Model Tak Penuh. Definisi dapat di-uji (testable): nxp
|
|
|
- Ridwan Darmali
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X) c X' X C Cotoh: model stu ftor Aph H : 3 3 dpt du? ht : d etu C
2 Theorem: Model T Peuh Bl C mp c C' C C ' CX' X λ X r(x p C ' CX' X ) dpt du σ pe r(c) c C' C σ r ht z ~ χ mλ m V r deg σ m c c : X' X X' I X' X X' X c c I X' X X' X CX' X X' X l H er z C I
3 Theorem: Model T Peuh X Bl C C Bl H mp d s r(x p ) r slg es pe V dpt du r(c) m r m : C m : ht : C s ' I C X' X X X' X r c c X' X' σ I c C' C C' CX' X s m H ~ F m r
4 Reprmeterss model Model T Peuh Cotoh: model stu ftor X ; X vetor respo () vetor peuh c mtrs peuh terotrol vetor prmeter
5 Model T Peuh X X' X X'
6 Utu model Model T Peuh stu ftor l m dm Z α Zα vetor respo vetor prmeter vetor peuh c mtrs peuh terotrol H Z r eml e model peuh : H :
7 Model T Peuh Reg(peuh) Z' Z'Z Z ' Z' Z'Z α / / / / Z'Z Z' Z'Z 3
8 Model teredus l H m z z ' Model T Peuh er d α tu Reg(teredu s) ' z z ' z z ' Selsh Reg(peuh) deg Reg(teredus) dseut Reg(hpotess) Reg(hpotess) Reg(peuh) Reg(teredus) Z' ' z z ' z z ' ' Z Z'Z
9 Model T Peuh o - cetrl msg d d msg - dm d meer χ semu etu udrt dts m ( -) ) ( - Kre ' z z ' z z Z' Z'Z Z r Z' Z'Z Z - I r ' z z ' z z r σ Z' Z'Z Z - I ' σ ' z z ' z z Z' Z'Z Z ' σ ' z z ' z z ' σ ' Perht :
10 ' λ Z Z'Z Z' z z ' z σ Bl H hw λ σ Model T Peuh z Zα ' Z Z'Z Z' z z ' z z ' Zα er m : ' H Res χ λ dpt ' dtuu' F ht : slg es ht :smetr dempote ut etu umum dr ' A' E E KT hpotess KT Res
11 Aov /Alss Rgm Model T Peuh Sumer d KT F Regres Model peuh Model teredus Model Hpotess - Hp - KT Hp KT Res Resdul/Glt - Res p Totl
12 Kotrs Model T Peuh dpt - ddug sehgg H : dpt - du Utu model stu ftor g d prmeterss H : dpt - du Betu l dr H : ' α ' H dlh : d α' " Perht : u deg model peuh" α ' α s ' N α ' α Z'Z N ' α' Z'Z σ t Z'Z σ tu s t
13 Model T Peuh Defs : Du otrs d dseut ortogol Ortogol se d deg otrs g dpt detu dlh hpotessd hpotess Bl d hpotess - otsω ( -) m totl sm d tp otrs der - ω hpotess
14 Model T Peuh du ftor tp ters Utu model
15 Model T Peuh dm X X vetor respo () vetor peuh c mtrs peuh terotrol vetor prmeter Perht Persm X' X X' Norml
16 Model T Peuh X ) (
17 Model T Peuh - X X' r X' X X'
18 Model T Peuh X X'
19 Model T Peuh X' X X'
20 Theorem: Utu model Model T Peuh setp otrs dr du ftor tp ters dpt ddug ht : ots ω r c' X' X c rx' X c Secr sm dpt dtuu hw otrsdr ug dpt ddug M H : ug H ' : dpt du ht : d etu C
21 s ug deg g del deg Model T Peuh Utu memperoleh solus dr sel Secr deg () reprmeterss (3) memer ' costrt' umum costrt persm dm p persm d r d () orml el ts tu restrs dlh rx p - r umum Utu model du ftor tp ters p ( ) d r ( -) m ' costrt' ( ) ( ) Dush medpt costrt g' ermft '
22 Model T Peuh d dlh g ermft costrt' '
23 Model T Peuh d Deg
24 Model T Peuh ' X' X' ' Reg(peuh)
25 Model T Peuh Bl H m : eml e model stu ftor ; er ; ; d Reg(teredus) Selsh Reg(peuh) deg Reg(teredus) dlh Reg(hpotess) Reg(hpotess) Reg(peuh) Reg(teredus)
26 Model T Peuh Utu model peuh dr du ftor tp ters m : d totl d regres ( -) d resdul - ( -) ( -)( -) Deg model teredus utu H m d regres(te redus) Sehgg d hpotess ( -) - - :
27 Aov /Alss Rgm () Model T Peuh Sumer d Regres Model peuh (+-) Model teredus Model Hpotess() Resdul/Glt Totl Reg(peuh) () (-) (-)(-)
28 Model T Peuh KT H H KT Res res ' hw H : Deg prosedur g sm dpt dtuu dpt du KT ' H H KT Res Res F F
