Teknik Komputasi Ujian Akhir Semester (UAS)
|
|
|
- Siska Tanuwidjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Tekk Komputs U Akhr Semester UAS Dose : Dr. Ir. Nzor Az MT. Nm : Yog Prhstomo NIM : Kels : XB MAGISTER ILMU KOMPUTER UNIVERSITAS BUDI LUHUR 0 Hlm 0
2 Tekk Komputs: U Akhr Semester UAS A. Sol Dkethu seuh ctr tekstur yg k du kemrpy deg metode rk Euclde. Tetuk esr rk tr ctr X yg k du deg ctr ly d urutk hsly deg ctr yg plg mrp l rk yg plg kecl erdsrk cr cr:. Itests wr. Eerg c. Etrop d. Stdrd devs e. Rt rt f. Homoget g. Kotrs Ctt: Ke 0 ctr yg du erukur sm d dml dr dtse ole: rodtz textures B. Jw. Termolog Seuh ctr mempuy eerp cr yg dguk utuk megel ctr terseut tr l: Itests wr σ Nl rt rt μ Etrop e Eerg E Homoget H Kotrs C Rumus: Cr Cr Stdrd devs Itests wr Nl rt rt Rumus σ μ N N N X N x x Hlm
3 Tekk Komputs: U Akhr Semester UAS Hlm x P x p e log M x N y y x P M x N E ] + d P H d P C ]... ] d Etrop Eerg Homoget Kotrs Jrk Euclde k dkethu du uh Jk uh ctr msg msg mempuy cr cr yg detuk oleh vektor vektor dlh seg erkut: Msl seuh ctr x yg k du ctr m yg plg mrp deg ctr x deg metode Euclde dpt dtetuk esry rk tr ctr ts. Ctr yg plg mrp dlh ctr yg mempuy l rk Euclde plg kecl. ]... ] ] h c p e C h c p e C h c p e C μ σ μ σ μ σ
4 Tekk Komputs: U Akhr Semester UAS. Jw Sumef gmr dlh: Dkses tggl: 5 Desemer 0. Nm Ctr Nm Ctr Nm Ctr D8.gf D8.gf D83.gf D84gf D85.gf D86.gf D87.gf D88.gf D89.gf D90.gf Hlm 3
5 Tekk Komputs: U Akhr Semester UAS Scrpt Mtl: %UAS Imge Alyss %Yog Prhstomo cler ll clc formt logg %Imge Redg I mred'c:\gmr\d8.gf'; I mred'c:\gmr\d8.gf'; I3 mred'c:\gmr\d83.gf'; I4 mred'c:\gmr\d84.gf'; I5 mred'c:\gmr\d85.gf'; I6 mred'c:\gmr\d86.gf'; I7 mred'c:\gmr\d87.gf'; I8 mred'c:\gmr\d88.gf'; I9 mred'c:\gmr\d89.gf'; I0 mred'c:\gmr\d90.gf'; %Als Imge v_ mei; et_ etropyi; std_ stdi; stts grycopropsi; A stts.cotrst]; cot_ A; B stts.correlto]; corr_ B; C stts.eergy]; eer_ C; D stts.homogeety]; homo_ D; %Als Imge v_ mei; et_ etropyi; std_ stdi; stts grycopropsi; A stts.cotrst]; cot_ A; B stts.correlto]; corr_ B; C stts.eergy]; eer_ C; D stts.homogeety]; homo_ D; %Als Imge 3 v_3 mei3; et_3 etropyi3; std_3 stdi3; stts3 grycopropsi3; A3 stts3.cotrst]; cot_3 A3; Hlm 4
6 Tekk Komputs: U Akhr Semester UAS B3 stts3.correlto]; corr_3 B3; C3 stts3.eergy]; eer_3 C3; D3 stts3.homogeety]; homo_3 D3; %Als Imge 4 v_4 mei4; et_4 etropyi4; std_4 stdi4; stts4 grycopropsi4; A4 stts4.cotrst]; cot_4 A4; B4 stts4.correlto]; corr_4 B4; C4 stts4.eergy]; eer_4 C4; D4 stts4.homogeety]; homo_4 D4; %Als Imge 5 v_5 mei5; et_5 etropyi5; std_5 stdi5; stts5 grycopropsi5; A5 stts5.cotrst]; cot_5 A5; B5 stts5.correlto]; corr_5 B5; C5 stts5.eergy]; eer_5 C5; D5 stts5.homogeety]; homo_5 D5; %Als Imge 6 v_6 mei6; et_6 etropyi6; std_6 stdi6; stts6 grycopropsi6; A6 stts6.cotrst]; cot_6 A6; B6 stts6.correlto]; corr_6 B6; C6 stts6.eergy]; eer_6 C6; D6 stts6.homogeety]; homo_6 D6; %Als Imge 7 v_7 mei7; et_7 etropyi7; std_7 stdi7; stts7 grycopropsi7; A7 stts7.cotrst]; Hlm 5
