II. MODEL AMMI PADA DATA BERDISTRIBUSI BUKAN NORMAL: TRANSFORMASI KENORMALAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "II. MODEL AMMI PADA DATA BERDISTRIBUSI BUKAN NORMAL: TRANSFORMASI KENORMALAN"

Transkripsi

1 II. MODEL AMMI PADA DATA BERDISTRIBUSI BUKAN NORMAL: TRANSFORMASI KENORMALAN.1 Pendahuluan Analisis AMMI adalah suatu teknik analisis data percobaan dua faktor perlakuan dengan pengaruh utama perlakuan bersifat aditif sedangkan pengaruh interaksi dimodelkan dengan model bilinier. Model AMMI merepresentasikan observasi ke dalam komponen sistematik yang terdiri dari pengaruh utama (main effect) dan pengaruh interaksi melalui suku-suku multiplikatif (multiplicative interactions), di samping komponen acak sisaan atau galat. Komponen acak pada model ini diasumsikan menyebar Normal dengan ragam konstan. Pada dasarnya analisis AMMI menggabungkan analisis ragam aditif bagi pengaruh utama perlakuan dengan analisis komponen utama ganda dengan pemodelan bilinier bagi pengaruh interaksi yang memanfaatkan peguraian nilai singular (SVD) pada matriks interaksi (Mattjik A. A, & Sumertajaya, I. M., 00). Kelayakan model AMMI dengan galat yang Normal dan ragam konstan ada kalanya tidak terpenuhi. Transformasi data pengamatan mungkin menjadi salah satu teknik untuk mengatasi masalah ketidaknormalan ini. Bab ini bertujuan mendiskusikan penggunanan transformasi kenormalan untuk mendapatkan data yang menekati Normal (setidaknya simetrik) dan kemudian memodelkannya dengan AMMI.. Model AMMI dan Asumsi Kenormalan Galat Model AMMI dikenal luas pada bidang terapan, terutama pada bidang pemuliaan yaitu kajian interaksi genotipe lingkungan (IGL). Sebutan lain seperti model bilinear, atau model biaditif lebih menunjuk pada struktur model tersebut. Secara umum model AMMI untuk peubah acak y ij dari baris ke-i dan kolom ke-j adalah: E( y ij ) = μ + α + β + i j K k = 1 λ k γ ki δ kj dengan μ adalah rataan umum, α pengaruh aditif (utama) baris ke-i ( i = 1,..., I), i dan β pengaruh aditif kolom ke-j ( j = 1,..., J ). Pada pendugaannya kedua j

2 6 pengaruh utama ini diidentifikasi dengan kendala berupa jumlah yang sama dengan nol. (Mattjik A. A. & Sumertajaya, I. M., 00; Van Eeuwijk, 1995) Pengaruh interaksi dimodelkan sebagai jumlah dari suku multiplikatif, yang banyaknya sama atau kurang dari pangkat matriks sisa dari pengaruh aditif (utama). Parameter suku multiplikatif pengaruh interaksi untuk baris dinotasikan dengan γ ki adalah juga skor baris sumbu ke-k dan kolom ke-i. Skor kolom ke-j pada sumbu ke- k dinotasi dengan δ ki. Nilai singular yang berpadanan dengan sumbu ke-k yang direpresentasi oleh λ k adalah ukuran asosiasi antara skor baris dan kolom. Nilai yang diperoleh dari penguraian nilai singular (SVD) ini mengindikasikan tingkat kepentingan sumbu. Kuadrat dari nilai singular, yaitu nilai akarciri sama dengan jumlah kuadrat sumbu yang bersangkutan. Kendala untuk parameter suku multiplikatif meliputi jumlah yang sama dengan nol (terpusatkan) dan perkalian silangnya sama dengan nol (ortonormal). Dalam kasus data tidak menyebar Normal, kelayakan model AMMI menjadi tidak terpenuhi. Jika matriks data bebas, berdistribusi Normal dengan ragam konstan, penduga kemungkinan maksimum tereduksi menjadi SVD. Manakala sebarannya bukan Normal Binomal, Poisson, invers Gaussian, misalnya kesamaan ini tidak lagi berlaku (Falguerolles, 1996). Data yang berdistribusi bukan Normal cenderung tidak homogen, dan bila dimodelkan dengan AMMI ketakhomogenan ragam dapat berakibat buruk, sedangkan skala dugaannya mungkin juga tidak memuaskan. Kedua fenomena ini bisa jadi membutuhkan dimasukkannya suku interaksi tambahan (Van Eeuwijk, 1995). Kadangkala ada alasan kuat untuk tetap memodelkan data pada skala pengamatan. Kehomogenan ragam dapat diatasi dengan menambahkan satu atau lebih suku multiplikatif interaksi. Ketika tidak ada alasan untuk memaksa pemodelan tetap pada skala pengamatan, maka transformasi terhadap peubah respon dapat dilakukan untuk mengurangi masalah ini. Model linier atau bilinier dikenakan pada data yang telah ditransformasi, dan sifat sebaran sisaan diasumsikan memenuhi sebaran Normal.

3 7.3 Langkah Pemodelan AMMI Pemodelan bilinier bagi pengaruh interaksi genotipe dengan lokasi ( γ ge ) pada analisis ini adalah sebagai berikut : 1. Langkah pertama menyusun pengaruh interaksi dalam bentuk matriks dimana genotipe (baris) lokasi (kolom), sehingga matriks ini berorde a b. υ 11 υ =... υ a υ 1b... υ ab. Langkah selanjutnya dilakukan penguraian bilinier terhadap matriks pengaruh interaksi υ ge = n j= 1 λ j ϕ gj ρ ej + δ ge = λ 1 ϕ g1ρ e1 + λϕ g ρ e λnϕ gn ρ en + δ ge sehingga model AMMI secara lengkap dapat dituliskan sebagai berikut : Υ = + α + β + ger g e n μ λ ϕ ρ + δ + ε n gn en = μ + α g + β e + λ1 ϕ g1ρ e1 + λ1ϕ g ρe λnϕ gnρen + δ ge + ε ger ge ger keterangan : g = 1,,.,a ; e = 1,,., b ; n = 1,,,m dengan λ n nilai singular untuk komponen bilinier ke-n ( λn adalah akarciri Z Z) λ1 λ... λ 1 b. ϕ adalah pengaruh ganda genotipe ke-g melalui gn komponen bilinier ke-n, ρ en pengaruh ganda lokasi ke-e melalui komponen bilinier ke-n. Dengan kendala (identification constrains) : (1). ϕ ρ = 1, untuk n=1,,,m, dan g gn = (). ϕ = ρ ρ = g 0 g gn gn' e en en' en ϕ, untuk n n, δ ge simpangan dari pemodelan bilinier (Crossa 1990 diacu dalam Mattjik A. A. & Sumertajaya, I. M., 00).

4 8.3.1 Perhitungan Jumlah Kuadrat Pada pemodelan ini pengaruh aditif genotipe dan lingkungan serta jumlah kuadrat dan kuadrat tengahnya dihitung sebagaimana umumnya pada analisis ragam, tetapi berdasarkan pada data rataan per genotipe lokasi. z Pengaruh ganda genotipe dan lingkungan pada interaksi diduga dengan ge yge yg. y. e + y.. = sehingga jumlah kuadrat interaksi dapat diturunkan sebagai berikut : JK ( GE) r z = r ( y y y + y ) r teras( zz' ) = g. e ge ge g.. e.. = Berdasarkan teorema pada aljabar matriks bahwa teras dari suatu matriks sama dengan jumlah seluruh akar ciri matriks tersebut: tr ( A) = i λ i maka jumlah kuadrat untuk pengaruh interaksi komponen ke-n adalah akar ciri ke-n pada pemodelan bilinier tersebut ( λ n ), jika analisis ragam dilakukan terhadap data rataan per genotipe lingkungan. Jika analisis ragam dilakukan terhadap data sebenarnya maka jumlah kuadratnya adalah banyaknya ulangan dikalikan akar ciri ke-n ( rλ ). Pengujian masing-masing komponen ini dilakukan dengan membandingkannya terhadap kuadrat tengah galat gabungan..3. Penguraian Derajat Kebebasan Derajat bebas untuk setiap komponen tersebut adalah a+b-1-n. Besaran derajat bebas ini diperoleh dari jumlah p parameter yang diduga dikurangi dengan jumlah n kendala. Banyaknya parameter yang diduga adalah a+b-1 sedangkan banyak kendala untuk komponen ke-n adalah n. Kendala yang dipertimbangakan adalah kenormalan dan keortogonalan..3. Penguraian Nilai Singular Penguraian Nilai Singular (Singular Value Decomposition) untuk matriks pengaruh interaksi Z sebagaimana dikemukakan oleh Greenacre (1984) adalah memodelkan matriks tersebut sebagai berikut: Z = U L A n

