Model Tak Penuh. Definisi dapat di-uji (testable): nxp

Ukuran: px
Mulai penontonan dengan halaman:

Download "Model Tak Penuh. Definisi dapat di-uji (testable): nxp"

Transkripsi

1 Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X) c X' X C Cotoh: model stu ftor Aph H : 3 3 dpt du? ht : d etu C

2 Theorem: Model T Peuh Bl C mp c C' C C ' CX' X λ X r(x p C ' CX' X ) dpt du σ pe r(c) c C' C σ r ht z ~ χ mλ m V r deg σ m c c : X' X X' I X' X X' X c c I X' X X' X CX' X X' X l H er z C I

3 Theorem: Model T Peuh X Bl C C Bl H mp d s r(x p ) r slg es pe V dpt du r(c) m r m : C m : ht : C s ' I C X' X X X' X r c c X' X' σ I c C' C C' CX' X s m H ~ F m r

4 Reprmeterss model Model T Peuh Cotoh: model stu ftor X ; X vetor respo () vetor peuh c mtrs peuh terotrol vetor prmeter

5 Model T Peuh X X' X X'

6 Utu model Model T Peuh stu ftor l m dm Z α Zα vetor respo vetor prmeter vetor peuh c mtrs peuh terotrol H Z r eml e model peuh : H :

7 Model T Peuh Reg(peuh) Z' Z'Z Z ' Z' Z'Z α / / / / Z'Z Z' Z'Z 3

8 Model teredus l H m z z ' Model T Peuh er d α tu Reg(teredu s) ' z z ' z z ' Selsh Reg(peuh) deg Reg(teredus) dseut Reg(hpotess) Reg(hpotess) Reg(peuh) Reg(teredus) Z' ' z z ' z z ' ' Z Z'Z

9 Model T Peuh o - cetrl msg d d msg - dm d meer χ semu etu udrt dts m ( -) ) ( - Kre ' z z ' z z Z' Z'Z Z r Z' Z'Z Z - I r ' z z ' z z r σ Z' Z'Z Z - I ' σ ' z z ' z z Z' Z'Z Z ' σ ' z z ' z z ' σ ' Perht :

10 ' λ Z Z'Z Z' z z ' z σ Bl H hw λ σ Model T Peuh z Zα ' Z Z'Z Z' z z ' z z ' Zα er m : ' H Res χ λ dpt ' dtuu' F ht : slg es ht :smetr dempote ut etu umum dr ' A' E E KT hpotess KT Res

11 Aov /Alss Rgm Model T Peuh Sumer d KT F Regres Model peuh Model teredus Model Hpotess - Hp - KT Hp KT Res Resdul/Glt - Res p Totl

12 Kotrs Model T Peuh dpt - ddug sehgg H : dpt - du Utu model stu ftor g d prmeterss H : dpt - du Betu l dr H : ' α ' H dlh : d α' " Perht : u deg model peuh" α ' α s ' N α ' α Z'Z N ' α' Z'Z σ t Z'Z σ tu s t

13 Model T Peuh Defs : Du otrs d dseut ortogol Ortogol se d deg otrs g dpt detu dlh hpotessd hpotess Bl d hpotess - otsω ( -) m totl sm d tp otrs der - ω hpotess

14 Model T Peuh du ftor tp ters Utu model

15 Model T Peuh dm X X vetor respo () vetor peuh c mtrs peuh terotrol vetor prmeter Perht Persm X' X X' Norml

16 Model T Peuh X ) (

17 Model T Peuh - X X' r X' X X'

18 Model T Peuh X X'

19 Model T Peuh X' X X'

20 Theorem: Utu model Model T Peuh setp otrs dr du ftor tp ters dpt ddug ht : ots ω r c' X' X c rx' X c Secr sm dpt dtuu hw otrsdr ug dpt ddug M H : ug H ' : dpt du ht : d etu C

21 s ug deg g del deg Model T Peuh Utu memperoleh solus dr sel Secr deg () reprmeterss (3) memer ' costrt' umum costrt persm dm p persm d r d () orml el ts tu restrs dlh rx p - r umum Utu model du ftor tp ters p ( ) d r ( -) m ' costrt' ( ) ( ) Dush medpt costrt g' ermft '