7 Tekk Komputs: U Akhr Semester UAS cot_7 A7; B7 stts7.correlto]; corr_7 B7; C7 stts7.eergy]; eer_7 C7; D7 stts7.homogeety]; homo_7 D7; %Als Imge 8 v_8 mei8; et_8 etropyi8; std_8 stdi8; stts8 grycopropsi8; A8 stts8.cotrst]; cot_8 A8; B8 stts8.correlto]; corr_8 B8; C8 stts8.eergy]; eer_8 C8; D8 stts8.homogeety]; homo_8 D8; %Als Imge 9 v_9 mei9; et_9 etropyi9; std_9 stdi9; stts9 grycopropsi9; A9 stts9.cotrst]; cot_9 A9; B9 stts9.correlto]; corr_9 B9; C9 stts9.eergy]; eer_9 C9; D9 stts9.homogeety]; homo_9 D9; %Als Imge 0 v_0 mei0; et_0 etropyi0; std_0 stdi0; stts0 grycopropsi0; A0 stts0.cotrst]; cot_0 A0; B0 stts0.correlto]; corr_0 B0; C0 stts0.eergy]; eer_0 C0; D0 stts0.homogeety]; homo_0 D0; %Meghtug Jrk Euclde Atr Msg-msg Imge euc_ sqrtv_-v_^+et_-et_^+std_- std_^+cot_-cot_^+corr_-corr_^+eer_- eer_^+homo_-homo_^; Hlm 6
8 Tekk Komputs: U Akhr Semester UAS euc_ sqrtv_-v_3^+et_-et_3^+std_- std_3^+cot_-cot_3^+corr_-corr_3^+eer_- eer_3^+homo_-homo_3^; euc_3 sqrtv_-v_4^+et_-et_4^+std_- std_4^+cot_-cot_4^+corr_-corr_4^+eer_- eer_4^+homo_-homo_4^; euc_4 sqrtv_-v_5^+et_-et_5^+std_- std_5^+cot_-cot_5^+corr_-corr_5^+eer_- eer_5^+homo_-homo_5^; euc_5 sqrtv_-v_6^+et_-et_6^+std_- std_6^+cot_-cot_6^+corr_-corr_6^+eer_- eer_6^+homo_-homo_6^; euc_6 sqrtv_-v_7^+et_-et_7^+std_- std_7^+cot_-cot_7^+corr_-corr_7^+eer_- eer_7^+homo_-homo_7^; euc_7 sqrtv_-v_8^+et_-et_8^+std_- std_8^+cot_-cot_8^+corr_-corr_8^+eer_- eer_8^+homo_-homo_8^; euc_8 sqrtv_-v_9^+et_-et_9^+std_- std_9^+cot_-cot_9^+corr_-corr_9^+eer_- eer_9^+homo_-homo_9^; euc_9 sqrtv_-v_0^+et_-et_0^+std_- std_0^+cot_-cot_0^+corr_-corr_0^+eer_- eer_0^+homo_-homo_0^; euc_totl euc_euc_euc_3euc_4euc_5euc_6euc_7euc_8euc_9] %Memplk Nl Euclde Mmum dr Mtrks euc_totl euc_m meuc_totl Hlm 7
9 Tekk Komputs: U Akhr Semester UAS C. Als Hsl Dr kompls scrpt Mtl d ts ddptk hsl seg erkut: Imges Vrles Averge Etropy Stdrd Devto Cotrst Correlto Eergy Homogety D8.gf e D8.gf e D83.gf e D84.gf e D85.gf e D86.gf e D87.gf e D88.gf e D89.gf e D90.gf e Hlm 8
10 Tekk Komputs: U Akhr Semester UAS Imge Terhdp Jrk Euclde Imge Imge Imge Imge Imge Imge Imge Imge Imge Sehgg: rk terpedek dlh: yg errt Imge terhdp Imge 9 memlk kemrp yg leh tes ddg kemrp Imge terhdp Imge sel Imge 9. Hlm 9
CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)
CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :
( X ) 2 ANALISIS REGRESI
ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk
PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI
PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte
Bab 4 ANALISIS REGRESI dan INTERPOLASI
Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp
A. Pusat Massa Suatu Batang
Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel
BAB VI ANALISIS REGRESI
BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet
PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel
Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode
PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange
Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.