5 9 Dengan Z adalah matriks data terpusat, n x p, L adalah matriks diagonal D λ akar dari akarcirri positif bukan nol dari Z Z, ( n ) m m selanjutnya disebut nilai singular, A dan U adalah matriks ortonormal (A A=U U=I r ). Kolom-kolom matriks A={a 1,a,,a n } adalah vektor-vektor ciri Z Z sedangkan U diperoleh dengan: U = ZAL 1 Za1 = λ1 Za λ L Za n λ n.3.4 Nilai Komponen AMMI Secara umum nilai komponen ke-n untuk genotipe ke-g adalah 1 k n sedangkan nilai komponen utama untuk lokasi ke-e adalah l ρ. en k l ϕ n gn Dengan mendefinisikan L k (0 k 1) sebagai matrik diagonal yang elemen-elemen diagonalnya adalah elemen-elemen matriks L dipangkatkan k demikian juga dengan matrik L 1-k, dan G=UL k serta H=AL 1-k maka penguraian nilai singular tersebut dapat ditulis: Z=GH Dengan demikian skor komponen untuk genotipe adalah kolom-kolom matriks G sedangkan skor komponen untuk lingkungan adalah kolom-kolom matriks H. Nilai k yang digunakan pada analisis AMMI adalah ½..3.5 Penentuan Banyaknya Komponen AMMI Jika beberapa kolom pertama matriks G dan H telah dapat menghasilkan penduga Z dengan baik maka banyak kolom matriks G dan H dapat dikurangi. Gauch pada tahun 1988 dan kemudian Crossa 1990 mengemukakan dua metode penentuan banyaknya sumbu komponen utama yang sudah cukup untuk penduga, yaitu Postdictive Success dan Predictive Success.. Postdictive success berhubungan dengan kemampuan suatu model yang tereduksi untuk menduga data yang digunakan dalam membangun model tersebut. Salah satu penentuan banyaknya komponen berdasarkan Postdictive success adalah berdasarkan banyaknya sumbu tersebut yang nyata pada uji F analisis

6 10 ragam. Metode ini diusulkan oleh Gollob pada 1968 dan direkomendasikan oleh Gauch pada 1988 (Sumertajaya,1998). Predictive success berhubungan dengan kemampuan suatu model dugaan untuk memprediksi data lain yang sejenis tetapi tidak digunakan dalam membangun model tersebut (data validasi). Penentuan banyak sumbu komponen utama berdasarkan predictive success ini dilakukan dengan validasi silang, yaitu membagi data menjadi dua kelompok, satu kelompok untuk membangun model dan kelompok lain digunakan untuk validasi (menentukan jumlah kuadrat sisaan). Hal ini dilakukan berulang-ulang, pada setiap ulangan dibangun model dengan berbagai sumbu komponen utama. Banyaknya komponen utama yang terbaik adalah rataan akar kuadrat tengah sisa (RMSPD=Root Mean Square Predictive Different) dari data validasi paling kecil..3.6 Interpretasi Biplot AMMI Alat yang digunakan untuk menginterpretasi hasil dari metode AMMI adalah biplot. Pada dasarnya metode ini merupakan upaya untuk memberikan peragaan grafik dari suatu matriks dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi dua. Vektor-vektor yang dimaksud yaitu vektor yang mewakili nilai skor komponen lingkungan. Biplot adalah plot antara satu kolom G dengan kolom G yang lain yang ditampilkan secara bersama-sama dengan plot kolom H dengan kolom H yang lain yang bersesuaian dengan kolom G yang diplot (Jolliffe, 1986). Sebagian statistikawan membuat plot antar kolom U dan antar kolom H secara bersamaan. Sebagian peneliti pertanian (pemuliaan tanaman) bahkan membuat plot antara kolom-kolom tersebut dengan nilai rataan data asli per peubah amatan yang sesuai. Biplot pada analisis AMMI biasanya berupa biplot antara nilai komponen utama pertama dengan rataan respon (biplot AMMI1). Biplot antara komponen utama kedua dan nilai komponen pertama (biplot AMMI) bisa ditambahkan jika komponen utama kedua ini nyata Interpretasi biplot AMMI1 adalah bagi titik-titik yang sejenis. Jarak titiktitik amatan berdasarkan sumbu datar (rataan respon) menunjukkan perbedaan pengaruh utama amatan-amatan tersebut. Sedangkan jarak titik-titik amatan

7 11 berdasarkan sumbu tegak (KUI1) menunjukkan perbedaan pengaruh interaksinya atau perbedaan kesensitifannya terhadap lokasi. Biplot AMMI1 menunjukkan bahwa genotipe dikatakan mempunyai daya adaptasi baik pada suatu lingkungan jika genotipe dan lingkungan bertanda sama (berinteraksi positif). Biplot AMMI menggambarkan pengaruh interaksi antara genotipe dan lingkungan. Titik-titik amatan yang mempunyai arah yang sama berarti titik-titik amatan tersebut berinteraksi positif (saling menunjang), sedangkan titik-titik yang berbeda arah menunjukkan bahwa titik-titik tersebut berinteraksi negatif..4 Transfomasi Data Akibat ketaknormalan dan ketakhomogenan ragam pada model linier atau biliner telah disinggung pada sub bab.1. Transformasi pada peubah respon ditengarai merupakan upaya perbaikan atas kedua hal tersebut. Model linier atau bilinier dapat dikenakan pada data yang telah ditransformasi, dan sifat sebaran sisaan diasumsikan memenuhi sebaran Normal. Berikut ini akan dibahas tentang metode transformasi. Transformasi data pada hakekatnya adalah suatu usaha untuk mungubah data dari suatu skala ke skala yang lain. Model linier yang klasik (analisis ragam atau regresi) telah dikembangkan berdasarkan pada beberapa asumsi pokok yaitu keaditifan (model pengaruh utama), ragam perlakuan yang homogen (keragaman data bersifat bebas dari rataan dan banyaknya ulangan), dan kenormalan data. Asumsi pertama berkaitan dengan struktur data yang pada akhirnya menyangkut penafsiran data, asumsi kedua berperan dalam menyederhanakan metode pendugaan parameter. Sedangkan yang terakhir sangat erat kaitannya dengan pengujian hipotesis. Metode pengujian hipotesis yang telah berkembang sangat lanjut adalah yang didasarkan pada kenormalan data, oleh karena itu patokan-patokannya dapat dengan mudah diperoleh dalam tabel-tabel sebaran statistik, seperti tabel t, F atau Khi-kuadrat (Aunuddin, 005). Dalam hal ini, transformasi bertujuan untuk mengatasi tiga masalah utama yaitu keheterogenan ragam, ketaknormalan galat, dan ketakaditifan/ketaklinieran pengaruh sistematik. Diakui bahwa bagaimanapun, tidak mudah mengatasi ketiga hal tersebut dengan satu langkah tunggal transformasi. Transformasi tunggal

8 1 biasanya manjur untuk mengatasi satu masalah tertentu tetapi tidak ketiganya. Keberhasilan transformasi untuk memperoleh kesederhanaan model (aditifitas/linieritas) mungkin mengakibatkan ketaknormalan dan ketakhomogenan ragam bila sebelumnya dua asumsi ini terpenuhi. Ada kalanya transformasi yang dilakukan untuk memperoleh ragam yang statbil membawa kita pada ketaknormalan (Rawling, J.O. et al., 1998). Beruntunglah, bahwa transformasi untuk memperoleh kehomogenan ragam dan ketaknormalan mempunyai kecenderugan diperoleh secara bersamaan (handin-hand), sehingga tidak jarang kedua asumsi dapat terpenuhi oleh suatu transformasi yang tepat (Bartlet, 1947 diacu dalam Rawling, J.O.et al.,1998) Transformasi untuk kehomogenan ragam seringkali juga memenuhi kenormalan. Transformasi logit, arcsinus, dan probit yang digunakan untuk menstabilkan ragam dan menyederhanakan model juga membuat distribusi mendekati kenormalan. Transformasi tersebut umumnya menarik (streching) ekor distribusi untuk memberikan bentuk distribusi yang mendekati bentuk genta. Demikian halnya dengan transformsi keluarga pangkat juga berguna untuk membuat distribusi menjadi semakin simetrik (mengurangi kemenjuluran). Harapannya adalah diperoleh distribusi data yang semakin mendekati Normal. Kriteria yang berbeda untuk menentukan tranformasi apa yang akan digunakan tidak harus munuju pada pilihan yang sama, tetapi sering terjadi transformasi yang optimum untuk suatu masalah juga memperbaiki masalah yang lain. Pada keluarga transformasi ini telah dikenal luas suatu metode perhitungan untuk menentukan transformasi optimum, yaitu transformasi Box-Cox..4.1 Transformasi Box-Cox Transformasi ini bertujuan memenuhi ketiga asumsi model linier, yaitu keheterogenan ragam, ketaknormalan galat, dan keaditifan/ketaklinieran pengaruh sistematik. Box-Cox menggunakan kriteria yang menggabungkan tujuan memperoleh model yang sederhana dan ragam yang homogen pada satu sisi serta tujuan kenormalan data pada sisi lain.