22 Model T Peuh d dlh g ermft costrt' '

23 Model T Peuh d Deg

24 Model T Peuh ' X' X' ' Reg(peuh)

25 Model T Peuh Bl H m : eml e model stu ftor ; er ; ; d Reg(teredus) Selsh Reg(peuh) deg Reg(teredus) dlh Reg(hpotess) Reg(hpotess) Reg(peuh) Reg(teredus)

26 Model T Peuh Utu model peuh dr du ftor tp ters m : d totl d regres ( -) d resdul - ( -) ( -)( -) Deg model teredus utu H m d regres(te redus) Sehgg d hpotess ( -) - - :

27 Aov /Alss Rgm () Model T Peuh Sumer d Regres Model peuh (+-) Model teredus Model Hpotess() Resdul/Glt Totl Reg(peuh) () (-) (-)(-)

28 Model T Peuh KT H H KT Res res ' hw H : Deg prosedur g sm dpt dtuu dpt du KT ' H H KT Res Res F F

29 Aov /Alss Rgm () Model T Peuh Sumer d Regres Model peuh (+-) Model teredus Model Hpotess() Resdul/Glt Totl Reg(peuh) () (-) (-)(-)

30 Model T Peuh Aov /Alss Rgm gug Sumer d Regres Model peuh (+-) Nl Tegh Model Hpotess() Model Hpotess() Resdul/Glt Totl Reg(peuh) (-) (-) (-)(-)

31 Model T Peuh Aov /Alss Rgm erdsr totl terores Sumer D Regres Model Hpotess I (-) Model Hpotess II Resdul/Glt Totl (-) (-)(-) -

32 Perht : du ftor perlu d td megc dpt megu dlh ' efeses Model T Peuh Utu RAKseer hmpr mrp deg lo e ut perco perlu e ut perco Sehgg ER Bl ER lo deg reltf' ( )s ( )s lo meuu lo/elompotetp ser peggu deg s seer t td F Yg lo KT perco t g t c dlh Res s t lht d lo hw pegelompo efetf/erm Cr l utu melht efeses deg F pseudo Res lo d ER F pseudo - tu - Fpseudo

33 Model T Peuh Y Iters tr du perlu terd pl respo tr du trf ftor A pd stu trf ftor B ered deg respo tr du trf gsm dr ftora pd trf l dr ftor B A A A3 A4 B

34 Model T Peuh tetp pegruh ters du ftor deg Utu model α

35 Model T Peuh X ) (

36 Model T Peuh X X= -- - ) ( X) r(x'

37 Defs : Utu Bl ' ' - - Teorem Utu Dm ' Model T Peuh ters utu setp d M td terd : ' ' ' m td terd ters ' ' Dpt dtuu hw td d ters ' '

38 Model T Peuh Dpt dtuu hw :

39 Model T Peuh X' X X'

40 Model T Peuh : ht

41 Model T Peuh

42 ' X' Reg(model peuh) Utu H Model T Peuh ' X' : tp ters Reg(teredus) m model eml med e model

43 Model T Peuh Reg(hpotess) Reg(peuh) Reg(teredus) Utu model peuh dr du ftor deg ters m : d totl d regres totl d resdul - ( -) d regres teredus - d regres hpotess - -

44 Model T Peuh Aov /Alss Rgm Sumer d Regres Model peuh Model teredus Model Hpotess (+-) (-)(-) Resdul/Glt Totl (-)

45 Model T Peuh Bl ters TIDAK ered tm dpt dlut utu megu pegruh utm d Utu meghtug - eml e model tp ters

46 Model T Peuh Aov /Alss Rgm Regres Model peuh Sumer d Nl Tegh Model Hpotess() Model Hpotess() Model Hpotess() Resdul/Glt Totl (-) (-) (-)(-) (-)

47 Model T Peuh Model T Peuh Model Kovr (oms regres deg rco) Utu model stu ftor d stu ovrt X ; X t t t vetor respo t t mtrs peuh terotrol vetor peuh c t ovrt vetor prmeter

48 Model T Peuh t t t t t t t t t t t t t t t X t t t t t t t X' ẋ t X X'

49 Model T Peuh Utu medpt solus dtuu hw ovrt deg E X' X XX t E XX Deg X' dlu m model E t XY reprmetrss reprmeterss peuh med dpt perlu slg ortogol t r X'X t t? d E XY