29 Aov /Alss Rgm () Model T Peuh Sumer d Regres Model peuh (+-) Model teredus Model Hpotess() Resdul/Glt Totl Reg(peuh) () (-) (-)(-)
30 Model T Peuh Aov /Alss Rgm gug Sumer d Regres Model peuh (+-) Nl Tegh Model Hpotess() Model Hpotess() Resdul/Glt Totl Reg(peuh) (-) (-) (-)(-)
31 Model T Peuh Aov /Alss Rgm erdsr totl terores Sumer D Regres Model Hpotess I (-) Model Hpotess II Resdul/Glt Totl (-) (-)(-) -
32 Perht : du ftor perlu d td megc dpt megu dlh ' efeses Model T Peuh Utu RAKseer hmpr mrp deg lo e ut perco perlu e ut perco Sehgg ER Bl ER lo deg reltf' ( )s ( )s lo meuu lo/elompotetp ser peggu deg s seer t td F Yg lo KT perco t g t c dlh Res s t lht d lo hw pegelompo efetf/erm Cr l utu melht efeses deg F pseudo Res lo d ER F pseudo - tu - Fpseudo
33 Model T Peuh Y Iters tr du perlu terd pl respo tr du trf ftor A pd stu trf ftor B ered deg respo tr du trf gsm dr ftora pd trf l dr ftor B A A A3 A4 B
34 Model T Peuh tetp pegruh ters du ftor deg Utu model α
35 Model T Peuh X ) (
36 Model T Peuh X X= -- - ) ( X) r(x'
37 Defs : Utu Bl ' ' - - Teorem Utu Dm ' Model T Peuh ters utu setp d M td terd : ' ' ' m td terd ters ' ' Dpt dtuu hw td d ters ' '
38 Model T Peuh Dpt dtuu hw :
39 Model T Peuh X' X X'
40 Model T Peuh : ht
41 Model T Peuh
42 ' X' Reg(model peuh) Utu H Model T Peuh ' X' : tp ters Reg(teredus) m model eml med e model
43 Model T Peuh Reg(hpotess) Reg(peuh) Reg(teredus) Utu model peuh dr du ftor deg ters m : d totl d regres totl d resdul - ( -) d regres teredus - d regres hpotess - -
44 Model T Peuh Aov /Alss Rgm Sumer d Regres Model peuh Model teredus Model Hpotess (+-) (-)(-) Resdul/Glt Totl (-)
45 Model T Peuh Bl ters TIDAK ered tm dpt dlut utu megu pegruh utm d Utu meghtug - eml e model tp ters
46 Model T Peuh Aov /Alss Rgm Regres Model peuh Sumer d Nl Tegh Model Hpotess() Model Hpotess() Model Hpotess() Resdul/Glt Totl (-) (-) (-)(-) (-)
47 Model T Peuh Model T Peuh Model Kovr (oms regres deg rco) Utu model stu ftor d stu ovrt X ; X t t t vetor respo t t mtrs peuh terotrol vetor peuh c t ovrt vetor prmeter
48 Model T Peuh t t t t t t t t t t t t t t t X t t t t t t t X' ẋ t X X'
49 Model T Peuh Utu medpt solus dtuu hw ovrt deg E X' X XX t E XX Deg X' dlu m model E t XY reprmetrss reprmeterss peuh med dpt perlu slg ortogol t r X'X t t? d E XY
50 Model T Peuh E E t X' X X' XY t t XX XY t XX E E t
51 Model T Peuh Utu medpt solus dut pemts tu ' costr' m t E t XY E XX Reg(peuh) ' X' r Reg(peuh) t E XY E XX E XY E XX
52 Utu megu H : Model T Peuh t m model teredus Keml e model regres sederh m S S XX XY Reg(teredus) Selsh g deg t S Reg(peuh) XY d deg ots R S XX dm Reg(teredus) r Reg(teredus) dlh med R t Reg(hpotess)
53 Model T Peuh R t Reg(peuh) Reg(teredu s) E E t S S XY XX XY XX t E E S S XY XX XY XX B E E S S B t XY XX XY XX r R rreg(peuh) - rreg(teredu s) t t t
54 H F r ht Res Model T Peuh ' ' X' E E E YY XY XX E YY E E XY XY E E XX XX Res Totl pegmt - rreg peuh t - t t t : hpotess r B EXY EXX SXY SXX t - F t- t-t- E E E t - t - Res r XY t hpotess Res XX du deg
55 Utu megu H Model T Peuh : m model teredus t; Keml e model deg stu ftor m r Reg(teredus) Selsh hpotess R Reg(peuh) deg t hpotess rreg(peuh - rreg(teredu s) t - t deg ots R E XY Reg(teredus) dlh dlh R Reg(peuh) E XX E XY Reg(teredus) E XX r Reg(teredus) t t Reg(hpotess)
56 Model T Peuh t-t- XX XY XX XY Res hpotess ht F - t - t E E E E E Res r hpotess r F deg du : H peuh med m model reprmetrss deg Modelovrt Perht!! Dr
57 Bl d m telh dperoleh Model T Peuh d Dr model med pd o o o utu medug rt - rt respo perlu e - o dperoleh s : deg
58 s pd terores Model T Peuh Utu memdg rt - rt respo perlu KT perlu σ σ E KT perlu d KT Res d dseut ' terores' s : Dpt dtuu hw E Bl model model c m perht u ' rt' tr perlu tetp ' ergm' perlu s σ d dsums hw σ Pered perlu du deg H : σ dhtug sepert model tetp KT Res σ d
59
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model
Bab 4 ANALISIS REGRESI dan INTERPOLASI
Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp
PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel
Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode
BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor
BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor
( X ) 2 ANALISIS REGRESI
ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk
Dr.Eng. Agus S. Muntohar Department of Civil Engineering
Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg
PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS
PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS Metode ple erup utu te tdr g dgu utu eech lh Progr Ler e thu 9. Pd prp etode ple ecr peele optl deg eetu tt-tt udut dr derh fele proe dlu erulg-ulg dr utu
BAB VI ANALISIS REGRESI
BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet
Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)
BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs
CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)
CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6
home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds
PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI
PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte
Bab IV Faktorisasi QR
Bb IV Ftorss QR. Pedhulu Ftorss QR dr mtr A beruur m dlh pegur mtr A mejd A Q R dm Q R m m dlh orthogol d R R m segtg ts. Ftorss serg jug dsebut ftorss orthogol (orthogol ftorzto). Ad beberp r yg dgu utu
CNH2B4 / KOMPUTASI NUMERIK
CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk
TEORI DASAR. simbol yang menyatakan bahwa dua hal adalah persis sama. Dimana. persamaanya ditulis dengan tanda sama dengan.
II. TEORI ASAR. Persm d Pertdsm Persm ddefs seg sutu peryt mtemt dlm etu smol yg meyt hw du hl dlh perss sm. m persmy dtuls deg td sm deg. Msly : 4 y 8 Pertdsm ddefs seg lmt mtemt yg meuu perdg uur du
HUKUM SYLVESTER INERSIA
Vol 6 No 3 44-56 Desember 3 ISSN : 4-858 HUKUM SYLVESTER INERSIA R Heru Tjhj Jurus Mtemt FMIPA UNDIP Abstr Mtrs represets sutu betu udrt dpt dsj sebg mtrs dgol Eleme pd dgol utm mtrs represets tersebut
Solusi Sistem Persamaan Linear
Sos Sstem Persm Ler Sstem persm er: h persm deg h kow j d dketh, j,,, j? So: z 6 z z () () () persm d kow Jw: z 6.5 z.5 z () () () ems : pers. ().5 pers. () pers. ().5 pers. () z 6.5 z 8z 8 () () () ems
Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)
Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker
x 1 M = x 1 m 1 + x 2 m x n m n = x i
Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl
Bentuk Umum Perluasan Teorema Pythagoras
Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem
BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.
BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI
SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT
OLUI DERET PANGKAT TETAP DENGAN FUNGI PEMBANGKIT Aleder A Guw Jurus Mtemt d ttst Fults s d Teolog, Uversts B Nustr Jl. K. H. yhd No. 9, Kemggs/Plmerh, Jrt Brt 8 [email protected] ABTRACT Ths rtcle dscusses bout
1 yang akan menghasilkan
Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr
A. Pusat Massa Suatu Batang
Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel
1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.
KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk
Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor
Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc
REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1
REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut
REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1
REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut
Persamaan Linier Simultan
Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel
TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Rukiyah 1*, Bustami 2, Sigit Sugiarto 2
TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Ruiyh, Bustmi, Sigit Sugirto Mhsisw Progrm S Mtemti Dose Jurus Mtemti Fults Mtemti d Ilmu Pegethu Alm Uiversits Riu Kmpus Biwidy
bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )
Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of
DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275
DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)
BAB 2 TINJAUAN TEORITIS. mempengaruhi sering disebut variabel bebas, variabel independen atau variabel
BAB TINJAUAN TEORITIS.. Regres Ler Sederh Regres ler dlh lt sttst yg dpergu utu megethu pegruh tr stu tu beberp vrbel terhdp stu buh vrbel. Vrbel yg mempegruh serg dsebut vrbel bebs, vrbel depede tu vrbel
INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN (THE MOORE PENROSE INVERSE OF MATRICES OVER COMMUTATIVE RING WITH UNITY)
JURNL MTEMTIK DN KOMPUTER Vol. 7. No., -, prl, ISSN : -858 INVERS MTRIKS MOORE PENROSE TS RING KOMUTTIF DENGN ELEMEN STUN THE MOORE PENROSE INVERSE OF MTRICES OVER COMMUTTIVE RING WITH UNITY Tt Ud SRRM
MATRIKS. Create by Luke
Defiisi Mtris MTRIS Crete y Lue Seuh mtri dlh sergi eleme dlm etu persegi pg Eleme e-(i,) i dri mtris erd diris e-i d olom e- dri rgi terseut Order (uur) dri seuh mtri dit seesr (m x ) i mtris terseut
RANCANGAN STRIP PLOT MODEL TETAP. Staf Jurusan Matematika FMIPA UNDIP
RANCANGAN STRIP PLOT MODEL TETAP Trstut Wurydr,uc Wldr, Noor Affh Stf Jurus Mtemt FMIPA UNDIP Alum Jurus Mtemt FMIPA UNDIP Astrct The expermet volve the study of the effects of two or more fctors c e used
BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal
BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.
m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d )
I. OPERSI ILNGN REL. Pgt (Esoe. +. RNGKMN MTEMTIK. (.. ( 5. 6. 7. 8.. etu... ( ± ( + ± 5. ( Mesol Peeut etu Peh. (. + + C. Logt. log. log. log log. log log...( log log... log log... ( log... ( log. log+
INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.
PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt [email protected] Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss
Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk
DUALITAS DAN ANALISIS SENSITIVITAS
/5/008 DUALITAS DAN ANALISIS SENSITIVITAS Dr. Mohd Adul Mukhy, SE., MM. Prl Prole P ze z cx suject to Ax x 0 optu vlue s z* Dul Prole xze suject to D v π πa c optu vlue s v* Theore. (Strog Dulty) If oth
FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter
IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik
BAB 5 PENDEKATAN FUNGSI
BAB 5 ENDEKATAN FUNGSI DEVIDE DIFFERENCE SELISIH TERBAGI A. Tuju. Memhmi oliomil Newto Selisih Terbgi b. Mmpu meetu oeisie-oeisie oliomil Newto c. Mmpu meetu oeisie-oeisie oliomil Newto deg Mtlb B. ergt
PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange
Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.
PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan
Prtum 6 Penyelesn Persmn Lner Smultn - Metode Elmns Guss Jordn PRAKTIKUM 6 Penyelesn Persmn Lner Smultn Metode Elmns Guss Jordn. Tujun : Mempeljr metode Elmns Guss Jordn untu penyelesn persmn lner smultn.
Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0
LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt
Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks
Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug
INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser
Anuitas. Anuitas Akhir
Auts Auts bersl r kt bhs Iggrs uty yg pt efsk sebg rgk pembyr tu peerm tetp lm jumlh tertetu yg lkuk secr berkl p jgk wktu tertetu. Kt uty sly berrt pembyr ul (thu), k tetp serg eg berjly wktu kt uts jug
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y
REGRESI Koefsen Regres / persmn regres lner dgunkn untuk mermlkn / mengethu esrny pengruh vrel terhdp vrel Vrel yng mempengruh ddlm nlss regres dseut vrel predktor ( ) Vrel yng dpengruh dseut vrel krterum
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P
Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon
Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi
( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(
BAB V INTEGRAL DARBOUX
Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower
BAB IV METODA ANALISIS RANGKAIAN
6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy
MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi
III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)
III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN
BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x
Penyelesaian Persamaan Linier Simultan
Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d
METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1
METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D
PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial
Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl
Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga
Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr
1. SISTEM PERSAMAAN LINEAR DAN MATRIKS
Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,
CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2)
TTN KULH ertemu V: Moel-moel ler lr Mtrks (). Mer Mtrks vers Sutu mtrks () mempuy vers l terpt sutu mtrks B, seh B B. Mtrks B seut vers mtrks, tuls -, y merupk mtrks uur skr ermes. Syrt keer r Mtrks vers
ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012
8/9/0 ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) Elty Srv, S., M. Fkults ekk Jurus ekk Idustr Uversts Krste Mrth Bdug ANOVA Dsr perhtug ANOVA dtetpk oleh Rold A. Fsher. Dstrus teorts yg dguk dlh
JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1
FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri
Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú.
x x g x x erh ditsi kurv = (x) deg (x), gris x =, gris x =, d sumu x. = {(x,) x, (x)} Lus derh dlh. L = lim x x = x erh ditsi kurv = (x), kurv = g(x), deg (x) g(x), gris x =, d gris x =. = {(x,) x, g(x)
Permodelan Sistem. Melalui Identifikasi Parameter. Ir. Rusdhianto EAK, MT. Pelatihan PC-Based Control
Permodeln Sistem Mellui Identifisi Prmeter Ir. Rusdhinto EAK, M Pengertin Adlh seumpuln metode yng digunn untu mendptn/menentun prmeter model pendetn dri sistem mellui evlusi dt penguurn input output Secr
Teknik Komputasi Ujian Akhir Semester (UAS)
Tekk Komputs U Akhr Semester UAS Dose : Dr. Ir. Nzor Az MT. Nm : Yog Prhstomo NIM : 06006 Kels : XB MAGISTER ILMU KOMPUTER UNIVERSITAS BUDI LUHUR 0 Hlm 0 Tekk Komputs: U Akhr Semester UAS A. Sol Dkethu
Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS
Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl
Hendra Gunawan. 21 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge
Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS
Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl
SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Basic Properties of Henstock Integral)
Jurl Breeg Vol 6 No Hl 7 5 (0) SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Bsc Propertes of Hestoc Itegrl) LEXY JANZEN SINAY MOZART WINSTON TALAKUA Stf Jurus Mtemt FMIPA UNPATTI Jl Ir M Putuhe Kmpus Uptt Po-Amo
F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2
B III : Ligkr 7 5.. DEFINISI Ellips dlh tept keduduk titik g julh jrk terhdp du titik tertetu tetp hrg. F (titik tetp) erupk erks gris g diseut direkstriks, F (-,) F (,) diseut eksetrisits (e). e = AB
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
BAB I SISTEM PERSAMAAN LINEAR
BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik
INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31
INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs
BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah
Hsei Tpos, Bris d Deret, 06 BARISAN DAN DERET INTISARI TEORI A NOTASI SIGMA Misly st ris erhigg,,,, 3 Lg eyt jlh dri s pert ris, yit 3 Sift-sift Notsi Sig Ji d dlh ilg-ilg sli, deg d c dlh ostt rel, erl
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