9 13 Metode transformasi Box-Cox menggunakan keluarga transformasi parametrik yang didefinisikan dalam bentuk terbakukan sebagai berikut: Y ( λ ) i λ Yi 1,untuk λ 0 λ 1 λ( Y& ) Y & ln ( Yi ),untuk λ = 0 = dengan Y & adalah rataan geometrik dari peubah asal yaitu Y& = exp [ ln( Y )] i i n (Rawling, J.O.et al.,1998; Box, Hunter, & Hunter, 1978) Parameter λ diperoleh secara empirik melalui penduga kemungkinan maksimum untuk beberapa nilai λ yang dipilih. Tahapan perhitungan sebagai berikut: 1. Nilai λ dipilih dari selang tertentu, umumnya λ [-,], katakanlah λ =[ -, -1.5,-1, -0.5, -0.5, 0, 0.5, 0.5, 1, 1.5, dan ]. Jumlah kuadrat sisaan dari model ( ) Y λ i dituliskan sebagai JKS (λ), dan ragam bagi λ didefinisikan sebagai σ ( λ) = JKS( λ) n 3. Untuk masing-masing λ dihitung fungsi kemungkinan L 1 [ ] ( λ) = ln ˆ σ ( λ) 4. Memaksimumkan fungsi kemungkinan sama artinya dengan meminimumkan jumlah kuadrat sisaan. Dengan membuat plot antara λ dan L ( λ) dan memperhatikan titik kritis λ pada L( λ) λ maks ini adalah penduga titik bagi λ.. maksimum, maka Catatlah bahwa λ dapat pula diperoleh dari plot atau antara λ dan JKS( λ ) n dengan memperhatikan λ pada JKS( λ) n minimum. Dengan transformasi ini kita akan memperoleh sebaran yang simetrik mendekati Normal. Ketakhomogenan ragam pun dapat dikurangi dengan transformasi ini.

10 14.5 Metodologi Penelitian.5.1 Data Terdapat dua gugus data yang digunakan dalam penelitian ini. Data pertama dari Balai Penelitian Padi (Balitpa) Departemen Pertanian RI di Sukamandi, Jawa Barat, merupakan data uji daya hasil percobaan multilokasi yang melibatkan 1 varietas padi pada 5 lokasi. Penelitian akan memodelkan data persentase gabah isi, yang diamati saat panen. Data kedua adalah data percobaan pengendalian terhadap hama daun pada galur kedelai tahan hasil persilangan oleh Balai Penelitian Kacang-kacangan dan Umbi-umbian (Balitkabi) Departemen Pertanian RI di Malang, Jawa Timur. Percobaan ini melibatkan empat galur/varietas kedelai tahan hasil persilangan (Wilis, IAC-100, IAC dan W/ ). Penelitian ini memanfaatkan data populasi hama daun pada umur 14 hari setelah tanam..5. Tahapan Penelitian Pada bagian ini akan disajikan secara ringkas tahapan penelitian, sebagaimana dalam Gambar.1. Data Percobaan Pengujian Kenormalan Normal Tidak Trasformasi Box-Cox Tidak Pengujian Kenormalan Normal Model AMMI Biplot AMMI Gambar.1 Langkah penggunaan transformasi kenormalan pada AMMI

11 15 Langkah langkah pekerjaan penelitian adalah sebagai berikut: 1. Pengujian Kenormalan dilakukan dengan metode Anderson Darling atau Kolmogorov-Smirnov. Transformasi Box-Cox akan memperolah nilai lambda bagi peubah baru hasil transformasi. Transformasi Box-Cox dilakukan dengan bantuan GENSTAT (Lampiran 9). 3. Pengepasan model AMMI dilakukan dengan GENSTAT prosedur GAMMI dengan sebaran Normal dan fungsi hubung Identitas (Lampiran 10 & 11)..6 Hasil dan Pembahasan.6.1 Kestabilan Gabah Isi Varietas Padi: Data Persentase/Proporsi Data dalam bentuk proporsi biasanya tidak berdistribusi Normal. Hal ini ditunjukkan oleh uji kenormalan pada Gambar.3. Metode transformasi Box-Cox pada data proporsi gabah isi menghasilkan nilai dugaan lambda sebesar 7.80 pada nilai maksimum log-likelihood sebesar Plot log-likelihood disajikan pada Gambar. sedangkan nilai lambda untuk beberapa nilai log-likehood disajikan pada Lampiran. Dengan demikian diperoleh transformasi pangkat 7.8. Katakanlah yp adalah peubah populasi hama daun maka peubah transformasinya adalah 7.80 yz = yp. Uji kenormalan menunjukkan peubah yz ini menyebar mengikuti distribusi Normal (Gambar.3 kanan) Log likelihood Lambda Gambar. Plot log-likelihood transformasi Box-Cox data proporsi gabah isi

12 16 Analisis AMMI pada peubah yz menghasilkan nilai singular sebagai berikut , , 0.100, dan Kontribusi keragaman yang mampu diterangkan oleh masing-masing komponen adalah 37.34%, 3.18%, 19.40%, 11.08% menunjukkan bahwa tiga komponen pertama memiliki peran dominan dala menerangkan keragaman pengaruh interaksi. Probability Probability Average: StDev: N: p 0.95 W-test for Normality R: P-Value (approx): < Average: StDev: N: Yz W-test for Normality R: P-Value (approx): > Gambar.3 Uji kenormalan data proporsi gabah isi sebelum transformasi (kiri) dan sesudah transformasi Box-Cox (kanan) Berdasakan metode postdictive success diperoleh dua komponen pertama yang nyata dengan nilai F sebesar 3.59 dan 3.11 pada nilai-p< dan nilaip<0.015 (Tabel.1). Hal ini berarti proporsi gabah isi melalui transformasi pangkat 7.80 dapat diterangkan menggunakan model AMMI dengan kemampuan menerangkan keragaman pengaruh interaksi sebesar 69.51%. Tabel.1. Analisis ragam untuk data gabah isi yang ditransformasi Sumber Pengujian 1 Suku Pengujian Suku Derjat Jumlah Kuadrat Multiplikatif Multiplikatif Bebas Kuadrat Tengah Nilai F Nilai-p Nilai F Nilai-p Lingkungan < Genotipe < AMMI < AMMI < AMMI Residual Total Diagnosis sisaan menunjukkan kelayakan model ini, tidak ada penyimpangan yang serius pada plot sisaan (Gambar.4)

13 17 y Probability stdres Average: StD ev : N: residual AMMI Anderson-Darling Normalit y Test (a) A-Squared: (b) P-Value: Gambar.4 Plot sisaan model AMMI data gabah isi yang ditransformasi: (a) Plot kenormalan sisaan; (b) Plot sisaan vs fitted value fit Biplot AMMI1 memunjukkan varietas C (B19154F-PN-1-1-4) mempunyai nilai rataan gabah isi ternormalkan yang paling rendah diantara varietas yang laun, sedangkan varietas L (IR 64) mempunyai nilai rataan yang tertinggi (Lampiran 6). Vaietas K (OBS 1658) dan E (Bio-Xa-5) mempunyai nilai rataan gabah isi yang sama namun interaksi dengan lingkungan yang berbeda, demikian pula dengan varietas G (Bio-Xa-7) dan F (S3383-1D-PN ). Interaksi genotpie dan lingkungan lebih jelas dan detail digambarkan oleh biplot AMMI Biplot AMM hasil transformasi Box-Cox (Gambar.5) memperlihatkan varietas A (B1078-B-MR--4-) relatif stabil pada seluruh lokasi, varietas lain beradaptasi secara spesifik pada lokasi tertentu. Varietas E (Bio-Xa-5) dan H (OBS. 1656) beradaptasi dengan baik di lokasi Talang sedangkan varietas G (Bio- Xa-7) di Maroangin. Varietas F (S3383-1D-PN ) sangat baik di Jatibaru dan Maranu namun masih mungkin tumbuh dengan baik di Talang. Varietas J (OBS. 1657) dan D (S338-d-3-3) mampu beradaptasi di Jatibaru dan Maranu. Varietas L (IR 64) dan C (B19154F-PN-1-1-4) mampu beradaptasi di Paritdalam dan Maroangin, varietas K (OBS 1658) beradaptasi baik di Talang namun masih mungkin berkembang di Paritdalam. Varietas M (Memberamo) tidak secara spesifik beradaptasi dengan salah satu lokasi namun diperkirakan tidak mampu beradaptasi di Talang dan Paritdalam.

