MATRIKS. Create by Luke
|
|
|
- Suharto Makmur
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Defiisi Mtris MTRIS Crete y Lue Seuh mtri dlh sergi eleme dlm etu persegi pg Eleme e-(i,) i dri mtris erd diris e-i d olom e- dri rgi terseut Order (uur) dri seuh mtri dit seesr (m x ) i mtris terseut memilii m ris d olom Misly, mx 4 4 m dlh seuh mtris (s x m), otsi li yg uup sigt dlh ( i ) tu m ( i ) Jeis-eis Mtris d ergi eis mtris ditry dlh Mtris uur sgr dlh seuh mtris dim m Mtris idetits dlh mtris uur sgr dim semu eleme digol dlh d e stu d semu eleme dilur digol dlh ol; yitu i, utu I i 0, utu I misly, seuh mtris idetits (3x3) diethui I Vetor ris dlh seuh mtris deg stu ris d olom Vetor olom dlh seuh mtris deg m ris d stu olom Mtris T diseut trpose dri i eleme i dlm dlh sm deg eleme i dri T utu semu I d, misly, i Dsr dsr mtemti Crete By Lue
2 f m T ser umum, T diperoleh deg meur ris d olom dri ity i memilii order (m x ), T memilii order (m x ) Mtris B 0 diseut mtris ol i setip eleme dri B sm deg ol g Du uh mtris i d B i, dit sm i d hy i eduy memilii order yg sm d setip eleme i dlh sm deg i yg ersesui utu semu i d Opersi Mtris Dlm mtris hy pemh, pegurg d perli yg di defiisi Pemgi wlupu tid didifiisi, digti deg osep iversi Pemh d pegurg mtri Du mtris i d B i dpt ditmh i eduy memilii order yg sm(mx ) Jumlh D + B diperoleh deg memh eleme-eleme yg ersesui Jdi, d i m x i + i m x i it megsumsi hw mtris, B d C memilii order yg sm, m ± B B ± (huum omuttif) ± (B ± C) ( ± B) ± C (huum sositif) ( ± B) T T ± B T Perli mtris Du mtris i d B i dpt dili dlm urut B i d hy i umlh olom dlh sm deg umlh ris B Yitu, i memilii order ( m x r ), m B hrus memilii order ( r x ), dim m d dlh uur semrg ggplh DB M D memilii order ( m x ), d eleme d i diethui d i r i B utu semu i d Dsr dsr mtemti Crete By Lue
3 misly, i m D e d h f i d g d ( xe ( xe e B h + xh) f i + dxh) g ( xf ( xf + xi) + dxi ( xg + xi) ( xg + dx) Perhti hw ser umum, B B selipu B didefiisi Perli mtris megiuti sift-sift umum eriut ii I m I m, dim I dlh mtris idetits (B)C(BC) C( + B ) C + CB d ( + B)C C + B e α(b) (α)b (αb), α dlh slr Determi Determi sutu mtri dlh slr (Bilg) yg diperoleh dri pegoprsi eleme-eleme mtris ser spesifi Setip mtri uur sgr C sxs sellu memilii ili tertetu, diseut segi iliili determiy sert dieri td C Determi dri setip sumtri uur sgr dri mtri C diseut segi mior dri C Jdi misly ordo dri C diurgi dri s x s medi r x r, m didpt determi dri sumtri r x r yg merup mior dri C Sutu mior yg didpt dri sumtris yg eleme-eleme digoly ug merup digol dri mtris C diseut mior poo ( priipl mior) oftor i dri eleme C i dlm mtris Cs x s dlh (-) i+ li determi dri mior erordo s-, yg diperoleh deg l meghilg ris e i d olom e dri mtris C Jdi oftor dlh mior deg td + tu - Cotoh Dsr dsr mtemti Crete By Lue 3
4 C m oftor utu eleme yitu 3+ ( ) esry determi C dpt dihitug mellui formul s C i i (6) il digu espsi mellui eleme-eleme olom e i d s C i i il digu espsi mellui eleme-eleme olom e utu s m C erdsr hl ii m rumus dits dpt disederh e dlm etu Utu s C Utu s 3, dpt dier mellui eleme-eleme dri ris pertm segi eriut C ( 3) ( ) + 3( 3) tu ser mudh dpt digmr deg rumus srus Dsr dsr mtemti Crete By Lue 4
