai eigen dari A. Jika diberikan asumsi tambahan (4.) λ 0 (5.) λ adalah nilai eigen dari A dengan multiplisitas geometri 1, maka ; (g.) λ merupakan nilai eigen dari A λl. Jika kita asumsikan bahwa (6.) λ = ρ(a) > 0; (7.) λ merupakan satu-satunya nilai eigen dari A dengan modulus ρ(a), dan jika λ 1 λ 2 λ n 1 < λ n = λ = ρ(a), maka: (h.) ρ(a λl) λ n 1 < ρ(a); (i.) (λ 1 A) m = L + (λ 1 A L) m L untuk m ; dan (j.) untuk setiap r C sehingga [ λ n 1 ] <r< 1 terdapat suatu C = ρ(a) C(r, A) sehingga (λ 1 A) m L < Cr m untuk semua m = 1,2,... (a.) Perhatikan bahwa x T y = 1. Dengan mengalikan kedua ruas dengan x T diperoleh x T yx T = x T xy T x = x Lx = x

11 Selanjutnya dari asumsi (3) kalikan kedua ruas dengan y sehingga didapat yx T y = y y T xy T = y T y T L = y T Jadi terbukti bahwa Lx = x dan y T L = y T. (b.) Akan dibuktikan L m = L untuk setiap m= 1,2,... dengan menggunakan induksi matematika. Untuk m = 1 jelas benar. Selanjutnya kita misalkan benar untuk m = n, akan dibuktikan benar juga untuk m = n + 1. Perhatikan bahwa : L n+1 = L n L = LL = (xy T )L = xy T xy T = x(y T L) = xy T = L. Jadi terbukti bahwa L m = L untuk setiap m = 1,2,... (c.) Untuk membuktikan A m L = LA m = λ m L untuk setiap m= 1,2,..., cukup dibuktikan : A m L = λ m dan LA m = λ m L.

12 A m L = λ m L Untuk m = 1, didapat AL = Axy T = λxy T = λl Selanjutnya asumsikan benar untuk m = n, yaitu A n L = λ n L. Akan dibuktikan benar untuk m = n + 1, yaitu: A n+1 L = A n AL = A n λl = λa n L = λλ n L = λ n+1 L. Jadi terbukti bahwa A m L = λ m L untuk setiap m = 1, 2,. Dengan cara yang sama dapat dibuktikan LA m = λ m L untuk setiap m = 1, 2,,. Dengan demikian A m L = λ m L dan LA m = λ m L untuk setiap m = 1, 2,. Dapat disimpulkan bahwa A m L = LA m = λ m L. (d.) Akan dibuktikan bahwa L(A λl) = 0. Dengan memperhatikan hasil (b) dan (c), maka L(A λl) = LA λl 2 = LA λl = λl λl = 0. Jadi L(A λl) = 0. (e.) Akan dibuktikan (A λl) m = A m λ m L, untuk setiap m = 1, 2, dengan induksi matematika. Jelas untuk m = 1 pernyataan benar. Asumsikan benar

13 untuk m = n, akan dibuktikan benar untuk m = n + 1. (A λl) n+1 = (A λl) n (A λl) = (A n λ n L)(A λl) = A n+1 λla n λ n LA + λ n+1 L 2 = A n+1 λλ n L λ n λl + λ n+1 L = A n+1 2λ n+1 L + λ n+1 L = A n+1 λ n+1 L. Dengan demikian terbukti bahwa (A λl) n = A m λ m L, untuk setiap m = 1, 2,. (f.) Akan dibuktikan bahwa untuk setiap nilai eigen tak nol dari (A λl) juga merupakan nilai eigen dari A. Misalkan µ 0, nilai eigen dari (A λl), w 0 adalah vektor eigen yang bersesuaian dengan µ, sehingga (A λl)w = µw. Perhatikan bahwa : Lw = L( 1 )(A λl)w µ = 1 L(A λl)w µ = 1 µ.0 = 0. Diperoleh (A λl)w = Aw λlw = Aw λ(0) = Aw = µw. Jadi terbukti bahwa µ adalah nilai eigen dari A. (g). Ambil µ = λ. Andaikan w adalah vektor eigen dari (A λi) yang berko-