14 Log likelihood 18 E H Jatibaru F Maranu J D K Talang 0.1B M A Paritdalam C L G Maroagin Kode Galur Padi A B1078B-MR--4- B S354-G-1- C B9154F-PN D S338-D-3-3 E Bio Xa-5 F S3383-1D-PN G Bio Xa-7 H OBS J OBS K OBS L IR. 64 M MEMBERAMO Gambar.5 Bilpot AMMI data gabah isi hasil transformasi Box-Cox.6. Ketahanan Kedelai Terhadap Hama Daun: Data Frekuensi/Populasi Hama Metode transformasi Box-Cox pada data populasi hama daun menghasilkan nilai dugaan lambda sebesar 0.66 pada nilai maksimum log-likelihood sebesar Plot log-likelihood disajikan pada Gambar.6 sedangkan nilai lambda untuk beberapa nilai log-likehood disajikan pada Lampiran 4. Pow er : Box-Cox Lambda Gambar.6 Plot log-likelihood transformasi Box-Cox data populasi hama daun Dengan demikian transformasi yang diperoleh adalah transformasi pangkat Katakanlah a adalah peubah populasi hama daun maka peubah transformasinya adalah 0.66 az = a. Uji kenormalan menunjukkan peubah az ini menyebar mengikuti distribusi Normal (Gambar.7).

15 19 Normal Probability Plot Probability Average: StDev: N: az.0.5 W-test for Normality R: P-Value (approx): > Gambar.7 Plot uji kenormalan hasil transformasi Box-Cox data populasi hama daun Analisis AMMI pada peubah az menghasilkan nilai singular sebagai berikut 1.451, , Kontribusi keragaman yang mampu diterangkan oleh masing-masing komponen adalah 61.41%, 3.%, dan 6.37%, menunjukkan bahwa dua komponen pertama memiliki peran dominan dalam menerangkan keragaman pengaruh interaksi. Tabel. Analisis ragam untuk populasi hama daun yang ditransformasi Sumber Pengujian 1 Suku Pengujian Suku Derjat Jumlah Kuadrat Multiplikatif Multiplikatif Bebas Kuadrat Tengah Nilai F Nilai-p Nilai F Nilai-p Hama Daun Genotipe AMMI AMMI Residual Total Berdasakan metode postdictive success diperoleh komponen pertama yang nyata dengan nilai F sebesar pada nilai-p<0.04, sedangkan komponen kedua nyata nilai-p=0.074 (Tabel.). Sekalipun nilai-p komponen kedua cukup besar namun dua komponen pertama sangat dominan, kemampuan menerangkan keragaman pengaruh interaksi sebesar 93.63%. Hal ini berarti populasi hama daun melalui transformasi pangkat 0.66 dapat diterangkan menggunakan model AMMI. Diagnosis sisaan juga memperkuat hal ini, tidak ada penyimpangan yang serius pada plot sisaan (Lampiran 3). Biplot AMMI1 menunjukkan genotipe IAC-100 merupakan genotipe dengan nilai rataan populasi hama (ternormalkan) paling rendah, sedangkan Wilis

16 0 yang paling tinggi (Lampiran 7). Selengkapnya, interaksi ini digambarkan oleh Biplot AMMI dengan lebih baik. Gambar.8 menunjukkan biplot AMMI data populasi hama daun tanaman kedelai yang ternormalkan. Pada fase ini, populasi Lamprosema hampir sama pada semua genotipe. Genotipe IAC 80 paling tahan terhadap keseluruhan hama daun pada fase ini (14 HST) dibanding yang lain. Sementara genotipe lain secara spesifik rentan terhadap hama tertentu. W/80 relatif rentan terhadap Lalat Kacang (Agromyza), IAC 100 relatif rentan terhadap Emproasca Longitarsus 0.5 Wilis IAC-80 IAC Bemisia Lamprosema Emproasca Agromyza -0.5 W/80-1 Gambar.8 Biplot AMMI data populas hama daun yang ditransformasi.7 Simpulan Transformasi pangkat Box-Cox mampu mengatasi ketaknormalan data. Dengan transformasi Box-Cox dapat dilakukan pemodelan interaksi menggunakan model AMMI secara sahih pada data ternormalkan. Studi kestabilan gabah isi varietas padi melalui transformasi memberikan informasi bahwa varietas A (B1078-B-MR--4-) relatif stabil pada seluruh lokasi, varietas lain beradaptasi secara spesifik pada lokasi tertentu. Varietas E (Bio-Xa-5) dan H (OBS. 1656) beradaptasi dengan baik pada di Talang sedangkan varietas G (Bio-Xa-7) di Maroangin. Varietas F (S3383-1D-PN ) sangat baik di Jatibaru dan Maranu namun masih mungkin tumbuh dengan baik di

17 1 Talang. Varietas J (OBS. 1657) dan D (S338-d-3-3) mampu beradaptasi di Jatibaru dan Maranu. Varietas L (IR 64) dan C (B19154F-PN-1-1-4) mampu beradaptasi di Paritdalam dan Maroangin, varietas K (OBS 1658) beradaptasi baik di Talang namun masih mungkin berkembang di Paritdalam. Varietas M (Memberamo) tidak secara spesifik beradaptasi dengan salah satu lokasi namun diperkirakan tidak mampu beradaptasi di Talang dan Paritdalam. Studi ketahanan hama daun kedelai pada data ternormalkan memberikan genotipe Wilis dan IAC 80 memiliki kesamaan, sama-sama relatif tahan terhadap keseluruhan hama daun pada fase ini (14 HST) dibanding yang lain. Sementara genotipe lain secara spesifik rentan terhadap hama tertentu. W/80 relatif rentan terhadap Lalat Kacang (Agromyza), IAC 100 relatif rentan terhadap Emproasca.

Penanganan Ketaknormalan Data Pada Model AMMI dengan Transformasi Box-Cox (Data Non-normality on AMMI Models: Box-Cox Transformations)

Penanganan Ketaknormalan Data Pada Model AMMI dengan Transformasi Box-Cox (Data Non-normality on AMMI Models: Box-Cox Transformations) Jurnal ILMU DASAR, Vol. 8 No., Juli 7 : 165-174 165 Penanganan Ketaknormalan Data Pada Model AMMI dengan Transformasi Box-Cox (Data Non-normality on AMMI Models: Box-Cox Transformations) Alfian Futuhul

Lebih terperinci

MODEL AMMI TERAMPAT UNTUK DATA BERDISTRIBUSI BUKAN NORMAL ALFIAN FUTUHUL HADI

MODEL AMMI TERAMPAT UNTUK DATA BERDISTRIBUSI BUKAN NORMAL ALFIAN FUTUHUL HADI MODEL AMMI TERAMPAT UNTUK DATA BERDISTRIBUSI BUKAN NORMAL ALFIAN FUTUHUL HADI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2006 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. digunakan sebagai rujukan ada dua penelitian. Rujukan penelitian pertama yaitu penelitian Lavoranti et al.

