0 akar-akarnya adalah p dan q. 0 akar-akarnya 2p dan r.
|
|
|
- Utami Agusalim
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Awl Ms Kemerdekn UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 5. SMA 5 Berkh m gr suy fungsi nili rel dri? Syrt fungsi dn D, sehingg m... () m m m sellu (definit) ositif untuk ti-ti m m m sellu (definit) ositif untuk ti-ti nili rel dri dlh D m m m m m m m m m m m m... () Dri () () dieroleh m.. PPT 5 Slh stu kr dri besrny du kli dri d slh stu kr dri. Hitunglh. Persmn kudrt... () kr-krny dlh dn q. Persmn kudrt kr-krny dn r.... () Persmn Persmn () menghsilkn: Sehingg, 6 tu Jdi, nili.. HBS (Hogere Burger School)-AMS (Algemeene Middelbre School) 5. But hrg yngmn: Ditentukn:. kedu krny nyt (rel)? b. jumlh kedu kr yng nyt itu ositif? c. hsilkli kedu kr yng nyt itu ositif? d. kedu krny ositif?. Syrt kedu krny (rel) dlh D. Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
2 6 7 7 b. Syrt jumlh kedu kr yng nyt itu ositif dlh D dn. D ()... () Dri () () dieroleh 7. c. Syrt hsilkli kedu kr yng nyt itu ositif dlh D dn D () 7 tu... () 7 Dri () () dieroleh tu. d. Syrt kedu krny ositif dlh D,, dn. D () Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
3 ... () tu... () Dri () () dieroleh. PPT 5 Ditentukn fungsi 7. sumbu X d du titik yng berlinn? y. Buktikn bhw grfik fungsi ini senntis memotong Syrt grfik fungsi y memotong di du titik berlinn dlh D b c D 6 Kren diskriminn bentuk kudrt y memotong di du titik berlinn.. kurng dri, mk untuk nili rel grfik fungsi 5. SMA 5 Dri deret ukur (deret geometri) turun tk terhingg dengn suku-suku rel hrg limit jumlhny sm dengn kudrt suku ertm. Hrg keblikn suku kedu, hrg keblikn suku ketig, hrg keblikn suku keemt dikurngi dengn merukn deret hitung (deret ritmetik). Tentuknlh suku ertm dn erbndingn (reden, rsio) dri deret ukur tdi. S r r r... () Deret hitung (deret ritmetik): Dri () dn () dieroleh: u u u u r r r r... () u u u 7 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
4 r r r r r r r r r r r r r r r r r r r r r r r (ditolk)tu r r 6. PPT 5 Pd sebuh deret ukur suku yng ertm ilh dn erbndingnny (rsio) sm dengn log.. Untuk hrg yng mnkh, mk d hd (limit) jumlh suku-suku deret itu? b. Ber besr limit itu?. r log log log 5 b. Ambillh n r, sehingg r S n r S lim n n r log 7. SMA bg B, 5 Hitunglh dri ersmn ) log b) 6 ) log log log log log 5 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
5 b) log SMA bg B, 5 Sebuh rbool dengn unck A, liwt titik B,5. Dri titik C, dibut gris singgung d rbool itu. Tentukn ersmn-ersmn rbool dn gris singgung. Gmbrkn kedu ersmn tersebut dlm stu grfik. Persmn rbolny dlh b D y y B,5 y 5 5 y 6 5 Ambillh ersmn gris singgungny dlh y m n. C, m n 5 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
6 n m y m m y m m y 6 5 m m 6 5 m m 5 m m Syrt gris menyinggung rbol dlh m m 6 m m 5 m m 6 m 6 Persmn gris singgungny dlh y, sehingg: D b c y dn Y y y y O X. SMA bg B, 5 Crilh (tu log ) dri ersmn: log log5 log log log7 7 log log5 log log log7 7 log5 log log log 7log 7 log log log5 log 5 Ambillh log 5 y y y log y5 y y 5 y, sehingg 6 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
7 y y 5 log log 5 log log log log 5 log log 5 log log 5. PPT bg. B, 5 Crilh dlm log log 5. log log log log 5 log log log log log5 log log log log5 log 5 56 log (ditolk, bilngnokok logritm )tu (diterim). PPT bg. B, 5 Klu ditentukn bhw log 5,, hitunglh Ambillh 5,, sehingg log log,, 6, , log,, 7,6 y log y log log y log log y,6,7,756, y,. SMA bg. B Peldjr Pedjung, 5 Crilh dn y dri: y 5 y 6 y y loglog log log log log 7 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5 y.