Dr.Eng. Agus S. Muntohar Department of Civil Engineering
Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg
REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1
REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut
REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1
REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut
CNH2B4 / KOMPUTASI NUMERIK
CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk
PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial
Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6
home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk
1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.
KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk
INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
x 1 M = x 1 m 1 + x 2 m x n m n = x i
Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl
GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG
GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yu Hdyt Jurus Mtemtk FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 Astrt. A Bled Iomplete Blok (BIB) desg
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai
BAB 6 FITTIG DATA Atu dseut dengn penookn dt tu menentukn kurv terk ng mellu set dt (sekumpuln dt) dengn keslhn mnmum. Ukurn keslhn dlh E (root men squre, kr kudrt rt-rt). Ad eerp mm pol fttng dt: menurut
1. Aturan Pangkat 3. Logartima
KL UN Mtetk MA IPA 9/ No. KL Ruus. Meetuk egs pert g dperoleh dr perk kespul.. p q. p q. p q ~ (p q) = ~p ~q ~ (eu/etp p) = Ad/Beerp ~p p. ~q q r ~ (p q) = ~p ~q ~ (Ad/Beerp p) = eu/etp ~p q ~p p r p q
INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser
PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss
Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk
Model Tak Penuh. Definisi dapat di-uji (testable): nxp
Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)
Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon
Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi
Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)
BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs
Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS
Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Alss Regres Alss regres dlh tekk sttstk yg ergu utuk memerks d memodelk huug dtr vrel-vrel. Peerpy dpt djump secr lus d yk dg sepert tekk, ekoom, mjeme, lmu-lmu olog, lmu-lmu sosl,
F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2
B III : Ligkr 7 5.. DEFINISI Ellips dlh tept keduduk titik g julh jrk terhdp du titik tertetu tetp hrg. F (titik tetp) erupk erks gris g diseut direkstriks, F (-,) F (,) diseut eksetrisits (e). e = AB
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS
Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl
PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang
PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule
ESTIMASI KOEFISIEN KORELASI POLIKORIK MENGGUNAKAN METODE BAYESIAN DENGAN GIBBS SAMPLER
STIMSI KOFISIN KORLSI OLIKORIK MNGGUNKN MTOD BYSIN DNGN GIBBS SMLR d Setw [email protected] rogrm Stud Mtemtk Fkults Ss d Mtemtk Uversts Krste St Wc Jl Doegoro -60 Sltg 07 Idoes strct I ths er t s descred
Menaksir Matriks Teknologi Kota Cimahi Berdasarkan Tabel Input Output Provinsi Jawa Barat Menggunakan Metode Location Quontient
Sttstk, Vol. 9 No., 75 8 Nopemer 9 eksr trks Tekolog Kot Cmh Berdsrk Tel Iput utput Provs Jw Brt egguk etode octo Quotet TETI SFIA ANTI Jurus Sttstk Uversts Islm Bdug Eml: [email protected] ABSTRAK Tel Iput
ANALISIS ALIRAN DAYA BEBAN TIDAK SEIMBANG PADA FEEDER BLANG BINTANG GH LAMBARO BANDA ACEH
Semr Nsol d ExoTekk Elektro 2012 SSN : 2088-9984 ANALSS ALRAN DAYA BEBAN TDAK SEMBANG PADA FEEDER BLANG BNTANG GH LAMBARO BANDA ACEH Syhrl 1, Syukryd 2,Rdh Frdus 3 1,2,3.Tekk Eerg Lstrk Uversts Syh Kul
KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT
Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm [email protected]
Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah
VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B
matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn
SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015
SOLUSI REDIKSI UJIAN NASIONAL MATEMATIKA IS TAHUN AKET ilih Gd: ilihlh stu jw g plig tept.. Sit: p q p q Jdi, igkr dri pert dlh emerith meghpusk keijk susidi h kr mik tetpi d org g hidup tidk sejhter.
BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor
BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor
SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015
PAKET. Sit: SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN. ~ p q p ~ q. ~ p q~ p ~ q Jdi, igkr dri pert dlh Air sugi melup d kot tidk kejir tu eerp wrg kot tidk hidup mederit. []. Sit:. p q ~ q ~
LATIHAN UN MATEMATIKA IPA
LATIHAN UN MATEMATIKA IPA LATIH UN IPA. 00-00 DAFTAR ISI KATA PENGANTAR... DAFTAR ISI.... Pgkt Rsiol, Betuk Akr d Logritm.... Persm Kudrt...0. Sistem Persm Lier... 4. Trigoometri I...8 5. Trigoometri II...7
selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik
Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model
INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.
Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú.
x x g x x erh ditsi kurv = (x) deg (x), gris x =, gris x =, d sumu x. = {(x,) x, (x)} Lus derh dlh. L = lim x x = x erh ditsi kurv = (x), kurv = g(x), deg (x) g(x), gris x =, d gris x =. = {(x,) x, g(x)
TEOREMA DERET PANGKAT
TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (
CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2)
TTN KULH ertemu V: Moel-moel ler lr Mtrks (). Mer Mtrks vers Sutu mtrks () mempuy vers l terpt sutu mtrks B, seh B B. Mtrks B seut vers mtrks, tuls -, y merupk mtrks uur skr ermes. Syrt keer r Mtrks vers
Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b
LEMBAR KERJA SISWA. Judul (Mteri Pokok) : Penggunn Integrl Tentu Untuk Menghitung Volume Bend Putr. Mt Peljrn : Mtemtik 3. Kels / Semester : II /. Wktu : 5 menit 5. Stndr Kompetensi :. Menggunkn konsep
FAKTORISASI BENTUK ALJABAR
Mtetik Kels VIII Seester Fktorissi Betuk Aljr FAKTORISASI BENTUK ALJABAR A. Pegerti Suku pd Betuk Aljr. Suku Tuggl d Suku Bk Betuk-etuk seperti,,, p 9p, 9, d diseut Betuk Aljr. Betuk ljr terdiri ts eerp
APLIKASI INTEGRAL TENTU
APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA
Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya.
2 Sumer: Dsr-Dsr Foto Jurnlistik, 2003 esrn yng memiliki esr dn rh diseut esrn vektor. Keceptn merupkn slh stu esrn vektor. Vektor Hsil yng hrus nd cpi: menerpkn konsep esrn Fisik dn pengukurnny. Setelh
7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh
7. APLIKASI INTEGRAL MA KALKULUS I 7. Menghtung Lus erh.mslkn erh {(,, f ( ) Lus? f() Lngkh :. Irs menj n gn n lus stu uh rsn hmpr oleh lus perseg pnjng engn tngg f() ls(ler) A f ( ). Lus hmpr oleh jumlh
PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI. Fitria Rahma Sari dan Dana Indra Sensuse
PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI Ftr Rhm Sr d D Idr Sesuse Fkults Ilmu Komputer, Uversts Idoes, Depok, Idoes [email protected] Astrk Memlh
Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor
Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc
Go to Siti s file Siti Fatimah/Jurdikmat/UPI 1
Go o S s fle S Fmh/Jrdkm/UPI Movs Jmlh Rem-Iegrl Te Teorem Dsr Klkls Sf-sf Iegrl Te A Dervf-Iegrl Tk e Tekk Pegegrl S Fmh/Jrdkm/UPI Ls Bdg Legkg P P P Emp ss Delp ss S Fmh/Jrdkm/UPI Ls Bdg Legkg P P P
Solusi Sistem Persamaan Linear
Sos Sstem Persm Ler Sstem persm er: h persm deg h kow j d dketh, j,,, j? So: z 6 z z () () () persm d kow Jw: z 6.5 z.5 z () () () ems : pers. ().5 pers. () pers. ().5 pers. () z 6.5 z 8z 8 () () () ems
METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.