BAB II TINJAUAN PUSTAKA. digunakan sebagai rujukan ada dua penelitian. Rujukan penelitian pertama yaitu penelitian Lavoranti et al. BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Sebagai bahan pertimbangan dalam penelitian ini dicantumkan mengenai penelitian terdahulu yang digunakan sebagai rujukan. Penelitian terdahulu yang digunakan

Lebih terperinci

IV. PERBANDINGAN KONFIGURASI MATRIKS INTERAKSI: METODE PROCRUSTES

IV. PERBANDINGAN KONFIGURASI MATRIKS INTERAKSI: METODE PROCRUSTES IV. PERBANDINGAN KONFIGURASI MATRIKS INTERAKSI: METODE PROCRUSTES 4.1 Pendahuluan Dua pendekatan dalam menangani ketaknornalan data pada pemodelan bilinier telah dibicarakan pada bab-bab sebelumnya. Bab

Lebih terperinci

MODEL AMMI PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K

MODEL AMMI PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K , April 2009 p : 11-15 ISSN : 0853-8115 Vol 14 No.1 MODEL AMMI PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K Mohammad Masjkur 1 dan Niken Dyah Septiastuti Departemen Statistika FMIPA-IPB E-mail : 1 masjkur@gmail.com

Lebih terperinci

BAHAN DAN METODE. Waktu dan Tempat. Bahan dan Alat. Rancangan Penelitian

BAHAN DAN METODE. Waktu dan Tempat. Bahan dan Alat. Rancangan Penelitian BAHAN DAN METODE Waktu dan Tempat Penelitian ini dilaksanakan pada bulan November 010 Maret 011, kecuali lokasi Sukabumi pada bulan Maret Juni 011. Tempat Penelitian dilaksanakan di 7 lokasi yaitu Bogor,

Lebih terperinci

PENERAPAN PEMBOBOTAN KOMPONEN UTAMA UNTUK PEREDUKSIAN PEUBAH PADA ADDITIVE MAIN EFFECT AND MULTIPLICATIVE INTERACTION GERI ZANUAR FADLI

PENERAPAN PEMBOBOTAN KOMPONEN UTAMA UNTUK PEREDUKSIAN PEUBAH PADA ADDITIVE MAIN EFFECT AND MULTIPLICATIVE INTERACTION GERI ZANUAR FADLI PENERAPAN PEMBOBOTAN KOMPONEN UTAMA UNTUK PEREDUKSIAN PEUBAH PADA ADDITIVE MAIN EFFECT AND MULTIPLICATIVE INTERACTION GERI ZANUAR FADLI DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

Keywords: Factorial Experiment, CRBD, AMMI, Analysis of Variance, PCA, Biplot

Keywords: Factorial Experiment, CRBD, AMMI, Analysis of Variance, PCA, Biplot ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 529-536 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE

Lebih terperinci

ANALISIS INTERAKSI GENOTIPE-LINGKUNGAN DENGAN METODE AMMI PADA DATA MULTIRESPON PUNGKAS EMARANI

ANALISIS INTERAKSI GENOTIPE-LINGKUNGAN DENGAN METODE AMMI PADA DATA MULTIRESPON PUNGKAS EMARANI ANALISIS INTERAKSI GENOTIPE-LINGKUNGAN DENGAN METODE AMMI PADA DATA MULTIRESPON PUNGKAS EMARANI DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 008 RINGKASAN

Lebih terperinci

MODEL ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION (AMMI) PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K NIKEN DYAH SEPTIASTUTI

MODEL ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION (AMMI) PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K NIKEN DYAH SEPTIASTUTI MODEL ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION (AMMI) PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K NIKEN DYAH SEPTIASTUTI DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal

BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal BAB III ANALISIS FAKTOR 3.1 Definisi Analisis faktor Analisis faktor adalah suatu teknik analisis statistika multivariat yang berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal

Lebih terperinci

METODOLOGI HASIL DAN PEMBAHASAN

METODOLOGI HASIL DAN PEMBAHASAN 3 berada pada jarak sejauh tiga atau empat kali simpangan baku dari nilai tengahnya (Aunuddin 1989). Pendekatan pencilan dapat dilakukan dengan melihat plot peluang normal. Apabila terdapat loncatan vertikal

Lebih terperinci

BAB I PENDAHULUAN. dapat digunakan untuk inferensi statistika. Metode bootstrap mengesampingkan

BAB I PENDAHULUAN. dapat digunakan untuk inferensi statistika. Metode bootstrap mengesampingkan BAB I PENDAHULUAN 1.1 Latar Belakang Metode bootstrap merupakan metode simulasi berbasiskan data yang dapat digunakan untuk inferensi statistika. Metode bootstrap mengesampingkan distribusi sampling dari

Lebih terperinci

DATA DAN METODE. Data

DATA DAN METODE. Data DATA DAN METODE Data Data yang digunakan dalam penelitian ini adalah data sekunder hasil percobaan padi varietas IR 64 yang dilaksanakan tahun 2002 pada dua musim (kemarau dan hujan). Lokasi penelitian

Lebih terperinci

TINJAUAN PUSTAKA Analisis Gerombol

TINJAUAN PUSTAKA Analisis Gerombol 3 TINJAUAN PUSTAKA Analisis Gerombol Analisis gerombol merupakan analisis statistika peubah ganda yang digunakan untuk menggerombolkan n buah obyek. Obyek-obyek tersebut mempunyai p buah peubah. Penggerombolannya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Rancangan Percobaan Rancangan percobaan merupakan suatu uji dalam atau deretan uji baik menggunakan statistika deskripsi maupun statistika inferensia, yang bertujuan untuk mengubah

Lebih terperinci

PENERAPAN AMMI RESPON GANDA DENGAN PEMBOBOTAN KOMPONEN UTAMA PADA UJI STABILITAS TANAMAN KUMIS KUCING ANNISA

PENERAPAN AMMI RESPON GANDA DENGAN PEMBOBOTAN KOMPONEN UTAMA PADA UJI STABILITAS TANAMAN KUMIS KUCING ANNISA PENERAPAN AMMI RESPON GANDA DENGAN PEMBOBOTAN KOMPONEN UTAMA PADA UJI STABILITAS TANAMAN KUMIS KUCING ANNISA DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

TINJAUAN PUSTAKA. Model Regresi Linier Ganda

TINJAUAN PUSTAKA. Model Regresi Linier Ganda TINJAUAN PUSTAKA Model Regresi Linier Ganda Hubungan antara y dan X dalam model regresi linier umum adalah y = X ß + e () dengan y merupakan vektor pengamatan pada peubah respon (peubah tak bebas) berukuran

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

TINJAUAN PUSTAKA. dianalisis dan hasilnya ditransformasi menjadi matriks berukuran??

TINJAUAN PUSTAKA. dianalisis dan hasilnya ditransformasi menjadi matriks berukuran?? TINJAUAN PUSTAKA Data Disagregat dan Agregat Berdasarkan cara pengumpulannya, data dapat dibedakan atas data internal dan data eksternal. Data internal berasal dari lingkungan sendiri sedangkan data eksternal

Lebih terperinci

Forum Statistika dan Komputasi : Indonesian Journal of Statistics. journal.ipb.ac.id/index.php/statistika

Forum Statistika dan Komputasi : Indonesian Journal of Statistics. journal.ipb.ac.id/index.php/statistika PENERAPAN PEMBOBOTAN KOMPONEN UTAMA UNTUK PEREDUKSIAN PEUBAH PADA ADDITIVE MAIN EFFECT AND MULTIPLICATIVE INTERACTION (Application of Weighted Principal Component for Variable Reduction in Additive Main

Lebih terperinci

TINJAUAN PUSTAKA Analisis Biplot Biasa

TINJAUAN PUSTAKA Analisis Biplot Biasa TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi

Lebih terperinci

TINJAUAN PUSTAKA Spesifikasi Model Berbagai model dalam pemodelan persamaan struktural telah dikembangkan oleh banyak peneliti diantaranya Bollen

TINJAUAN PUSTAKA Spesifikasi Model Berbagai model dalam pemodelan persamaan struktural telah dikembangkan oleh banyak peneliti diantaranya Bollen 4 TINJAUAN PUSTAKA Spesifikasi Model Berbagai model dalam pemodelan persamaan struktural telah dikembangkan oleh banyak peneliti diantaranya Bollen (1989). Namun demikian sebagian besar penerapannya menggunakan

Lebih terperinci

TINJAUAN PUSTAKA. Gambar 1 Diagram kotak garis

TINJAUAN PUSTAKA. Gambar 1 Diagram kotak garis TINJAUAN PUSTAKA Diagram Kotak Garis Metode diagram kotak garis atau boxplot merupakan salah satu teknik untuk memberikan gambaran tentang lokasi pemusatan data, rentangan penyebaran dan kemiringan pola

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Regresi adalah analisis statistik yang mempelajari bagaimana memodelkan sebuah model fungsional dari data untuk dapat menjelaskan ataupun meramalkan suatu

Lebih terperinci

PENDAHULUAN LANDASAN ANALISIS

PENDAHULUAN LANDASAN ANALISIS 10 PENDAHULUAN Latar Belakang Biplot merupakan metode eksplorasi analisis data peubah ganda yang dapat memberikan gambaran secara grafik tentang kedekatan antar objek, keragaman peubah, korelasi antar

Lebih terperinci

Analisis Regresi 2. Pokok Bahasan : Asumsi sisaan dan penanganannya

Analisis Regresi 2. Pokok Bahasan : Asumsi sisaan dan penanganannya Analisis Regresi 2 Pokok Bahasan : Asumsi sisaan dan penanganannya Tujuan Instruksional Khusus : Mahasiswa dapat menjelaskan asumsi-asumsi yang melandasi analisis regresi linier sederhana dan berganda,