5 () gmr 6 Ilustrsi rumus srus 3 3 () Pd gmr 6 dihsil Pd gmr 6 dihsil Utu s > 3 perhitugy medi leih rumit Dlm hl ii eerp sift determi seperti diuri eriut ii y meolog Ji setip eleme dri seuh olom tu seuh ris dlh ol, m ili determi dlh ol Nili determi tid eruh i ris d olom dipertur Ji B diperoleh dri deg mempertur setip du risy(tu olomy), m B - d Ji du ris (tu olomy) dri dlh ideti, m 0 e Nili tetp sm i slr α li stu vetor olom(tu seuh ris) dri seuh determi dili deg slr α, ili determi terseut dili deg α f Ji d B dlh du mtris uur sgr m B B Persm Lier d Determi Pdglh persm lier deg vriel yg tid diethui x, x,,x Dsr dsr mtemti Crete By Lue 5
6 i x, i,, 3,, (6) it misl r sutu mtris oefisie Rs mtris legp ), ( ug sm deg, re hy d ris Persm () dpt dipeh, i d hy i r mtris oefisie sm deg r mtris legp emudi hy d stu w s utu x, x,,x re rug w dimesi 0 re r, m semu ris-ris (olom-olom)es, di determi i 0 Utu meetu x it li persm e i dri (I) deg i, yitu oftor dri usur i, yitu oftor dri usur i, dim i,,3 d tetp Jdi i persm-persm ii diumlh, m x ( ) + x ( ) + x ( ) + x ( ) Dsr dsr mtemti Crete By Lue 6
7 oefisie-oefisie dri x, x,, x -, x +,, x sm deg ol d oefisie dri x sm deg D Rus ilh determi yg terdi, i olom e- digti deg ilg-ilg tetp pd rus persm () d dieri otsi D di, re D 0 x D i D dim,, 3,, D hsil ii diseut Pertur Crmer Pertur rmer hy dpt dipi, i determi oefisie tid ol Ivers Mtris Bil hrg determi dri mtris C sxs 0, m mtris C dit segi mtris sigulr Bil C 0 m mtrisy dit osigulr Bil i dlh oftor dri eleme i dlm mtris C emudi it etu mtris C * yg merup perputr dri mtris deg oftor-oftor terseut segi eleme-elemey C * (63) m mtris C * dits diseut segi mtris ugt (dugte mtrix) dri C Ivers dri mtris C yitu C - * C dpt didefiisi segi C C Bil mtris C merup mtris sigulr dim C 0, m C - tid dpt diselesi Perlu diigt pul hw ivers sutu mtris hy erlu gi mtris uur sgr s Beerp sift ivers mtris yg y ergu, tr li ( C` ) - ( C - )` ( C - ) - C (B) - B - - Dsr dsr mtemti Crete By Lue 7
INVERS MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
NVES MTS gusti Prdjigsih, M.Si. Jurus Mtemti FMP UNEJ [email protected] Defiisi : NVES Ji mtris bujursgr, d ji dpt dicri mtris B sehigg B = B =, M dit ivertible d B dim ivers iverse dri. [B= - ] etuggl
BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal
BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds
Bab 3 SISTEM PERSAMAAN LINIER
Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
1. SISTEM PERSAMAAN LINEAR DAN MATRIKS
Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
Persamaan Linier Simultan
Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel
Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon
Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi
Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks
Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug
Matriks dan Sistem Persamaan Linier
rpulic wwwdrpulicco Mtris d Siste Pers iier Kosep sr Mtris Mtris Mtri dl teti dlh susu tertur ilg-ilg dl ris d olo yg eetu sutu susu persegi pjg yg it perlu segi sutu estu (Istilh tris it jupi pul dl hs
MODUL III RUANG VEKTOR
MODUL III RUANG VEKTOR.. Rug Vetor Rug etor merup mteri yg sgt petig dlm Mtemti d Sttisti. Utu memgu rug etor diperlu pegethu tetg sistem ilg seperti ilg rel tu ilg Komples esert opersi pejumlh d perli
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
BAB I SISTEM PERSAMAAN LINEAR
BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik
METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.
MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi
BAB 5 PENDEKATAN FUNGSI
BAB 5 ENDEKATAN FUNGSI DEVIDE DIFFERENCE SELISIH TERBAGI A. Tuju. Memhmi oliomil Newto Selisih Terbgi b. Mmpu meetu oeisie-oeisie oliomil Newto c. Mmpu meetu oeisie-oeisie oliomil Newto deg Mtlb B. ergt
syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga
SUKU KE- BARISAN ARITMETIKA TINGKAT DUA, TIGA DAN EMPAT DENGAN PENDEKATAN AKAR KARAKTERISTIK Drs Sumro Imil, MP ABSTRAK Utu memeuhi eutuh lm pegemg pemhm terhp sustsi mteri ris ritmeti, ji ii memeri uri
TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Rukiyah 1*, Bustami 2, Sigit Sugiarto 2
TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Ruiyh, Bustmi, Sigit Sugirto Mhsisw Progrm S Mtemti Dose Jurus Mtemti Fults Mtemti d Ilmu Pegethu Alm Uiversits Riu Kmpus Biwidy
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
Pendahuluan Aljabar Vektor Matrik
Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.
1. Bilangan Berpangkat Bulat Positif
N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
BAB II DETERMINAN 2.1. DETERMINAN. Bab II Determinan
B II Determinn BB II DETERINN TUJUN PEBELJRN Sup mhsisw mempuni pengethun dsr dn pemhmn tentng onsep-onsep determinn, r menghitung determinn, plisi determinn pd geometri OUTOE PEBELJRN hsisw mempuni emmpun
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
DETERMINAN MATRIKS dan
DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ [email protected] DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.
BAB V INTEGRAL DARBOUX
Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower
Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0
LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt
SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)
SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki
SYARAT PERLU DAN CUKUP INTEGRAL HENSTOCK-BOCHNER DAN INTEGRAL HENSTOCK-DUNFORD PADA [a,b] Solikhin, Y.D. Sumanto, Susilo Hariyanto, Abdul Aziz
SYRT PERLU N CUKUP INTEGRL HENSTOCK-BOCHNER N INTEGRL HENSTOCK-UNFOR P [,] Solihi, Y Sumto, Susilo Hriyto, dul ziz 1,2,3,4 eprteme Mtemti FSM Uiversits ipoegoro Jl Prof Soedrto, SH Temlg-Semrg solihi@liveudipcid
Interpolasi dan Turunan Numerik (Rabu, 2 Maret 2016) Hidayatul Mayyani G
Iterpolsi d Turu Numeri (Rbu Mret 6) Hidytul Myyi G55535 Outlie: Iterpolsi Lier - Poliomil Lgrge - Poliomil Newto - Vdermode Mtris - Ivers Iterpolsi - Iterpolsi Neville Glt Iterpolsi Turu Numeri Estrpolsi
Penyelesaian Persamaan Linier Simultan
Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d
dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P
Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A
BAB IV INTEGRAL RIEMANN
Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
Copyright Provide Free Tests and High Quality. x < a maka a < x < a - x > a maka x < a atau x > a
Copyright 9 www.usmit.com Provide Free Tests d High Qulity TEORI RINGKAS PERTIDAKSAMAAN Sift-sift - > c > c utuk c > - > c < c utuk c < - > + c > + c utuk c R - > mk / > - < mk / < - Jik > d > c mk > c
BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN
BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x
Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan
Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript
Bentuk umum persamaan aljabar linear serentak :
BAB III Pers Aljr Lier Seretk Betuk umum persm ljr lier seretk : x + x + + x = x + x + + x = x + x + + x = dim dlh koefisie-koefisie kost t, dlh kosttkostt d dlh yky persm Peyelesi persm lier seretk dpt
SISTEM PERSAMAAN LINEAR. Systems of Linear Algebraic Equations
SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill Book Co., New York. Chpter 7, 8, d 9, hlm. -9. Sistem
BILANGAN BERPANGKAT DAN BENTUK AKAR
BILANGAN BERPANGKAT DAN BENTUK AKAR. Sift Opersi Bilg Bult Berpgkt Defiisi Pgkt Bult Positif Jik dlh ilg rel (yt) d dlh ilg sli (ilg ult positif), k... seyk fktor deg = pgkt tu ekspoe = ilg pokok/dsr/sis
CATATAN KULIAH Pertemuan III: Model-model linier dan Aljabar Matriks (1)
CTTN KULIH Pertemu III: Moel-moel liier ljr Mtriks () Tuju mempeljri ljr Mtriks : Memerik sutu r peulis sistem persm yg sigkt wlupu persmy lus sekli Memerik sutu r peguji sutu pemeh eg peekt etermi Meptk
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
Modul Praktikum Fisika Komputasi I. disusun Oleh : Yudha Arman
Modul Prtium Fisi Komputsi I disusu Oleh : Yudh Arm Progrm Studi Fisi Fults Mtemti d Ilmu Pegethu Alm Utiversits Tugpur Poti 08 Modul I. Peumlh d Pegurg Mtris Dsr teori Mtris terdiri dri susu g-g (eleme-eleme)
TRANSFORMASI-Z. Transformsi-Z Langsung Sifat-sifat Transformasi-Z Transformasi -Z Rasional Transformasi-Z Balik Transformasi-Z Satu Sisi
TRSFORMSI-Z Trsfrmsi-Z Lgsug Sift-sift Trsfrmsi-Z Trsfrmsi -Z Rsil Trsfrmsi-Z Bli Trsfrmsi-Z Stu Sisi TRSFORMSI-Z LGSUG Defiisi : ( ( Cth Sl Tetu trsfrmsi Z dri eerp siyl disrit di wh ii.. ( (,,, 5, 7,,,
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy
SISTEM PERSAMAAN LINEAR
http://istirto.stff.ugm..id SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier http://istirto.stff.ugm..id Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill
BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN
DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom
METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1
METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D
BARISAN DAN DERET. 2. Tuliskan tiga suku berikutnya dari setiap barisan berikut ini dan tentukan rumus sederhana suku ke n! a.
BARIAN DAN DERET A. BARIAN BILANGAN Bis dlh himpu semg usu-usu yg ditulis sec euut. Bis ilg dlh susu ilg yg disusu meuut sutu pol/ tu tetetu. Cotoh :.. Cotoh ol. Cilh 4 suku petm di is eikut, jik :.. c..
Modul II Limit Limit Fungsi
Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
x = Tegangan yang diterapkan, kg/mm 2 y = waktu patah, jam
INTERPOLASI Pr resw d hli ilmu lm serig beerj deg sejumlh dt disrit g umum disji dlm betu tbel. Dt didlm tbel mugi dieroleh dri hsil egmt dilg hsil eguur dilbortorium tu tbel g dimbil dri buu-buu cu. Cotoh
Posisi Integral Henstock-Dunford dan Integral Henstock- Bochner pada [a,b]
SEMINR NSIONL MTEMTIK N PENIIKN MTEMTIK UNY 06 Posisi Itegrl Hestoc-uford d Itegrl Hestoc- Bocher pd [,] Solihi, Heru Tjhj, Solichi Zi Fults Sis d Mtemti, Uiversits ipoegoro soli_erf@yhoocom -4 str Pd
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien
TRANSLASI. Jarak dan arah tertentu itu dapat diwakili oleh vektor translasi yaitu suatu pasangan A A B B C C. Akibatnya ABC kongruen dengan A B C.