1 yang akan menghasilkan
Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr
ELIPS. A. Pengertian Elips
ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi
VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.
-1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor
Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)
Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier
3SKS-TEKNIK INFORMATIKA-S1
SKS-TEKNIK INFORMATIKA-S Momd Sdq PERTEMUAN : 9- INTEGRASI NUMERIK METODE NUMERIK TEKNIK INFORMATIKA S SKS Momd Sdq MATERI PERKUIAHAN SEBEUM-UTS Pegtr Metode Numerk Sstem Blg d Kesl Peyj Blg Bult & Pe
Catatan Kecil Untuk MMC
Ctt Keil Utuk MMC Judul : MMC (Metode Meghitug Cept), Tekik ept d uik dlm megerjk sol mtemtik utuk tigkt SMA. Peulis : It Puspit. Peerit : PT NIR JAYA Bdug. Thu :. Tel : 8 + 5 hlm. Berikut dlh tt keil
1. SISTEM PERSAMAAN LINEAR DAN MATRIKS
Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,
LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan
LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn
INTEGRAL DELTA DAN SIFAT-SIFATNYA. Delta Integral and Properties of Delta Integral
Jurl Brekeg Vol. 7 No. Hl. 3 8 (03) INTEGRAL DELTA DAN SIFAT-SIFATNYA Delt Itegrl d Propertes of Delt Itegrl MOZART WINSTON TALAKUA, MARLON STIVO NOYA VAN DELSEN Stf Jurus Mtemtk, FMIPA, Uptt Alum Jurus
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275
DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
HANDS-OUT ANALISIS NUMERIK
HANDS-OUT ANALISIS NUMERIK Oleh : Drs Her Sutro, M T Dew Rchmt, SS, MS JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA 8 Pertemu
INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31
INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs
BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA
BAB BENTUK PANGKAT, AKAR, DAN LOGARITMA A RINGKASAN MATERI. Sift-sift Ekspoe Misly d ilg rel ( 0, 0) sert d ilg rsiol, k erlku huug segi erikut. =... fktor = + = ( ) = ( ) =. Betuk Akr Jik d ilg rsiol
dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P
Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A
ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum
LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.
Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).
Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/
EXPONEN DAN LOGARITMA
Drs Pudjul Prijoo SMA Negeri Mlg EXPONEN DAN LOGARITMA A EXPONEN Sift-sift il Berpgkt yg ekspoey il Bult Sift-sift il Berpgkt yg ekspoey il Rsiol/Peh 0 ; 0 ; 0 0, 0 ; 0 0 d ; 7 0 0; ; Meyederhk etuk :
ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012
8/9/0 ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) Elty Srv, S., M. Fkults ekk Jurus ekk Idustr Uversts Krste Mrth Bdug ANOVA Dsr perhtug ANOVA dtetpk oleh Rold A. Fsher. Dstrus teorts yg dguk dlh
MetodeLelaranUntukMenyelesaikanSPL
MetodeLelrUtukMeyelesikSPL Metode elimisi Guss melitk yk glt pemult. Glt pemult yg terjdi pd elimisi Guss dpt meyek solusiyg diperoleh juh drisolusiseery. Ggs metod lelr pd pecri kr persm irljr dptjugditerpkutukmeyelesikspl.
PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.
PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt [email protected] Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy
PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA
PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR ABSTRAK ANA FARIDA.
INTEGRASI NUMERIS Numerical Differentiation and Integration
http://istirto.st.ugm..ci INTEGRASI NUMERIS Numericl Dieretitio Itegrtio Itegrsi Numeris http://istirto.st.ugm.c.i q Acu q Chpr, S.C., Cle R.P., 99, Numericl Methos or Egieers, E., McGrw-Hill Book Co.,
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT
K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:
INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh
Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering
Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd
Pendahuluan Aljabar Vektor Matrik
Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