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Data Pengeluaran Per Kapita Propinsi Jawa Timur Tahun 2008 Jawa Timur adalah provinsi yang terdiri dari 29 kabupaten dan 9 kota. Secara umum wilayah provinsi Jawa Timur dapat dibagi

Lebih terperinci

METODE PENELITIAN Sumber Data

METODE PENELITIAN Sumber Data 13 METODE PENELITIAN Sumber Data Data yang digunakan dalam penelitian ini merupakan hasil simulasi melalui pembangkitan dari komputer. Untuk membangkitkan data, digunakan desain model persamaan struktural

Lebih terperinci

ANALISIS FAKTOR (FACTOR ANALYSIS)

ANALISIS FAKTOR (FACTOR ANALYSIS) ANALISIS FAKTOR (FACTOR ANALYSIS) PENDAHULUAN Analisis faktor: mengkaji hubungan internal dari gugus variabel Data: peubah-peubah yang dianalisis berkorelasi tinggi didalam grupnya sendiri dan berkorelasi

Lebih terperinci

pendekatan dalam penelitian ini dinilai cukup beralasan.

pendekatan dalam penelitian ini dinilai cukup beralasan. Tabel Hasil pendugaan model pengaruh tetap dengan Y sebagai peubah respon dan X, X dan X sebagai C -. 00 X -5 0.50 X.05 00 X 00 R 0.6 Adjusted R 0.6 Hasil pendugaan model data panel dengan Y sebagai peubah

Lebih terperinci

Analisis Stabilitas Hasil Tujuh Populasi Jagung Manis Menggunakan Metode Additive Main Effect Multiplicative Interaction (AMMI)

Analisis Stabilitas Hasil Tujuh Populasi Jagung Manis Menggunakan Metode Additive Main Effect Multiplicative Interaction (AMMI) Analisis Stabilitas Hasil Tujuh Populasi Jagung Manis Menggunakan Metode Additive Main Effect Multiplicative Interaction (AMMI) The Analysis of Stability of Seven Sweet Corn Populations Using Additive

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 16 4 HASIL DAN PEMBAHASAN Pada bab ini dibahas mengenai kajian simulasi dan kajian terapan. Simulasi dilakukan untuk mengevaluasi penduga yang diperoleh dengan menggunakan metode pendugaan klasik dan metode

Lebih terperinci

Metode Procrustes Dalam untuk Pendugaan Heritabilitas dari Karakter Agronomik Beberapa Galur Kacang Hijau

Metode Procrustes Dalam untuk Pendugaan Heritabilitas dari Karakter Agronomik Beberapa Galur Kacang Hijau Vol. 8, No.1, 2-38, Juli 2011 Metode Procrustes Dalam untuk Pendugaan Heritabilitas dari Karakter Agronomik Beberapa Galur Kacang Hijau Raupong Abstrak Analisis model Additive Main Effects and Multiplicative

Lebih terperinci

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan 4 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Matriks 2.1.1 Matriks Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan dalam susunan itu disebut anggota dalam matriks tersebut. Suatu

Lebih terperinci

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS)

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS) BAB. IX ANALII REGREI FAKTOR (REGREION FACTOR ANALYI) 9. PENDAHULUAN Analisis regresi faktor pada dasarnya merupakan teknik analisis yang mengkombinasikan analisis faktor dengan analisis regresi linier

Lebih terperinci

Forum Statistika dan Komputasi, April 2010 p : ISSN :

Forum Statistika dan Komputasi, April 2010 p : ISSN : , April 2010 p : 28-35 ISSN : 0853-8115 Vol 15 No.1 PENDUGAAN KESTABILAN GENOTIPE PADA MODEL AMMI MENGGUNAKAN METODE RESAMPLING BOOTSTRAP (Genotype Stability Estimation of AMMI Model by Bootstrap Resampling)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. konsep-konsep dasar pada QUEST dan CHAID, algoritma QUEST, algoritma

BAB II TINJAUAN PUSTAKA. konsep-konsep dasar pada QUEST dan CHAID, algoritma QUEST, algoritma BAB II TINJAUAN PUSTAKA Bab ini akan membahas pengertian metode klasifikasi berstruktur pohon, konsep-konsep dasar pada QUEST dan CHAID, algoritma QUEST, algoritma CHAID, keakuratan dan kesalahan dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

IDENTIFIKASI INTERAKSI GENOTIPE X LINGKUNGAN PADA PADI HIBRIDA BERDASARKAN RESPON GABUNGAN SUCI TIARA

IDENTIFIKASI INTERAKSI GENOTIPE X LINGKUNGAN PADA PADI HIBRIDA BERDASARKAN RESPON GABUNGAN SUCI TIARA IDENTIFIKASI INTERAKSI GENOTIPE X LINGKUNGAN PADA PADI HIBRIDA BERDASARKAN RESPON GABUNGAN SUCI TIARA DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

I. PENDAHULUAN. A. Latar Belakang. peningkatan luas pertanaman dan hasil biji kedelai. Salah satu faktor pembatas bagi

I. PENDAHULUAN. A. Latar Belakang. peningkatan luas pertanaman dan hasil biji kedelai. Salah satu faktor pembatas bagi I. PENDAHULUAN A. Latar Belakang Pengembangan kultivar kedelai (Glycine max (L.) Merrill) berdaya hasil tinggi pada cakupan lingkungan yang luas merupakan faktor kunci dalam usaha peningkatan luas pertanaman

Lebih terperinci

II. TINJAUAN PUSTAKA. Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan

II. TINJAUAN PUSTAKA. Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan II. TINJAUAN PUSTAKA 2.1 Analisis Ragam Klasifikasi Satu Arah Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan sebuah teknik yang disebut analisis ragam. Analisis ragam adalah

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal)

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) PEMODELAN DENGAN REGRESI LOGISTIK 1. Data Biner Data biner merupakan data yang hanya memiliki dua kemungkinan hasil. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) dengan peluang masing-masing

Lebih terperinci

BAB II TINJAUAN PUSTAKA. level, model regresi tiga level, penduga koefisien korelasi intraclass, pendugaan

BAB II TINJAUAN PUSTAKA. level, model regresi tiga level, penduga koefisien korelasi intraclass, pendugaan 6 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini yaitu analisis regresi, analisis regresi multilevel, model regresi dua level, model regresi tiga

Lebih terperinci

Merakit Sifat Ketegaran Terhadap Ketaknormalan Data dan Pengamatan Pencilan Pada Model AMMI

Merakit Sifat Ketegaran Terhadap Ketaknormalan Data dan Pengamatan Pencilan Pada Model AMMI Merakit Sifat Ketegaran Terhadap Ketaknormalan Data dan Pengamatan Pencilan Pada Model AMMI Alfian Futuhul Hadi Mahasiswa Program Doktor Statistika. Sekolah Pascasarjana Institut Pertanian Bogor. Dosen

Lebih terperinci

Company LOGO ANALISIS BIPLOT

Company LOGO ANALISIS BIPLOT Company LOGO ANALISIS BIPLOT Pendahuluan Company name Data : ringkasan berupa nilai beberapa peubah pada beberapa objek Objek n Nilai Peubah X X.. Xp Company name Penyajian Data dalam bentuk matriks =

Lebih terperinci

INFERENSI TITIK-TITIK PADA BIPLOT AMMI MENGGUNAKAN RESAMPLING BOOTSTRAP SKRIPSI

INFERENSI TITIK-TITIK PADA BIPLOT AMMI MENGGUNAKAN RESAMPLING BOOTSTRAP SKRIPSI INFERENSI TITIK-TITIK PADA BIPLOT AMMI MENGGUNAKAN RESAMPLING BOOTSTRAP SKRIPSI Oleh Permata Atsna ul Laili NIM 081810101054 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

TINJAUAN PUSTAKA. Model Linier dengan n pengamatan dan p variable penjelas biasa ditulis sebagai

TINJAUAN PUSTAKA. Model Linier dengan n pengamatan dan p variable penjelas biasa ditulis sebagai II. TINJAUAN PUSTAKA 2.1. Model Linear Model Linier dengan n pengamatan dan p variable penjelas biasa ditulis sebagai berikut : Y i = β 0 + X i1 β 1 + X i2 β 2 + + X ip β p +ε i ; i = 1,2,, n bila dirinci

Lebih terperinci

PENDAHULUAN. Latar Belakang. Salah satu upaya yang dapat ditempuh untuk meningkatkan

PENDAHULUAN. Latar Belakang. Salah satu upaya yang dapat ditempuh untuk meningkatkan PENDAHULUAN Latar Belakang Salah satu upaya yang dapat ditempuh untuk meningkatkan produktivitas padi adalah melalui program pemuliaan tanaman. Program yang dilakukan bertujuan untuk mendapatkan varietas