respondensi dengan nilai eigen λ, maka berdasarkan (f), w juga merupakan 14 vektor eigen yang berkorespondensi dengan nilai eigen λ dari A. Misalkan w = αx,untuk α 0 diperoleh (A λl)w = λw = (A λl)αx = αax αλlx = αλx αλx = 0 Jadi λw = 0, yang berarti λ = 0 atau w = 0. Padahal λ 0 dan w 0 jadi kontradiksi, maka λ bukan merupakan nilai karakteristik dari (A λl). (h). Untuk ρ(a λl) = 0, jelas berlaku: 0 = ρ(a λl) λ n 1 < ρ(a). Selanjutnya berdasar (f) perhatikan bahwa untuk ρ(a λl) 0, terdapat nilai eigen sebut µ 0 sehingga ρ(a λl) = µ = λ k, untuk suatu k < n. Dengan demikian ρ(a λl) = λ k λ n 1 < λ n = λ = ρ(a). Jadi ρ(a λl) λ n 1 < ρ(a). (i). Berdasar (e) didapatkan (λ 1 A) m = L + (λ 1 A L) m.

15 Selanjutnya dengan memperhatikan (h) pandang ρ(λ 1 A L) = ρ( A λl ) λ ρ(a λl) = ρ(a) λ n 1 ρ(a) < ρ(a) ρ(a) = 1. Dengan demikian (λ 1 A) m = L+(λ 1 A L) m L untuk m. Dari Lema II.1.7 dapat disimpulkan Teorema II.1.8 berikut yang nantinya akan digunakan untuk membuktikan bahwa ρ(a) adalah akar sederhana dari A pada Teorema Perron. Teorema II.1.8 Misalkan A M n (C) dan A > 0, asumsikan (1)-(7) dari Lema II.1.7 terpenuhi, maka lim m [ρ(a) 1 A] m = L, dengan L = xy T, Ax = ρ(a)x, A T y = ρ(a)y, untuk suatu x, y C n, x > 0, y > 0, dan x T y = 1. Teorema II.1.9 Jika A M n (C), maka terdapat matriks nonsingular S M n (C) sehingga A = S 1 BS dengan B merupakan bentuk normal Jordan yaitu; B = J 1 0 0 0 J 2........... 0, J i = λ i 0 0 1 λ i........... 0 0 0 J k 0 1 λ i λ i merupakan nilai eigen yang bersesuaian dengan A, i = 1, 2,, k

16 Untuk membuktikan Teorema II.1.9 diperlukan beberapa teorema berikut ini : Teorema II.1.10 (Teorema Schur) Misalkan A M n (C), maka terdapat matriks uniter Q M n dan matriks segitiga atas R M n sehingga Q BQ = R dengan diagonal entri dari R adalah sama dengan nilai eigen A. Bukti: Untuk membuktikan Teorema Schur melalui induksi matematika terhadap n. Karena pernyataan ini benar untuk n = 1, akan ditunjukkan jika pernyataan benar untuk n = r 1 maka pernyataan juga benar untuk n = r. Asumsikan pernyataan berlaku untuk sembarang matriks berukuran n 1 1, dan misalkan A berukuran n. Misalkan λ adalah satu dari nilai eigen A yang berkorespondensi dengan vektor eigen u 1. Jika u 1 1, bentuk v 1 = u 1 u 1 dan perhatikan bahwa λ merupakan nilai eigen A yang berkorespondensi dengan v 1 juga. Dari sini dapat kita asumsikan bahwa u 1 = 1. Sekarang kita perluas u 1 sehingga u 1, u 2,, u n adalah basis di C n dan dengan proses Gram-Schmidt asumsikan basis tersebut ortonormal. Selanjutnya, definisikan U = [u 1, u 2,, u n ]. Karena kolom-kolom U saling ortogonal, maka U U = I, karenanya U 1 = U, dengan demikian U adalah matriks