TRANSLASI Definisi : Trnslsi tu pergesern dl sutu trnsformsi ng memindn tip titi pd idng dengn jr dn r tertentu. Jr dn r tertentu itu dpt diwili ole vetor trnslsi itu sutu psngn ilngn terurut. Pertin gmr
INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:
INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm
NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA 4. K i K i Notsi Sigm : 5. ( ± V i i i V i i ± dlh otsi sigm, digu utu meyt ejumlh beuut di sutu bilg yg sudh beol. meu huuf citl S dlm bjd Yui dlh huuf
METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.
1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng
matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT
K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk
FAKTORISASI BENTUK ALJABAR
Mtetik Kels VIII Seester Fktorissi Betuk Aljr FAKTORISASI BENTUK ALJABAR A. Pegerti Suku pd Betuk Aljr. Suku Tuggl d Suku Bk Betuk-etuk seperti,,, p 9p, 9, d diseut Betuk Aljr. Betuk ljr terdiri ts eerp
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
LATIHAN UN MATEMATIKA IPA
LATIHAN UN MATEMATIKA IPA LATIH UN IPA. 00-00 DAFTAR ISI KATA PENGANTAR... DAFTAR ISI.... Pgkt Rsiol, Betuk Akr d Logritm.... Persm Kudrt...0. Sistem Persm Lier... 4. Trigoometri I...8 5. Trigoometri II...7
Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER
Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil
ELIPS. A. Pengertian Elips
ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi
Mr.Alex Hu Method Halaman 1. Gunakan info : 1. Uan 2004/P-7/No.13 A. 180 B. 190 C. 200 D. 210 E. 220
. 00/P-7/No. 0 Nili dri ( 0 )... A. 80 B. 90 C. 00 D. 0 E. 0 Gu ifo : 0 ( 0 ) = = =0 = (.+0)+.+0)+...+(.0+0) = + +...+0 Yg terhir ii merup deret ritmeti deg : = b = = = 0 ( ( )b ) 0 (. ( 0 ( 9. ) ( ( 0
BAB III LIMIT FUNGSI DAN KEKONTINUAN
BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk
TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh
TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: [email protected] Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh
ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum
LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi
Trihastuti Agustinah
TE 967 Tekik Numerik Sistem Lier Trihstuti gustih Big Stui Tekik Sistem Pegtur Jurus Tekik Elektro - FTI Istitut Tekologi Sepuluh Nopember O U T L I N E OBJEKTIF CONTOH SIMPULN 5 LTIHN OBJEKTIF Teori Cotoh
Pertemuan 7 Persamaan Linier
Perteu 7 Pers Liier Ojektif:. Prktik ehi teori dsr Pers Liier. Prktik dpt eyelesik Pers Liier. Prktik dpt eut progr erkisr tetg Pers Liier Pers Liier P7. Teori Pers lier dlh seuh pers ljr, yg tip sukuy
TRANSFORMASI GEOMETRI
TRANSFORMASI GEOMETRI Trnsformsi digunn untu untu memindhn sutu titi tu ngun pd sutu idng. Trnsformsi geometri dlh gin dri geometri ng memhs tentng peruhn (let,entu, penjin ng didsrn dengn gmr dn mtris.