Lebih terperinci

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear

Lebih terperinci

Analisis Komponen Utama (Principal component analysis)

Analisis Komponen Utama (Principal component analysis) Analisis Komponen Utama (Principal component analysis) A. LANDASAN TEORI Misalkan χ merupakan matriks berukuran nxp, dengan baris-baris yang berisi observasi sebanyak n dari p-variat variabel acak X. Analisis

Lebih terperinci

MIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION (M-AMMI) DAN APLIKASINYA SKRIPSI

MIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION (M-AMMI) DAN APLIKASINYA SKRIPSI MIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION (M-AMMI) DAN APLIKASINYA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian

Lebih terperinci

TINJAUAN PUSTAKA. Analisis regresi merupakan suatu teknik statistika untuk menyelidiki dan

TINJAUAN PUSTAKA. Analisis regresi merupakan suatu teknik statistika untuk menyelidiki dan TINJAUAN PUSTAKA Analisis Regresi Linier Berganda Analisis regresi merupakan suatu teknik statistika untuk menyelidiki dan memodelkan hubungan diantara peubah-peubah, yaitu peubah tak bebas (respon) dan

Lebih terperinci

BAB II LANDASAN TEORI. metode kuadrat terkecil (MKT), outlier, regresi robust, koefisien determinasi,

BAB II LANDASAN TEORI. metode kuadrat terkecil (MKT), outlier, regresi robust, koefisien determinasi, BAB II LANDASAN TEORI Beberapa teori yang diperlukan untuk mendukung pembahasan diantaranya adalah regresi linear berganda, pengujian asumsi analisis regresi, metode kuadrat terkecil (MKT), outlier, regresi

Lebih terperinci

MODEL-MODEL LEBIH RUMIT

MODEL-MODEL LEBIH RUMIT MAKALAH MODEL-MODEL LEBIH RUMIT DISUSUN OLEH : SRI SISKA WIRDANIYATI 65 JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 04 BAB I PENDAHULUAN. Latar Belakang

Lebih terperinci

Analisis Peubah Ganda

Analisis Peubah Ganda Analisis Peubah Ganda Analisis Komponen Utama Dr. Ir. I Made Sumertajaya, M.Si Pengamatan Peubah Ganda - memerlukan sumberdaya lebih, dalam analisis - informasi tumpang tindih pada beberapa peubah Apa

Lebih terperinci

E-Jurnal Matematika Vol. 4 (3), Agustus 2015, pp ISSN:

E-Jurnal Matematika Vol. 4 (3), Agustus 2015, pp ISSN: IMPLEMENTASI METODE BOOTSTRAP DALAM INFERENSI TITIK- TITIK BIPLOT AMMI MODEL AMMI CAMPURAN (MIXED AMMI) (Studi Kasus: Menduga Stabilitas Genotipe Padi) Ni Putu Ayu Dinita Trisnayanti 1, I Komang Gde Sukarsa

Lebih terperinci

BAB II LANDASAN TEORI. 2.1 Uji Hipotesis

BAB II LANDASAN TEORI. 2.1 Uji Hipotesis BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang pengujian hipotesis, metode klasifikasi berstruktur pohon, metode-metode statistika yang menjadi dasar pada metode QUEST, dan algoritme QUEST..1

Lebih terperinci

REGRESI LINIER GANDA. Fitriani Agustina, Math, UPI

REGRESI LINIER GANDA. Fitriani Agustina, Math, UPI REGRESI LINIER GANDA 1 Pengertian Regresi Linier Ganda Merupakan metode yang digunakan untuk memodelkan hubungan linear antara variabel terikat dengan dua/lebih variabel bebas. Regresi linier untuk memprediksi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemenelemen yang disusun secara teratur menurut baris dan kolom berbentuk

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan

BAB I PENDAHULUAN. Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan tentang pola hubungan (model) antara dua peubah atau lebih (Draper dan Smith, 1992).

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Analisis Regresi Perubahan nilai suatu variabel tidak selalu terjadi dengan sendirinya, namun perubahan nilai variabel itu dapat disebabkan oleh berubahnya variabel lain yang berhubungan

Lebih terperinci

MENENTUKAN PENGARUH INTERAKSI PERLAKUAN DENGAN METODE POLINOMIAL ORTOGONAL

MENENTUKAN PENGARUH INTERAKSI PERLAKUAN DENGAN METODE POLINOMIAL ORTOGONAL MENENTUKAN PENGARUH INTERAKSI PERLAKUAN DENGAN METODE POLINOMIAL ORTOGONAL E. JULIANTINI Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumberdaya Genetik Pertanian, Jl. Tentara Pelajar No.,

Lebih terperinci

Analisis Regresi Nonlinear (I)

Analisis Regresi Nonlinear (I) 9 Oktober 2013 Topik Inferensi dalam Regresi Nonlinear Contoh Kasus Regresi linear berganda secara umum sesuai untuk kebanyakan kasus. Namun, banyak kasus peubah respons dan bebas berhubungan melalui fungsi

Lebih terperinci

Uji Hipotesis dan Aturan Keputusan

Uji Hipotesis dan Aturan Keputusan Uji Hipotesis dan Aturan Keputusan oleh: Khreshna Syuhada, PhD. 1. Pendahuluan Pada perkuliahan tingkat 2, telah dikenalkan masalah uji hipotesis sebagai berikut: Seorang peneliti memberikan klaim bahwa

Lebih terperinci

MODEL MODEL LEBIH RUMIT

MODEL MODEL LEBIH RUMIT 08/0/06 MODEL MODEL LEBIH RUMIT Di susun oleh Nurul Hani Ulvatunnisa Kanthi Wulandari Sri Siska Wirdaniyati Kamal Adyasa Unib Sedya Pramuji 08/0/06 Model Polinom Berbagai Ordo Model Yang Melibatkan Transformasi

Lebih terperinci

TINJAUAN PUSTAKA. Tanaman Padi. Tanaman padi menurut Steenis (1978) termasuk dalam suku padi-padian

TINJAUAN PUSTAKA. Tanaman Padi. Tanaman padi menurut Steenis (1978) termasuk dalam suku padi-padian TINJAUAN PUSTAKA Tanaman Padi Tanaman padi menurut Steenis (1978) termasuk dalam suku padi-padian atau Poaceae (sinonim: Graminae atau Glumiflorae), merupakan terna semusim, berakar serabut; batang sangat

Lebih terperinci

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan.

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan. BAB III PEMBAHARUAN PERAMALAN Pada bab ini akan dibahas tentang proses pembaharuan peramalan. Sebelum dilakukan proses pembaharuan peramalan, terlebih dahulu dilakukan proses peramalan dan uji kestabilitasan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 39 III. METODE PENELITIAN 3.1. Jenis dan Sumber Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder. Data sekunder tersebut merupakan data cross section dari data sembilan indikator

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)

Lebih terperinci

PENDETEKSIAN PENGAMATAN PENCILAN DAN BERPENGARUH DENGAN METODE PENGARUH LOKAL GOSEN SITANGGANG

PENDETEKSIAN PENGAMATAN PENCILAN DAN BERPENGARUH DENGAN METODE PENGARUH LOKAL GOSEN SITANGGANG PENDETEKSIAN PENGAMATAN PENCILAN DAN BERPENGARUH DENGAN METODE PENGARUH LOKAL GOSEN SITANGGANG SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2006 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

= parameter regresi = variabel gangguan Model persamaan regresi linier pada persamaan (2.2) dapat dinyatakan dalam bentuk matriks berikut:

= parameter regresi = variabel gangguan Model persamaan regresi linier pada persamaan (2.2) dapat dinyatakan dalam bentuk matriks berikut: BAB II LANDASAN TEORI 2. Analisis Regresi Linier Berganda Analisis regresi merupakan salah satu analisis statistik yang sering digunakan untuk menganalisis hubungan antara dua variabel atau lebih. Menurut

Lebih terperinci

PENANGANAN KETIDAKHOMOGENAN RAGAM AKIBAT KEBERADAAN DATA EKSTRIM MELALUI PENDEKATAN EM-AMMI NADA TSURAYYA

PENANGANAN KETIDAKHOMOGENAN RAGAM AKIBAT KEBERADAAN DATA EKSTRIM MELALUI PENDEKATAN EM-AMMI NADA TSURAYYA PENANGANAN KETIDAKHOMOGENAN RAGAM AKIBAT KEBERADAAN DATA EKSTRIM MELALUI PENDEKATAN EM-AMMI NADA TSURAYYA DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE 3.1 Indeks Gini Model GSTAR adalah salah satu model yang banyak digunakan untuk memodelkan dan meramalkan data deret waktu dan lokasi. Model ini merupakan

Lebih terperinci

Rancangan Petak Terpisah dalam RAL

Rancangan Petak Terpisah dalam RAL Rancangan Petak Terpisah dalam RAL KULIAH 11 PERANCANGAN PERCOBAAN (STK222) rahmaanisa@apps.ipb.ac.id Latar Belakang Sejarah : Rancangan ini awalnya berkembang pada bidang pertanian (Montgomery, 1997;

Lebih terperinci

IDENTIFIKASI GENOTIPE YANG MEMBERIKAN KONTRIBUSI TERHADAP INTERAKSI GENOTIPE LINGKUNGAN PADA MODEL AMMI RUSIDA YULIYANTI

IDENTIFIKASI GENOTIPE YANG MEMBERIKAN KONTRIBUSI TERHADAP INTERAKSI GENOTIPE LINGKUNGAN PADA MODEL AMMI RUSIDA YULIYANTI IDENTIFIKASI GENOTIPE YANG MEMBERIKAN KONTRIBUSI TERHADAP INTERAKSI GENOTIPE LINGKUNGAN PADA MODEL AMMI RUSIDA YULIYANTI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS

Lebih terperinci

TINJAUAN PUSTAKA. Rancangan petak teralur (strip plot design) merupakan susunan petak-petak (plotplot)

TINJAUAN PUSTAKA. Rancangan petak teralur (strip plot design) merupakan susunan petak-petak (plotplot) II. TINJAUAN PUSTAKA 2.1 Rancangan Petak Teralur Rancangan petak teralur (strip plot design) merupakan susunan petak-petak (plotplot) sebagai satuan percobaan yang terdiri dari plot baris untuk perlakuan

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep dasar, definisi-definisi serta teorema

II. TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep dasar, definisi-definisi serta teorema II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep dasar, definisi-definisi serta teorema yang berkaitan dalam hal pendugaan parameter pada model linier campuran ini, yaitu sebagai berikut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 19 BAB 2 LANDASAN TEORI 2.1. Metode Analisis Data 2.1.1. Uji Validitas Validitas adalah suatu ukuran yang membuktikan bahwa apa yang diamati peneliti sesuai dengan apa yang sesungguhnya ada dalam dunia

Lebih terperinci

IDENTIFIKASI STABILITAS DAN ADAPTABILITAS GENOTIPE PADA PERCOBAAN MULTILOKASI PADI SAWAH DENGAN METODE AMMI. Oleh: Miftachul Hudasiwi G

IDENTIFIKASI STABILITAS DAN ADAPTABILITAS GENOTIPE PADA PERCOBAAN MULTILOKASI PADI SAWAH DENGAN METODE AMMI. Oleh: Miftachul Hudasiwi G IDENTIFIKASI STABILITAS DAN ADAPTABILITAS GENOTIPE PADA PERCOBAAN MULTILOKASI PADI SAWAH DENGAN METODE AMMI Oleh: Miftachul Hudasiwi G40004 DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Semakin berkembangnya peradaban manusia maka perkembangan ilmu pengetahuan dan teknologi berbanding lurus. Pada dasarnya ini merupakan usaha manusia untuk melangsungkan

Lebih terperinci

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y.

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y. REGRESI LINIER 1. Hubungan Fungsional Antara Variabel Variabel dibedakan dalam dua jenis dalam analisis regresi: a. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia.

Lebih terperinci

Tabel 4 Urutan dan penempatan bubu pada tali utama

Tabel 4 Urutan dan penempatan bubu pada tali utama 30 Penggunaan umpan digunakan secukupnya, pada penelitian ini digunakan sebanyak kurang lebih 50 gram cacing per kantong umpan. Kemudian kawat kasa tersebut ditusukkan pada besi yang digunakan untuk pemasangan

Lebih terperinci

gabah bernas. Ketinggian tempat berkorelasi negatif dengan karakter jumlah gabah bernas. Karakter panjang daun bendera sangat dipengaruhi oleh

gabah bernas. Ketinggian tempat berkorelasi negatif dengan karakter jumlah gabah bernas. Karakter panjang daun bendera sangat dipengaruhi oleh 81 PEMBAHASAN UMUM Faktor-faktor yang mempengaruhi pertumbuhan selama cekaman suhu rendah diantaranya; (a) faktor fisiologi, faktor lingkungan sebelum dan sesudah fase penting pertumbuhan dapat mempengaruhi

Lebih terperinci

BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat

BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat BAB II LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian ini yang berhubungan dengan kecukupan sampel maka langkah awal yang harus dilakukan adalah pengujian terhadap jumlah sampel. Pengujian

Lebih terperinci

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan fungsional antara variabel respon dengan satu atau beberapa variabel prediktor.

Lebih terperinci

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan.

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. BAB II KAJIAN TEORI A. Matriks 1. Definisi Matriks Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks (Howard

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Matriks Matriks adalah himpunan bilangan real yang disusun secara empat persegi panjang, mempunyai baris dan kolom dengan bentuk umum : Tiap-tiap bilangan yang berada didalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Statistika Multivariat Analisis statistika multivariat adalah teknik-teknik analisis statistik yang memperlakukan sekelompok variabel terikat yang saling berkorelasi sebagai

Lebih terperinci

PERBANDINGAN ANALISIS BIPLOT KLASIK DAN ROBUST BIPLOT PADA PEMETAAN PERGURUAN TINGGI SWASTA DI JAWA TIMUR

PERBANDINGAN ANALISIS BIPLOT KLASIK DAN ROBUST BIPLOT PADA PEMETAAN PERGURUAN TINGGI SWASTA DI JAWA TIMUR Jur. Ris. & Apl. Mat. I (207), no., xx-xx Jurnal Riset dan Aplikasi Matematika e-issn: 258-054 URL: journal.unesa.ac.id/index.php/jram PERBANDINGAN ANALISIS BIPLOT KLASIK DAN ROBUST BIPLOT PADA PEMETAAN

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN

Lebih terperinci

BAB III METODE PENELITIAN. September). Data yang dikumpulkan berupa data jasa pelayanan pelabuhan, yaitu

BAB III METODE PENELITIAN. September). Data yang dikumpulkan berupa data jasa pelayanan pelabuhan, yaitu BAB III METODE PENELITIAN 3.1 Jenis dan Sumber Data Data yang digunakan dalam penelitian ini berasal dari data sekunder dengan jenis data bulanan mulai tahun 2004 sampai dengan tahun 2011 (bulan September).

Lebih terperinci

ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE FIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION SKRIPSI

ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE FIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION SKRIPSI ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE FIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION SKRIPSI Oleh: AKHMAD ZAKI NIM. 24010210120049 JURUSAN STATISTIKA FAKULTAS SAINS

Lebih terperinci

BAB III REGRESI TERSENSOR (TOBIT) Model regresi yang didasarkan pada variabel terikat tersensor disebut

BAB III REGRESI TERSENSOR (TOBIT) Model regresi yang didasarkan pada variabel terikat tersensor disebut BAB III REGRESI TERSENSOR (TOBIT) 3.1 Model Regresi Tersensor (Tobit) Model regresi yang didasarkan pada variabel terikat tersensor disebut model regresi tersensor (tobit). Untuk variabel terikat yang

Lebih terperinci

Pemetaan Status Gizi Balita Terhadap Kecamatan-Kecamatan Di Kabupaten Trenggalek Dengan Metode Analisis Korespondensi

Pemetaan Status Gizi Balita Terhadap Kecamatan-Kecamatan Di Kabupaten Trenggalek Dengan Metode Analisis Korespondensi Pemetaan Status Gizi Balita Terhadap Kecamatan-Kecamatan Di Kabupaten Trenggalek Dengan Metode Analisis Korespondensi Oleh : Teguh Purianto (0 09 06) Dosen Pembimbing : Wibawati, S.Si., M.Si. ABSTRAK Anak

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 13 Peubah Ganda

STK511 Analisis Statistika. Pertemuan 13 Peubah Ganda STK511 Analisis Statistika Pertemuan 13 Peubah Ganda 13. Peubah Ganda: Pengantar Pengamatan Peubah Ganda Menggambarkan suatu objek tidak cukup menggunakan satu peubah saja Kasus pengamatan peubah ganda

Lebih terperinci

Perancangan Percobaan

Perancangan Percobaan Perancangan Percobaan Pengertian dasar Faktor Taraf Perlakuan (Treatment) Respons Layout Percobaan & Pengacakan Penyusunan Data Analisis Ragam Perbandingan Rataan Pengertian dasar 3 Faktor: Variabel Bebas

Lebih terperinci