8 y 5 y 6 y y 6 y y 6 5 Ambillh y, sehingg y y (diterim) 6(ditolk) y 5 y 5 5 y... () y y loglog log log log log loglog log loglog log log y log log y log log y log log y 6 y y 6 y y y y y y 6 6 y (ditolk) tu y6... () Dri ersmn () dn () dieroleh: 5 y y6 5 6y y6 y y 5 y SMA bg. B Peldjr Pedjung, 5 Dri ersmn: k k k, ditentukn. Berkh k? Hitung jug hrg mksimum dri. Akr-kr ersmn kudrt k k k dlh dn.... () k k... () k k... () Dri ersmn () dn () dieroleh: Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
9 k k k k k k Substitusikn dn ke ersmn (), sehingg k k k k k k k 6 7k k 6 k k 7 k k 7 b k 5 m. PPT bg. B, 5 Fungsi y log b c k k k k k k 6 k k menjdi = untuk dn untuk 6. Hrg mksimum =.. Berkh besrny c? b. Buktikn dengn erhitungn bhw dn b. Isilh hrg yng didt untuk, b, dn c itu dlm bngun b c yng kn kit sebut z. c. Untuk hrg-hrg yng mnkh z. Berkh y dlm hl ini? d. Untuk hrg z yng mnkh z negtif? Akh kibtny bgi y? e. Untuk hrg yng mnkh z ositif lebih kecil dri? Akh tnd y dlm hl ini? f. Untuk hrg yng mnkh z lebih besr dri d? Akh tnd y? g. Butlh sesui dengn ketentun-ketentun dn endtn-endtn tdi itu sebuh lukisn y log z.. y log b c log b c logc c b. 6 log 6 b 6 6 6b 66b b 6... () y m b c b log log Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
10 c. d. e. f. b b 6 b... () Dri ersmn () dn () dieroleh 6 6 (ditolk) (diterim) b 6 z z Kren z, mk z 6 tu y log dlh tidk didefinisikn, kren numerus hrus bernili ositif. Akibtny fungsi y tidk memunyi nili (tidk terdefinisi) untuk intervl tersebut. z Sehingg y. z Sehingg y. 6 6 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
11 g. Grfik fungsi y log z log Y y log z log O 5 6 X 5. PPT bg. B, 5 Grfik fungsi y q r mellui titik, dn memotong dri sumbu-sumbu ositif bginbgin yng sm =. Tentukn, q, dn r dn symtot-symtot dri gris lengkung itu., y q r,, q r q r q r... () y q r q r... () y q r q r r... () Dri ersmn () dn () dieroleh r r. Substitusikn dn r ke ersmn () sehingg dieroleh q q y Jdi, symtot tegk dn symtot dtr y. 6. SMA bg. B Peldjr Pedjung, 5 Gmbrlh grfik 57 y. 6 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
12 Grfik memotong sumbu X, jik y, sehingg Jdi, koordint titik otongny dlh,5; dn,. Grfik memotong sumbu Y, jik y 6 6, sehingg 7 Jdi, koordint titik otongny dlh, y Asymtot dtr dlh y. Asymtot tegk dlh 6 Menentukn koordint titik otong symtot dtr dengn grfik Jdi, koordint titik otongny dlh, 7. Sutu nili y terci untuk nili-nili yng merukn kr-kr ersmn kudrt dlm berikut ini. 57 y 6 y y 6y 5 7 y y 5 6y 7 y y y Persmn kudrt ini memunyi kr-kr rel, jik y y y y y 5 6y y 56 y y y Jdi, hrg minimum reltifny dlh y,5 Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
13 , 7 6, 6,, tu, Jdi, koordint titik minimum reltif dlh,; dn,;. 57 Skets grfik fungsi y. 6 Y,5; 6 6, 7 y O 5 6 X,;, 5,;,5 Bersmbung Husein Tmoms, Sol dn Solusi Ujin Penghbisn Sekolh Menengh Tingkt Ats, 5
UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN
Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Ms Silm UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 9 ALJABAR. HBS (Hogere Burger School) NI dn AMS (Algemeene Middelbre
UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN
Mengenng Jejk Sebgin Kecil Bngs Indonesi ng Pernh Mengikuti Ujin Sekolh Pd Awl Ms Keerdekn UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 98 ALJABAR. SMA 98 Ditentukn persn tingkt du: 7 6.. Berpkh
MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.
MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log
PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :
PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt
Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0
PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn
Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT
Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0
FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.
FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.
Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40
Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu
Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30
Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik
matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma
K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006
www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk
E-LEARNING MATEMATIKA
MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli
IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =
IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri
TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI
LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn
SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015
SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Pket Pilihlh jwn yng ling tet!. Dierikn remis-remis erikut!. Jik enggun kendrn ermotor ertmh nyk mk kemcetn di rus jln semkin dt.. Kemcetn di rus jln tidk
LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan
LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn
2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT
. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun
matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu
Matematika EBTANAS Tahun 1992
Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu
BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO
. Jwbn : C 8 3 8 6 3 3 3 6 BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO. Jwbn : C Tig bilngn prim pertm yng lebih besr dri 0 dlh 3, 9, dn 6. Mk 3 + 9 + 6 = 73. Jdi, jumlh tig bilngn
http://meetbied.wordpress.com SMAN Bone-Bone, Luwu Utr, Sul-Sel Bnyk keggln dlm hidup ini dikrenkn orng tidk menydri betp dektny merek dengn keberhsiln, st merek menyerh (Thoms Alf Edison) [RUMUS CEPAT
Soal Latihan dan Pembahasan Fungsi kuadrat
Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di
Aljabar Linear Elementer
ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
Solusi Pengayaan Matematika
Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
Aljabar Linear Elementer
ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits
Matematika SKALU Tahun 1978
Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log
INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:
INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh
SIMAK UI 2011 Matematika Dasar
SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls
PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA
K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt
PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB
PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB Jln Ldng Koto Sungi Trb Telp.07790 PAKET A b c. Bentuk sederhn dri : - bc bc b c dlh... bc 9 bc c b. Bentuk sederhn dlh. b c c
ELIPS. A. Pengertian Elips
ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi
3. LIMIT DAN KEKONTINUAN
3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp
BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)
BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,
SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015
PAKET SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS. Sit: p q ~ p q Mthmn tidk eljr tu di dpt mengerjkn sol UN mtemtik dn lulus UN setr dengn perntn Jik Mthmn eljr mk di dpt mengerjkn sol UN mtemtik dn
Solusi Pengayaan Matematika Edisi 15 April Pekan Ke-3, 2010 Nomor Soal:
Solusi Pengyn Mtemtik disi 5 pril Pekn Ke-3, 00 Nomor Sol: -50. Pd segitig siku-siku di dibut gris bert dn F. Pnjng = dn F = 9. Pnjng sisi miringny dlh.. 6 5. 6 3. 6. 5 5. 6 Solusi: [] Menurut Teorem Pythgors:
IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier
8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh
15. INTEGRAL SEBAGAI LIMIT
15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)
Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd
Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013
10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil
Antiremed Kelas 11 Matematika
Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit
E. INTEGRASI BAGIAN ( PARSIAL )
E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )
Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,
F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49
11/9/01 Pet Konsep Jurnl Mteri Umum Pet Konsep Pngkt Rsionl Dftr Hdir Mteri F EKSPONEN DAN LOGARITMA Kels X, Semester 1 F. ritm Pngkt Bult Positif Pngkt Nol Pngkt Bult Negtif Bentuk Akr Pngkt Pechn SolLtihn
INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.
INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl
Antiremed Kelas 11 Matematika
Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk
FISIKA BESARAN VEKTOR
K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.
8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w.
http://www.syiknybeljr.wordpress.co PEMBAHASAN SOAL SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI (SBMPTN) TAHUN 0. Jik, k nili A. (kunci) B. C. D. E... ( ) ( ) Kedu rus dikrkn: 8 = ( ) = = ( ) ( ) 8 =
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
Tugas Menyelesaikan Soal Disusun Untuk memenuhi tugas Mata kuliah Kajian Matematika SMA 1 Dosen: Padrul Jana, M.Sc
Tugs Menyelesikn Sol Disusun Untuk memenuhi tugs Mt kulih Kjin Mtemtik SMA Dosen: Pdrul Jn, M.Sc Disusun Oleh: Kelomok /5A. Nurul Istiqomh 000. Muhmmd Mukti Ali 00. Diyh Elvi Rin 00. Ambr Retno Muti 0050
17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1
17. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (0, ) 0 x 1 x 1 0 x 2 (b, 0) 0 b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 )
A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA
Mtemtik SMA Semester B : Bentuk Pngkt,Akr & Logritm Mteri Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Kometensi Dsr : Menggunkn sift dn turn tentng ngkt, kr dn logritm dlm emechn mslh Kometensi Dsr : Melkukn
Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.
Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu
Matematika SMA (Program Studi IPA)
Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi
3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar
. LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn
LIMIT DAN KONTINUITAS
LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
MATEMATIKA IPA PAKET A KUNCI JAWABAN
MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis
3. LIMIT DAN KEKONTINUAN
. LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
VEKTOR. Adri Priadana. ilkomadri.com
VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti
A 1P = PA 2 B 1P = PB 2 F 1P = PF 2 A 1A 2 B 1B 2 F 1 dan F 2 A 1 dan A 2 B 1 dan B 2 B 2
http://www.smkpeklongn.sch.id Elips A. Pengertin Elips Elips dlh tempt kedudukn titik-titik pd geometri dimensi yng memiliki jumlh jrk yng tetp terhdp du titik tertentu. Selnjutny du titik tertentu terseut
SOLUSI TRY OUT SMA NEGERI 2 CIBINONG DINAS PENDIDIKAN KABUPATEN BOGOR
SOLUSI TRY OUT SMA NEGERI CIBINONG DINAS PENDIDIKAN KABUPATEN BOGOR. Persmn kudrt p p 0 nili p yng memenbuhi dlh... A. tu B. tu C. tu D. tu E. tu Solusi: [Jwbn E] p p p p 0 p p 0 p p mempunyi kr-kr dn.
BENTUK PANGKAT, AKAR DAN LOGARITMA
BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn
Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII
Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang
VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn
SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN
SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN Dr. Djdir, M.Pd. Dr. Ilhm Minggi, M.Si J fruddin,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si Shln Sidjr,
MODEL POTENSIAL 1 DIMENSI
MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,
SIFAT-SIFAT LOGARITMA
K- Kels X mtemtik PEMINATAN SIFAT-SIFAT LOGARITMA Tujun Pembeljrn Setelh memeljri mteri ini, kmu dihrkn memiliki kemmun berikut.. Memhmi definisi logritm.. Dt menentukn nili logritm dengn menggunkn tbel
selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik
Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk
SUKUBANYAK (POLINOMIAL)
SUKUBANYAK (POLINOMIAL) A. Bentuk Umum Sukubnyk (Polinomil) n n n b c... z n = pngkt tertinggi (derjt sukubnyk) n = koefisien 7 5 5 9 6 dlh sukubnyk berderjt 7, koefisien dlh 9, koefisien konstnt dlh 6
ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear
ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi
Interpolasi. Umi Sa adah
Interolsi Umi S dh Interolsi Perbedn Interolsi dn Ekstrolsi Interolsi Linier L Interolsi Kudrt L h h Interolsi Qubic L h h h Interolsi dg Polinomil 5 Tble : Si equidistntl sced oints in [- ] 5 -..846
PENYELESAIAN SOAL UJIAN TENGAH SEMESTER 2010
PNYLSAIAN SOAL UJIAN TNGAH SMSTR SOAL A Pengolhn dt nnul series curh hujn hrin mximum, H mm, di sutu stsiun ARR menunjukkn bhw sebrn probbilits sutu besrn curh hujn, p H (h), dpt dinytkn dengn sutu ungsi
LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.
DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut
http://meetied.wordpress.com Mtemtik X Semester 1 SMAN 1 Bone-Bone Reutlh st ini. Ap pun yng is And lkukn tu And impikn Mulilh!!! Keernin mengndung kejeniusn, kekutn dn kejin. Lkukn sj dn otk And kn muli
MATERI I : VEKTOR. Pertemuan-01
MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn
7. Ruang L 2 (a, b) f(x) 2 dx < }.
7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f
3 PANGKAT, AKAR, DAN LOGARITMA
PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 3
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Pket Pilihlh jwbn yng pling tept!. Diberikn premis-premis berikut!. Mthmn beljr tidk serius tu i dpt mengerjkn semu sol Ujin Nsionl dengn benr.. I tdk dpt
THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7
THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu
MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika
MATEMATIKA DASAR Modul ke: 0Fkults FASILKOM Progrm Studi Teknik Informtik Bb Bilngn Irsionl dn Logritm Drs. Sumrdi Hs., M.Sc. Bgin Isi Bilngn Irsionl - Berbgi bentuk kr dn opersiny Logritm - Sift-sift
Jarak Titik, Garis dan Bidang dalam Ruang
Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.
r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.
Husn Arifh,M.Sc : Persmn Legendre Emil : [email protected] Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga
ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik
SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real
SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri
UN SMA IPA 2004 Matematika
UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis
DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.
DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn
1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk:
KISI KISI SOAL UJI COBA UJIAN NASIONAL MATA PELAJARAN MATEMATIKA TAHUN 009 / 00 MGMP MATEMATIKA SMK TEKNIK KABUPATEN KLATEN Bhn/ X / Opersi bilngn rel. Sisw dpt: A. Mengkonversi dri desiml ke persen B.
Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn
SEMI KUASA TITIK TERHADAP ELIPS
RISMTI - ISSN : - 66 THUN VOL NO. GUSTUS 5 SEMI US TITI TERHD ELIS rnidsri Mshdi rtini Mhsisw rogrm Studi Mgister Mtemtik Universits Riu Jl. HR Soernts M 5 mpus in Wid Simpng ru eknru Riu 89 Emil: [email protected]