17 uniter. U AU = u 1 u 2. ( Au 1 Au 2 Au n ) u n = u 1 u 2. u n ( λu 1 λu 2 λu n ) = λ ct 0 B dengan vektor 0, c C n 1 mempunyai n 1 entri dan B M n 1. Berdasarkan pernyataan induksi bahwa terdapat matriks uniter V sehingga V BV = R 1, dengan R 1 adalah matriks segitiga atas. Definisikan W M n (C), dimana W = 1 0 V ct, jelas W adalah uniter.

18 Perhatikan bahwa (UW ) A(UW ) = W U AUW = W (U AU)W = = 1 0 V λ ct ct V λ ct 0 B. 1 0 V ct = λ ct V 0 V BV 0 R 1 Dengan demikian dapat disimpulkan bahwa pernyataan benar untuk semua n, yaitu terdapat matriks uniter Q = UW sedemikian sehingga Q AQ adalah matriks segitiga atas. Selanjutnya dengan memperhatikan det(λi R) = det(λi U AU) = det(u (λi A)U) = det(u )det(λi A)det(U) = det(λi A), dapat disimpulkan bahwa R dan A mempunyai nilai eigen yang sama. Lema II.1.11 Misalkan R C n n matriks segitiga atas. Maka ada sebuah matriks nonsingular X C n n sehingga X 1 RX = diag(r 1, R 2, R m ), (2.3) dengan R 1 = λ j I+U j,untuk j = 1, 2,..., m dengan masing-masing U j matriks segitiga atas sejati dan masing-masing λ j berbeda. Bukti: Pembuktiannya dengan induksi matematika : Untuk n = 1 jelas benar.

Misalkan benar untuk matriks segitiga atas dengan orde lebih kecil dari n. Misalkan 19 R C n n segitiga atas. Dengan dekomposisi Schur matriks umum dapat diperoleh dengan nilai eigen dalam sembarang order yang diberikan. Sehingga tanpa mengurangi keumuman bahwa R = R 1 S 0 R 2 dengan R 1 dan R 2 tidak mempunyai nilai eigen yang sama, dan R 1 = λ 1 I+U 1 dengan U 1 segitiga atas sejati. Sekarang ada matriks B dengan dimensi yang memenuhi I B 0 I R 1 S 0 R 2 I B 0 I = R 1 0 0 R 2, jika dan hanya jika S = R 1 B BR 2. (2.4) Persamaan matriks (2.4) mempunyai solusi tunggal B karena λ(r 1 ) λ(r 2 ) = seperti yang dinyatakan oleh lema berikut. Lema II.1.12 Misalkan R 1 dan R 2 berturut-turut adalah matriks segitiga atas dalam C k 1 k 1 dan C k 2 k 2, dan misalkan S C k 1 k 2, maka persamaan matriks R 1 B BR 2 = S,

20 mempunyai solusi tunggal B C k 1 k 2 jika dan hanya jika λ(r 1 ) λ(r 2 ) =. Bukti: Pembuktian dengan induksi matematika. i. Untuk k 1, k 2 = n = 1 jelas benar, yaitu λ 1 (B) (B)λ 2 = σ 1 ii. Misalkan lema benar untuk k 1, k 2 n = k 1. Selanjutnya akan ditunjukkan lema benar untuk k 1, k 2 = n = k. Perhatikan bahwa persamaan R 1 B BR 2 S dapat ditulis sebagai λ 1 r T 1 0 ˆR1 B w bt ˆB B w bt ˆB λ 2 r T 2 0 ˆR2 = σ 1 s T 1 s 2 Ŝ diperoleh λ 1B + r1 T w ˆR 1 w Jadi, λ 1 b T + r T 1 ˆB ˆR1 ˆB Bλ 2 Br2 T + b T ˆR2 wλ 2 wr2 T + ˆB ˆR 2 = σ 1 s T 1 s 2 Ŝ. a. ( ˆR 1 λ 2 )w = s 2 b. (λ 1 λ 2 )B = σ 1 r1 T w c. b T (λ 1 ˆR 2 ) = s T 1 r1 T ˆB d. ˆR1 ˆB ˆB ˆR2 = Ŝ + wrt 2. Jika λ(r 1 ) λ(r 2 ) = maka :