50 Model T Peuh E E t X' X X' XY t t XX XY t XX E E t

51 Model T Peuh Utu medpt solus dut pemts tu ' costr' m t E t XY E XX Reg(peuh) ' X' r Reg(peuh) t E XY E XX E XY E XX

52 Utu megu H : Model T Peuh t m model teredus Keml e model regres sederh m S S XX XY Reg(teredus) Selsh g deg t S Reg(peuh) XY d deg ots R S XX dm Reg(teredus) r Reg(teredus) dlh med R t Reg(hpotess)

53 Model T Peuh R t Reg(peuh) Reg(teredu s) E E t S S XY XX XY XX t E E S S XY XX XY XX B E E S S B t XY XX XY XX r R rreg(peuh) - rreg(teredu s) t t t

54 H F r ht Res Model T Peuh ' ' X' E E E YY XY XX E YY E E XY XY E E XX XX Res Totl pegmt - rreg peuh t - t t t : hpotess r B EXY EXX SXY SXX t - F t- t-t- E E E t - t - Res r XY t hpotess Res XX du deg

55 Utu megu H Model T Peuh : m model teredus t; Keml e model deg stu ftor m r Reg(teredus) Selsh hpotess R Reg(peuh) deg t hpotess rreg(peuh - rreg(teredu s) t - t deg ots R E XY Reg(teredus) dlh dlh R Reg(peuh) E XX E XY Reg(teredus) E XX r Reg(teredus) t t Reg(hpotess)

56 Model T Peuh t-t- XX XY XX XY Res hpotess ht F - t - t E E E E E Res r hpotess r F deg du : H peuh med m model reprmetrss deg Modelovrt Perht!! Dr

57 Bl d m telh dperoleh Model T Peuh d Dr model med pd o o o utu medug rt - rt respo perlu e - o dperoleh s : deg

58 s pd terores Model T Peuh Utu memdg rt - rt respo perlu KT perlu σ σ E KT perlu d KT Res d dseut ' terores' s : Dpt dtuu hw E Bl model model c m perht u ' rt' tr perlu tetp ' ergm' perlu s σ d dsums hw σ Pered perlu du deg H : σ dhtug sepert model tetp KT Res σ d

59

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor

Lebih terperinci

( X ) 2 ANALISIS REGRESI

( X ) 2 ANALISIS REGRESI ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS Metode ple erup utu te tdr g dgu utu eech lh Progr Ler e thu 9. Pd prp etode ple ecr peele optl deg eetu tt-tt udut dr derh fele proe dlu erulg-ulg dr utu

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

Bab IV Faktorisasi QR

Bab IV Faktorisasi QR Bb IV Ftorss QR. Pedhulu Ftorss QR dr mtr A beruur m dlh pegur mtr A mejd A Q R dm Q R m m dlh orthogol d R R m segtg ts. Ftorss serg jug dsebut ftorss orthogol (orthogol ftorzto). Ad beberp r yg dgu utu

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

TEORI DASAR. simbol yang menyatakan bahwa dua hal adalah persis sama. Dimana. persamaanya ditulis dengan tanda sama dengan.

TEORI DASAR. simbol yang menyatakan bahwa dua hal adalah persis sama. Dimana. persamaanya ditulis dengan tanda sama dengan. II. TEORI ASAR. Persm d Pertdsm Persm ddefs seg sutu peryt mtemt dlm etu smol yg meyt hw du hl dlh perss sm. m persmy dtuls deg td sm deg. Msly : 4 y 8 Pertdsm ddefs seg lmt mtemt yg meuu perdg uur du

Lebih terperinci

HUKUM SYLVESTER INERSIA

HUKUM SYLVESTER INERSIA Vol 6 No 3 44-56 Desember 3 ISSN : 4-858 HUKUM SYLVESTER INERSIA R Heru Tjhj Jurus Mtemt FMIPA UNDIP Abstr Mtrs represets sutu betu udrt dpt dsj sebg mtrs dgol Eleme pd dgol utm mtrs represets tersebut

Lebih terperinci

Solusi Sistem Persamaan Linear

Solusi Sistem Persamaan Linear Sos Sstem Persm Ler Sstem persm er: h persm deg h kow j d dketh, j,,, j? So: z 6 z z () () () persm d kow Jw: z 6.5 z.5 z () () () ems : pers. ().5 pers. () pers. ().5 pers. () z 6.5 z 8z 8 () () () ems

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal. BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI

Lebih terperinci

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT OLUI DERET PANGKAT TETAP DENGAN FUNGI PEMBANGKIT Aleder A Guw Jurus Mtemt d ttst Fults s d Teolog, Uversts B Nustr Jl. K. H. yhd No. 9, Kemggs/Plmerh, Jrt Brt 8 [email protected] ABTRACT Ths rtcle dscusses bout

Lebih terperinci

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

A. Pusat Massa Suatu Batang

A. Pusat Massa Suatu Batang Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel

Lebih terperinci

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0. KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk

Lebih terperinci

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Rukiyah 1*, Bustami 2, Sigit Sugiarto 2

TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Rukiyah 1*, Bustami 2, Sigit Sugiarto 2 TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Ruiyh, Bustmi, Sigit Sugirto Mhsisw Progrm S Mtemti Dose Jurus Mtemti Fults Mtemti d Ilmu Pegethu Alm Uiversits Riu Kmpus Biwidy

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275 DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. mempengaruhi sering disebut variabel bebas, variabel independen atau variabel

BAB 2 TINJAUAN TEORITIS. mempengaruhi sering disebut variabel bebas, variabel independen atau variabel BAB TINJAUAN TEORITIS.. Regres Ler Sederh Regres ler dlh lt sttst yg dpergu utu megethu pegruh tr stu tu beberp vrbel terhdp stu buh vrbel. Vrbel yg mempegruh serg dsebut vrbel bebs, vrbel depede tu vrbel

Lebih terperinci

INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN (THE MOORE PENROSE INVERSE OF MATRICES OVER COMMUTATIVE RING WITH UNITY)

INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN (THE MOORE PENROSE INVERSE OF MATRICES OVER COMMUTATIVE RING WITH UNITY) JURNL MTEMTIK DN KOMPUTER Vol. 7. No., -, prl, ISSN : -858 INVERS MTRIKS MOORE PENROSE TS RING KOMUTTIF DENGN ELEMEN STUN THE MOORE PENROSE INVERSE OF MTRICES OVER COMMUTTIVE RING WITH UNITY Tt Ud SRRM

Lebih terperinci

MATRIKS. Create by Luke

MATRIKS. Create by Luke Defiisi Mtris MTRIS Crete y Lue Seuh mtri dlh sergi eleme dlm etu persegi pg Eleme e-(i,) i dri mtris erd diris e-i d olom e- dri rgi terseut Order (uur) dri seuh mtri dit seesr (m x ) i mtris terseut

Lebih terperinci

RANCANGAN STRIP PLOT MODEL TETAP. Staf Jurusan Matematika FMIPA UNDIP

RANCANGAN STRIP PLOT MODEL TETAP. Staf Jurusan Matematika FMIPA UNDIP RANCANGAN STRIP PLOT MODEL TETAP Trstut Wurydr,uc Wldr, Noor Affh Stf Jurus Mtemt FMIPA UNDIP Alum Jurus Mtemt FMIPA UNDIP Astrct The expermet volve the study of the effects of two or more fctors c e used

Lebih terperinci

BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal

BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.

Lebih terperinci

m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d )

m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d ) I. OPERSI ILNGN REL. Pgt (Esoe. +. RNGKMN MTEMTIK. (.. ( 5. 6. 7. 8.. etu... ( ± ( + ± 5. ( Mesol Peeut etu Peh. (. + + C. Logt. log. log. log log. log log...( log log... log log... ( log... ( log. log+

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA. PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt [email protected] Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

DUALITAS DAN ANALISIS SENSITIVITAS

DUALITAS DAN ANALISIS SENSITIVITAS /5/008 DUALITAS DAN ANALISIS SENSITIVITAS Dr. Mohd Adul Mukhy, SE., MM. Prl Prole P ze z cx suject to Ax x 0 optu vlue s z* Dul Prole xze suject to D v π πa c optu vlue s v* Theore. (Strog Dulty) If oth

Lebih terperinci

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik

Lebih terperinci

BAB 5 PENDEKATAN FUNGSI

BAB 5 PENDEKATAN FUNGSI BAB 5 ENDEKATAN FUNGSI DEVIDE DIFFERENCE SELISIH TERBAGI A. Tuju. Memhmi oliomil Newto Selisih Terbgi b. Mmpu meetu oeisie-oeisie oliomil Newto c. Mmpu meetu oeisie-oeisie oliomil Newto deg Mtlb B. ergt

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan Prtum 6 Penyelesn Persmn Lner Smultn - Metode Elmns Guss Jordn PRAKTIKUM 6 Penyelesn Persmn Lner Smultn Metode Elmns Guss Jordn. Tujun : Mempeljr metode Elmns Guss Jordn untu penyelesn persmn lner smultn.