MATEMATIKA INDUKSI MATEMATIKA CONTOH SOAL A. PENGERTIAN INDUKSI MATEMATIKA B. LANGKAH-LANGKAH INDUKSI MATEMATIKA
MATEMATIKA KELAS XII - KURIKULUM 0 Sesi INDUKSI MATEMATIKA A. PENGERTIAN INDUKSI MATEMATIKA Indusi mtemti merupn pembutin dedutif, mesi nmny indusi. Indusi mtemti tu disebut jug indusi lengp sering dipergunn
INTEGRAL. y dx. x dy. F(x)dx F(x)dx
Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl
MetodeLelaranUntukMenyelesaikanSPL
MetodeLelrUtukMeyelesikSPL Metode elimisi Guss melitk yk glt pemult. Glt pemult yg terjdi pd elimisi Guss dpt meyek solusiyg diperoleh juh drisolusiseery. Ggs metod lelr pd pecri kr persm irljr dptjugditerpkutukmeyelesikspl.
bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )
Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of
BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah
Hsei Tpos, Bris d Deret, 06 BARISAN DAN DERET INTISARI TEORI A NOTASI SIGMA Misly st ris erhigg,,,, 3 Lg eyt jlh dri s pert ris, yit 3 Sift-sift Notsi Sig Ji d dlh ilg-ilg sli, deg d c dlh ostt rel, erl
PANGKAT, AKAR, DAN LOGARITMA., maka berlaku sifat-sifat operasi hitung: a).
Sip UN Mtetik sikeljrwordpresso PANGKAT, AKAR, DAN LOGARITMA A Sift-sift Opersi Hitug Pgkt Jik d ilg rel d 0,, k erlku sift-sift opersi hitug: ) deg srt sek ) ) d) e) f) g) 0 h) i) j) Pehs sol UN tetik
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh
Hendra Gunawan. 21 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sig : dlh otsi sig, digu utu eyt ejulh beuut di sutu bilg yg sudh beol. eu huuf citl S dl bjd Yui dlh huuf et di t SM yg beti julh. Betu
Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan
III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
EXPONEN DAN LOGARITMA
Drs Pudjul Prijoo SMA Negeri Mlg EXPONEN DAN LOGARITMA A EXPONEN Sift-sift il Berpgkt yg ekspoey il Bult Sift-sift il Berpgkt yg ekspoey il Rsiol/Peh 0 ; 0 ; 0 0, 0 ; 0 0 d ; 7 0 0; ; Meyederhk etuk :
BAB XXI. TRANSFORMASI GEOMETRI
BAB XXI. TRANSFORMASI GEOMETRI Trnsformsi digunn untu untu memindhn sutu titi tu ngun pd sutu idng. Trnsformsi geometri dlh gin dri geometri ng memhs tentng peruhn (let,entu, penjin ng didsrn dengn gmr
TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA)
TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA) Finite Stte Automt Seuh Finite Stte Automt dlh: Model mtemtik yng dpt menerim input dn mengelurkn output Kumpuln terts (finite set) dri stte (kondisi/kedn).
BAB II ELEMEN-ELEMEN RANGKAIAN
BAB II ELEMEN-ELEMEN RANGKAIAN 2. Elemen-Elemen Rngkin Elemen-elemen rngkin d yng diseut segi elemen ktif (sumer tegngn dn sumer rus) yitu : elemen yng siftny mmpu menylurkn energy ke rngkin. Selin itu
Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )
A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu
SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.
SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki
Barisan Dan Deret Tak Hingga
Bris D Deret T Higg Mteti Wji Kels XI Disusu oleh : Mrus Yuirto, S.Si Thu Peljr 06 07 SMA St Agel Jl. Merde No. Bdug =====================================================Mteti XI Wji Pegtr: Modul ii i
DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh :
DERET FOURIER Oleh : Nm :. Neti Okmyti 7..6). Reto Fti Amh 7..6). Feri Febrisyh 7..8) Kels : 6. Mt Kulih : Mtemtik jut Dose Pegsuh : Fdli, S.Si FAKUTAS KEGURUAN DAN IMU PENDIDIKAN UNIVERSITAS PGRI PAEMBANG