21 (a). dari persamaan (λ 1 λ 2 )β = σ 1 r T 1 w karena λ 1 λ(r 1 ), λ 2 λ(r 2 ) dan λ(r 1 ) λ(r 2 )=, yang berakibat λ 1 λ 2, ini berarti β tunggal. (b). (R 1 λ 2 I)w = s 2 karena λ 1 λ(r 1 ), λ 2 λ(r 2 ) dan λ(r 1 ) λ(r 2 )=, akibatnya w tunggal. (c). b T (λ 1 I R 2 ) = s T 1 + βr T 2 r T 1 B karena λ 1 λ(r 1 ), λ 2 λ(r 2 ) dan λ(r 1 ) λ(r 2 )=, akibatnya b T tunggal. (d). ˆR1 ˆB ˆB ˆR2 = Ŝ +wrt 2. λ( ˆR 1 ) λ(r 1 ); λ( ˆR 2 ) λ(r 2 ) dan λ(r 1 ) λ(r 2 ) = sehingga λ( ˆR 1 ) λ( ˆR 2 ) =. Dengan demikian persamaan matriks (d) tersebut mempunyai solusi tunggal. Sebaliknya misalkan R 1 B BR 2 = S mempunyai jawab tunggal. Perhatikan bahwa λ(r 1 ) = λ( ˆR 1 ) λ 1 dan λ(r 2 ) = λ( ˆR 2 ) λ 2. Dari (d) diperoleh λ( ˆR 1 ) λ( ˆR 2 ) =. Dari (a) λ 1 λ 2, akibatnya λ 1 λ(r 2 ), dan λ 2 λ(r 1 ). Sehingga didapatkan λ(r 1 ) λ(r 2 ) =. Lema II.1.11 menjamin bahwa matriks segitiga pada Lema II.1.12 akan serupa dengan matriks bentuk (2.3). Selanjutnya akan dibahas mengenai blok Jordan.

22 Lema II.1.13 Misalkan k 1, dan memperhatikan blok Jordan J k (0) = 0 1 0 0 0......... 1 0 0 0 maka J T k (0)J k (0) = 0 0 0 I k 1 dan J k (0) p = 0 jika p k. Lebih lanjut, jika J k (0)e i+1 = e i, untuk i = 1, 2,, n 1 dan I J T k (0)J k(0)x = (x T e 1 )e 1 dimana I k 1 adalah matriks identitas e i adalah vektor basis baku ke i, dan x C n. Kajian tentang Lema II.1.13 dapat dilihat pada A.Horn [1]. Kemudian akan dicari matriks yang serupa dengan bentuk matriks dalam Teorema II.1.9, yaitu melalui teorema berikut. Teorema II.1.14 Misalkan A M n (C) adalah matriks segitiga atas sejati, maka terdapat matriks nonsingular S M n (C) dan bilangan bulat n 1, n 2,, n m dengan n 1 n 2 n m 1 dan n 1 + n 2 + + n m = n sehingga berlaku; A = S J n1 (0) 0 0 0 J n2 (0)........... 0 0 0 J nm (0) S 1 (2.5)

23 Bukti: Teorema akan dibuktikan dengan menggunakan induksi matematika pada n. Jika n = 1 jelas A = (0) sehingga teorema benar untuk n = 1. Selanjutnya asumsikan teorema benar untuk n = k 1 dan akan dibuktikan teorema juga benar untuk matriks berukuran n = k. Untuk A M n (C) partisi A sedemikian rupa sehingga A = 0 at 0 A 1, dengan a C n 1, dan A 1 M n 1 (C) adalah matriks segitiga atas sejati. Berdasarkan pernyataan induksi, terdapat matriks nonsingular S 1 M n 1 sehingga S 1 1 A 1 S 1 = J k1 0 0 0 J k2........... 0 0 0 J kn = J k 1 0 0 J (2.6) dengan k 1 k 2 k n 1, k 1 + k 2 + + k n = n 1, J k1 = J k1 (0) dan J k2 0... 0 J ks M n 1 k 1. Perhatikan bahwa tidak ada diagonal blok Jordan dalam J yang mempunyai order lebih dari k 1, dengan demikian berdasarkan Lema II.1.13 J k 1 = 0.

24 Selanjutnya 1 0 0 S1 1 A 1 0 0 S 1 = = 1 0 0 S 1 1 0 at S 1 0 S 1 1 A 1 S 1 0 at 0 A 1 1 0 0 S 1 ( Partisi a T S 1 = a T 1 a T 2 ), dengan a 1 C k 1 1 dan a 2 C n 1 k 1 sehingga 0 at S 1 0 S 1 1 A 1 S 1 = 0 a T 1 a T 2 0 J k1 0 0 0 J karena (I J T k 1 J k1 )a = (a T e 1 )e 1. Perhatikan kesamaan matriks berikut; 1 a T 1 J T k 1 0 0 I 0 0 0 I 0 a T 1 J T k 1 a T 2 0 J k1 0 0 0 J 1 a T 1 J T k 1 0 0 I 0 0 0 I = 0 a T (I J T k 1 J k1 ) a T 2 0 J k1 0 0 0 J = 0 (a T e 1 )e 1 a T 2 0 J k1 0 0 0 J. (2.7)

25 Dengan demikian terdapat dua kemungkinan yaitu; a T 1 e 1 = 0 atau a T 1 e 1 0. Untuk kasus : a T 1 e 1 0, maka 1 a T 1 e 1 0 0 0 I 0 0 0 1 a T 1 e 1 I 0 (a T e 1 )e 1 a T 2 0 J k1 0 0 0 J a T 1 e 1 0 0 0 I 0 0 0 a T 1 e 1 I = 0 e 1 a T 2 0 J k1 0 0 0 J = J e 1 a T 2 0 J dengan J = 0 et 1 0 J k1 = J k1 +1(0) adalah blok Jordan order k 1 + 1 dengan diagonal utama adalah nol. Selanjutnya dengan menggunakan sifat Je i+1 untuk i = 1, 2,, k 1 maka I e 2a T 2 0 I J e 1 a T 2 0 J I e 2a T 2 0 I = J Je2 a T 2 + e 1 a T 2 + e 2 a T 2 J 0 J J = e 2 a T 2 J. 0 J Secara rekursif perhitungan dilanjutkan; I e i+1a T 2 J i 1 0 I J e i a T 2 J i 1 0 I I e i+1a T 2 J i 1 0 I = J e i+1 a T 2 J i 0 J dengan i = 2, 3,.

Karena J k 1 = 0, maka dapat kita simpulkan bahwa A serupa dengan matriks J 0 yang merupakan matriks Jordan segitiga atas sejati. 0 J 0 0 a T 2 Untuk kasus a T 1 e 1 = 0, maka persamaan (2.7) menjadi 0 J k1 0 Selanjutnya 0 0 J dengan permutasi yang serupa diperoleh ; 26 0 I 0 I 0 0 0 0 I 0 0 a T 2 0 J k1 0 0 0 J 0 I 0 I 0 0 0 0 I = J k1 0 0 0 0 a T 2 0 J. (2.8) Berdasar pernyataan induksi terdapat matriks nonsingular S 2 M n k1 sehingga S 1 2 0 at 2 0 J S 2 = J M n k1 adalah matriks Jordan dengan diagonal utama nol. Dengan demikian matriks ruas kanan persamaan (2.8) serupa dengan J k 1 0 0 J. Dari Lema II.1.11 berakibat untuk setiap blok segitiga serupa dengan bentuk matriks Teorema II.1.9. Karena untuk setiap blok diagonal R i terdapat matriks nonsingular X i sehingga X 1 i (λ I + U i )X i = λ i I + diag(e 1, E 2,, E m ).

27 Lebih lanjut tentang Lema II.1.11 sampai dengan Lema II.1.13 dapat dikaji pada R. Fletcher [9]. Setelah kita bahas mengenai bentuk Jordan berikut akan dibahas tentang L = lim m [ρ(a) 1 A] m sebagai akibat dari Teorema II.1.8. Akibat II.1.15 Jika A M n (C) dan A > 0, maka L = lim m [ρ(a) 1 A] m adalah matriks positif dengan rank 1. Bukti: Misalkan L = lim m (ρ(a) 1 A) m Berdasar Teorema II.1.9 terdapat matriks nonsingular S sehingga: L = lim m (ρ(a) 1 S 1 JS) m dengan J = λ 1 1 0 0 0 λ 2 1 0 0 0 λ 3... 0...... 1 0 0 0 λ n

28 L = S 1 lim m (ρ(a) 1 J) m S 1 0 0 = S 1 0 0 0 S...... 0 0 0 0 Jadi, rang dari L = lim m (ρ(a) 1 A) m adalah 1. Teorema II.1.16 Jika A M n (C), dan A > 0, maka ρ(a) adalah nilai eigen dengan multiplisitas aljabar 1; yaitu ρ(a) adalah akar simpel dari persamaan karakteristik P A (t) = 0. Bukti: Berdasarkan Teorema II.1.10 dapat ditulis bahwa A = U U, dengan U adalah unitary, adalah matriks segitiga atas dengan entri-entri diagonal utamanya : ρ,, ρ, λ k+1,, λ n, dan ρ = ρ(a) adalah nilai eigen dengan multiplisitas aljabar k 1, semua nilai eigen λ i mempunyai modulus kurang dari pada ρ(a), untuk semua i = k + 1,, n. Tetapi dari Teorema II.1.8 L = lim m [ρ(a) 1 A] m = lim m [ρ(a) m U U] ρ = lim m ρ(a) m U 0... ρ λ k+1... λ n m U

ρ m... ρ L = lim m ρ(a) m U m λ m k+1. 0.. = lim m U ρ m ρ m... 0 ρ m ρ m λ m k+1 ρ m... λ m n ρ m U. λ m n U 29 Untuk m maka didapat: L = U 1 0... 1 0... 0 U. Berdasarkan Akibat II.1.15, karena matriks segitiga atas pada penyajian terakhir mempunyai rank = k, sedangkan L sendiri mempunyai rank 1. Hal ini berarti k=1 maka haruslah multiplisitas aljabarnya 1.

30 Berdasarkan uraian yang telah disebutkan di atas tentang sifat-sifat matriks positif, berikut ini merupakan rangkuman sifat-sifat tersebut yang dikenal dengan 1907). Dalam Teorema Perron ρ(a) merupakan nilai eigen terbesar pada matriks A. Hal ini sebagai dasar pada AHP yaitu λ maks merupakan nilai eigen terbesar pada matriks perbandingan berpasangan. Teorema II.1.17 (Teorema Perron) Misalkan A M n n (C), A > 0, maka pernyataan berikut benar: 1. ρ := ρ(a) > 0 2. ρ(a) adalah nilai eigen A 3. Terdapat x C n dengan x > 0 dan Ax = ρ(a)x; 4. ρ(a) merupakan akar sederhana dari A,yaitu ma(ρ(a)) = 1 5. λ < ρ(a) untuk setiap nilai eigen λ ρ(a); 6. [ρ(a) 1 A] m L, m, dimana L = xy T, Ax = ρ(a)x, A T y = ρ(a)y, x > 0, y > 0, dan x T y = 1. Teorema II.1.17 ini sebagai dasar dalam pembahasan pada bab III, terutama bagian (1) sampai bagian (4). Untuk bagian (4) akan digunakan dalam pembuktian bahwa vektor singular kiri dan kanan u dan v pada dekomposisi nilai singular adalah positif.