Lebih terperinci

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0 LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt

Lebih terperinci

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser

Lebih terperinci

Anuitas. Anuitas Akhir

Anuitas. Anuitas Akhir Auts Auts bersl r kt bhs Iggrs uty yg pt efsk sebg rgk pembyr tu peerm tetp lm jumlh tertetu yg lkuk secr berkl p jgk wktu tertetu. Kt uty sly berrt pembyr ul (thu), k tetp serg eg berjly wktu kt uts jug

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y REGRESI Koefsen Regres / persmn regres lner dgunkn untuk mermlkn / mengethu esrny pengruh vrel terhdp vrel Vrel yng mempengruh ddlm nlss regres dseut vrel predktor ( ) Vrel yng dpengruh dseut vrel krterum

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi

Lebih terperinci

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM

MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1 METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr

Lebih terperinci

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,

Lebih terperinci

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2)

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2) TTN KULH ertemu V: Moel-moel ler lr Mtrks (). Mer Mtrks vers Sutu mtrks () mempuy vers l terpt sutu mtrks B, seh B B. Mtrks B seut vers mtrks, tuls -, y merupk mtrks uur skr ermes. Syrt keer r Mtrks vers

Lebih terperinci

ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012

ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012 8/9/0 ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) Elty Srv, S., M. Fkults ekk Jurus ekk Idustr Uversts Krste Mrth Bdug ANOVA Dsr perhtug ANOVA dtetpk oleh Rold A. Fsher. Dstrus teorts yg dguk dlh

Lebih terperinci

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1 FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri

Lebih terperinci

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú.

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú. x x g x x erh ditsi kurv = (x) deg (x), gris x =, gris x =, d sumu x. = {(x,) x, (x)} Lus derh dlh. L = lim x x = x erh ditsi kurv = (x), kurv = g(x), deg (x) g(x), gris x =, d gris x =. = {(x,) x, g(x)

Lebih terperinci

Permodelan Sistem. Melalui Identifikasi Parameter. Ir. Rusdhianto EAK, MT. Pelatihan PC-Based Control

Permodelan Sistem. Melalui Identifikasi Parameter. Ir. Rusdhianto EAK, MT. Pelatihan PC-Based Control Permodeln Sistem Mellui Identifisi Prmeter Ir. Rusdhinto EAK, M Pengertin Adlh seumpuln metode yng digunn untu mendptn/menentun prmeter model pendetn dri sistem mellui evlusi dt penguurn input output Secr

Lebih terperinci

Teknik Komputasi Ujian Akhir Semester (UAS)

Teknik Komputasi Ujian Akhir Semester (UAS) Tekk Komputs U Akhr Semester UAS Dose : Dr. Ir. Nzor Az MT. Nm : Yog Prhstomo NIM : 06006 Kels : XB MAGISTER ILMU KOMPUTER UNIVERSITAS BUDI LUHUR 0 Hlm 0 Tekk Komputs: U Akhr Semester UAS A. Sol Dkethu

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Basic Properties of Henstock Integral)

SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Basic Properties of Henstock Integral) Jurl Breeg Vol 6 No Hl 7 5 (0) SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Bsc Propertes of Hestoc Itegrl) LEXY JANZEN SINAY MOZART WINSTON TALAKUA Stf Jurus Mtemt FMIPA UNPATTI Jl Ir M Putuhe Kmpus Uptt Po-Amo

Lebih terperinci

F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2

F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2 B III : Ligkr 7 5.. DEFINISI Ellips dlh tept keduduk titik g julh jrk terhdp du titik tertetu tetp hrg. F (titik tetp) erupk erks gris g diseut direkstriks, F (-,) F (,) diseut eksetrisits (e). e = AB

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31 INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs

Lebih terperinci

BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah

BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah Hsei Tpos, Bris d Deret, 06 BARISAN DAN DERET INTISARI TEORI A NOTASI SIGMA Misly st ris erhigg,,,, 3 Lg eyt jlh dri s pert ris, yit 3 Sift-sift Notsi Sig Ji d dlh ilg-ilg sli, deg d c dlh ostt rel, erl

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci