BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI 21 Analisis Regresi Perubahan nilai suatu variabel tidak selalu terjadi dengan sendirinya, namun perubahan nilai variabel itu dapat disebabkan oleh berubahnya variabel lain yang berhubungan dengan variabel tersebut Untuk mengetahui pola perubahan nilai suatu variabel yang disebabkan oleh variabel lain diperlukan alat analisis yang memungkinkan untuk membuat perkiraan (prediction) nilai variabel tersebut pada nilai tertentu variabel yang mempengaruhinya Teknik yang umum digunakan untuk menganalisis hubungan antara dua atau lebih variabel adalah analisis regresi Analisis regresi (regression analisis) merupakan suatu teknik untuk membangun persamaan garis lurus dan menggunakan persamaan tersebut untuk membuat perkiraan (Mason, 1996 Hal: 489) Model matematis dalam menjelaskan hubungan antarvariabel dalam analisis regresi menggunakan persamaan regresi Persamaan regresi (regression equastion) adalah suatu persamaan matematis yang mendefinisikan hubungan antara dua variabel (Mason, 1996 Hal: 490)

2 Persamaan regresi yang digunakan untuk membuat taksiran mengenai nilai variabel terikat (dependent) disebut persamaan regresi estimasi Persamaan regresi estimasi adalah suatu formula matematis yang menunjukkan hubungan keterkaitan antara satu atau beberapa variabel yang nilainya sudah diketahui (known variable) dengan satu variabel yang nilainya belum diketahui (unknown variable) Regresi pertama kali diperkenalkan pada tahun 1877 oleh Sir Francis Galton, pada penelitiannya terhadap manusia Penelitian tersebut membandingkan antara tinggi anak laki-laki dan tinggi badan orang tuanya Istilah regresi pada mulanya bertujuan untuk membuat perkiraan nilai suatu variabel (tinggi badan anak) terhadap suatu variabel yang lain (tinggi orangtua) Pada perkembangan selanjutnya, analisa regresi digunakan sebagai alat untuk membuat perkiraan nilai suatu variabel dengan menggunakan beberapa variabel lain yang berhubungan dengan variabel tersebut 211 Regresi Sederhana Regresi sederhana (simple regression) merupakan bagian regresi yang mencakup hubungan linier antara satu variabel terikat dengan satu variabel bebas Variabel bebas biasanya disimbolkan dengan X, sedangkan variabel terikat disimbolkan dengan Y Variabel bebas adalah variabel yang nilai-nilainya tidak bergantung pada variabel lainnya, variabel bebas digunakan untuk meramalkan atau menerangkan nilai variabel yang lain Variabel terikat adalah variabel yang nilainya bergantung pada variabel lainnya, variabel terikat merupakan variabel yang diramalkan atau diterangkan nilainnya Bentuk umum persamaan regresi linier sederhana yang menunjukkan hubungan antara dua variabel, yaitu variabel X sebagai variabel bebas dan variabel Y sebagai variabel terikat dari suatu populasi adalah sebagai berikut: (21)

3 Keterangan: = Variabel terikat = Variabel bebas = Jarak titik pangkal dengan titik potong garis regresi dengan sumbu Y (intercept) = Kemiringan (slope) garis regresi = Nilai kesalahan Parameter dan diduga dengan menggunakan garis regresi Bentuk persamaan garis regresi adalah sebagai berikut : (22) Keterangan: = Intersept, jarak titik pangkal dan titik potong garis regresi dengan sumbu Y = Kemiringan garis regresi Dalam hal ini: merupakan penduga titik bagi merupakan penduga titik bagi merupakan penduga titik bagi

4 Pendugaan dilakukan dengan mengambil contoh acak berukuran n dari suatu populasi Hasil pengamatan berupa pasangan X dan Y sebagai berikut : Jika data berpasangan tersebut digambarkan pada sumbu koordinat siku-siku, maka diperoleh gambar sebagai berikut : Y X Gambar 21 Diagram Pencar Dengan demikian diperoleh model regresi linier sederhana sebagai berikut: (23) Y X Gambar 22 Diagram Pencar, Garis Regresi dan Sisa

5 Pada umumnya tidak sama dengan, perbedaan antara dan dinyatakan dengan yang disebut dengan sisa (residual) Dalam hal ini: (24) Nilai dan diperoleh dengan menggunakan metode kuadrat terkecil (least squares method) Metode kuadrat terkecil merupakan satu cara untuk memperoleh dan sebagai perkiraan dan, dengan meminimumkan jumlah kuadrat sisa sebagai berikut: (25) Syarat minimum adalah sebagai berikut: (26) (27) Untuk menentukan hubungan pengaruh perubahan variabel yang satu terhadap variabel yang lainnya, maka dibutuhkan peranan garis regresi Selanjutnya, dari hubungan dua variabel ini dapat dikembangkan untuk permasalahan regresi berganda

6 212 Regresi Berganda Regresi Berganda (multiple regression) merupakan bagian regresi yang mencakup hubungan linier antara dua atau lebih variabel bebas dengan satu variabel terikat Variabel bebas disimbolkan dengan X, sedangkan variabel terikat disimbolkan dengan Y variabel bebas adalah variabel yang nilai-nilainya tidak bergantung pada variabel lainnya, variabel bebas digunakan untuk meramalkan atau menerangkan nilai variabel yang lain Sedangkan variabel terikat adalah variabel yang nilainnya bergantung pada variabel lainnya, variabel terikat merupakan variabel yang diramalkan atau diterangkan nilainnya Bentuk umum persamaan regresi linier berganda yang melibatkan lebih dari satu variabel bebas yang mempengaruhi variabel terikat Y dari suatu populasi adalah sebagai berikut: (28) Keterangan: = Variabel terikat = Variabel bebas = Parameter regresi yang belum diketahui nilainya = Nilai kesalahan = 1, 2,, n Jika = 0, maka diperoleh persamaan regresi linier ganda dari suatu populasi adalah sebagai berikut: (29)

7 Pendugaan garis regresi populasi diatas dapat dilakukan dengan mengambil contoh acak berukuran dari populasi tersebut Model populasi diatas dinyatakan dalam bentuk sebagai berikut : (210) Keterangan: merupakan penduga titik bagi merupakan penduga titik bagi 22 Metode Kuadrat Terkecil Metode kuadrat terkecil (least squares method) adalah salah satu metode yang terbaik untuk memperoleh persamaan linier Persamaan ini merupakan petunjuk yang terbaik untuk menerangkan diagram pencaran data Karena setiap garis yang ditarik belum tentu melalui semua titik dalam diagram pencaran Apabila garis lurus tidak tepat pada titik-titik diagram pencaran, akan terdapat deviasi antara setiap nilai Y dan nilai yang ditunjukkan oleh garis Garis yang berdasarkan metode kuadrat terkecil menunjukkan penyimpangan tiap nilai dengan garis regresi Metode ini ditemukan oleh Adrien Legendre seorang ahli matematika Perancis pada awal abad ke 19 Dengan meminimumkan jumlah kuadrat sisa yang dikuadratkan, sehingga diperoleh S sebagai berikut: (211)

8 Dengan syarat minimum adalah sebagai berikut: (212) (213) (214)

9 (215) Dari persyaratan minimum diatas, menghasilkan suatu kumpulan persamaan normal sebagai berikut: (216) 23 Metode Numerik Metode numerik adalah suatu teknik penyelesaian yang diformulasikan secara matematis dengan cara operasi perhitungan dan dilakukan secara berulang-ulang dengan cara manual atau bantuan komputer Metode numerik tidak mengutamakan diperolehnya jawaban yang eksak (tepat), tetapi mengusahakan metode pendekatan(sangadji, 2008)

10 231 Perhitungan Parameter dengan Menggunakan Metode Numerik (Gauss Seidel) Dalam melakukan perhitungan parameter dengan menggunakan metode Gauss Seidel, proses penyelesaiannya dapat dimulai dengan nilai awal untuk sama dengan nol Nilai-nilai awal nol ini dapat dimanfaatkan untuk menghitung variabel berikutnya Menentukan nilai parameter pada regresi linier berganda dengan menggunakan metode Gauss-Seidel adalah sebagai berikut: Sehingga berlaku prosedur iterasi sebagai berikut: Iterasi 0 Iterasi 1

11 Iterasi 2 (217) Proses ini diulangi hingga mencapai kekonvergenan yang diinginkan Kemudian hasil hitungan iterasi yang telah diperoleh dapat dibuat dalam bentuk tabel

12 24 Metode Matriks Matriks didefinisikan sebagai suatu himpunan angka, variabel atau parameter dalam bentuk suatu persegi panjang, yang tersusun di dalam baris dan kolom dan diantarai oleh dua buah kurung siku atau kurung biasa Pada umumnya, matriks di notasikan dalam huruf besar sedangkan elemen-elemennya dalam hurup kecil, sebagai berikut: atau dimana: A = Matriks A [ ] atau ( ) = Notasi matriks adalah elemen dari matriks A, dimana menyatakan baris dan menyatakan kolom Misalnya: adalah elemen dari matriks A yang terletak pada baris ke-1 dan kolom ke-1 (PUDJIASTUTI,2006) Jenis-jenis matriks adalah sebagai berikut: 1 Matriks diagonal Adalah suatu matriks bujur sangkar yang semua elemen di luar elemen diagonal utama sama dengan nol, dan paling tidak satu elemen pada diagonal utamanya tidak sama dengan nol 2 Matriks identitas Adalah suatu matriks bujur sangkar yang elemen-elemen di luar diagonal utamanya sama dengan nol, dan semua elemen pada diagonal utama sama dengan satu Matriks identitas yang berorde n biasanya diberi simbol I n

13 3 Matriks segitiga atas Adalah matriks bujur sangkar yang elemen-elemen di bawah diagonal utama bernilai nol Jadi yang tidak sama dengan nol adalah elemen-elemen pada segitiga atasnya dan paling tidak satu elemen pada diagonal utama tidak sama dengan nol 4 Matriks segitiga bawah Adalah matriks bujur sangkar yang elemen-elemen di atas diagonal utama bernilai nol Jadi yang tidak sama dengan nol adalah elemen-elemen pada segitiga bawahnya dan paling tidak satu elemen pada diagonal utama tidak sama dengan nol 5 Matriks nol Adalah suatu matriks yang semua elemenya bernilai nol Matriks ini biasanya diberi simbol O dan bentuknya tidak selalu bujur sangkar 6 Matriks baris Adalah matriks yang hanya terdiri dari satu baris Matriks ini sering disebut dengan vektor baris 7 Matriks kolom Adalah matriks yang hanya terdiri dari satu kolom Matriks ini sering disebut dengan vektor kolom 8 Matriks simetris Adalah suatu matriks bujur sangkar yang memiliki, sehingga transposenya sama dengan matriks semula 241 Tranpose suatu matrik Tranpose suatu matriks adalah merubah ordo suatu matriks dari x menjadi x Jika atau adalah transpose dari matriks, maka baris pada matriks menjadi kolom pada matriks dan sebaliknya kolom pada matriks menjadi baris pada matriks

14 242 Determinan Determinan adalah suatu skalar (angka) yang diperoleh dari suatu matriks bujur sangkar selalui operasi khusus Disebut operasi khusus karena dalam proses penurunan determinan dilakukan perkalian-perkalian Determinan dinotasikan dengan tanda Salah satu cara dalam perhitungan determinan, adalah dengan cara singkat Cara singkat yang lazim dikenal untuk menghitung determinan dari matriks adalah dengan menggunakan metode sarrus Caranya dengan menempatkan elemen-elemen pada dua kolom pertama disebelah kanan notasi determinan sebagai berikut: 243 Invers Matriks Invers matriks sering disebut dengan matriks kebalikan Biasanya dituliskan sebagai berikut: jika A adalah suatu matriks bujur sangkar maka merupakan invers matriksnya

15 244 Perhitungan Parameter dengan Menggunakan Metode Matriks (Invers Matriks) Nilai parameter pada regresi linier berganda dapat ditentukan dengan menggunakan metode matriks Jika banyaknya peubah bebas adalah, maka model regresi populasi dinyatakan dengan: (218) Keterangan: = Variabel terikat = Variabel bebas = Parameter regresi yang belum diketahui nilainya = Nilai kesalahan Pendugaan garis regresi populasi diatas dapat dilakukan dengan mengambil contoh acak berukuran n dari populasi tersebut Model regresi diatas dinyatakan dengan bentuk sebagai berikut: (219) Keterangan: = Variabel terikat = Variabel bebas = Parameter regresi yang belum diketahui nilainya

16 Dalam hal ini: merupakan penduga titik bagi merupakan penduga titik bagi Dengan menggunakan persamaan matriks (220) Dengan (221) Metode kuadrat terkecil merupakan suatu metode untuk mendapatkan nilainilai vektor dengan meminimumkan adalah sebagai berikut: (224)

17 Langkah-langkah untuk menentukan nilai koefisien dari parameter pada regresi linier berganda adalah sebagai berikut: Langkah 1 Menghitung nilai matriks dengan cara sebagai berikut: (225) Langkah 2 Menghitung nilai determinan matrik dengan cara sebagai berikut: (226) Langkah 3 Mencari Adjoint matriks, dimana: (227)

18 Langkah 4 Mencari invers matriks dengan cara sebagai berikut: (228) Langkah 5 Mencari nilai matriks dengan cara sebagai berikut: (229) Sehingga untuk memperoleh nilai koefisien dari sebagai berikut: adalah dengan cara (230)

19 25 Perhitungan Simpangan Baku dari Model Persamaan (SUDJANA,2002 hal 93) Ukuran simpangan yang paling banyak digunakan adalah simpangan baku atau deviasi standar Pangkat dua dari simpangan baku disebut varians Untuk sampel, simpangan baku disimbolkan dengan, sedangkan untuk populasi disimbolkan dengan Varians untuk sampel dan populasi Pada umumnya, nilai-nilai koefisien regresi dalam bentuk vektor matriks adalah sebagai berikut: bervarias dan variansnya dari (231) Karena umumnya tidak diketahui, maka diduga dengan, sehingga perkiraan varians adalah: Keterangan: = Varians dari kesalahan pengganggu = Banyaknya observasi = Banyak variabel bebas observasi dapat dihitung langsung dari dengan nilai regresi yaitu selisih antara nilai

20 26 Interval Kepercayaan Sehubungan dengan Regresi Linier Berganda Jika simpangan baku populasi tidak diketahui dan ukuran sampel kurang dari 30, maka dugaan selang bagi rataan populasi ditentukan dengan menggunakan sebaran t dan jika ukuran sampel cukup besar, rataan populasi ditentukan dengan menggunakan sebaran data z untuk menghitung estimasi interval yang telah ditaksir oleh titik Selang kepercayaan (1-α) 100% bagi adalah sebagai berikut: (233) Jika cukup besar, maka: (234) = diagonal pada baris ke- kolom ke- dari 27 Hipotesis Hipotesis berasal dari kata hipo dan tesis yang berasal dari bahasa Yunani Hipo berarti di bawah, kurang atau lemah dan tesis berarti teori atau proposisi Jadi, secara umum hiportesis dapat didefinisikan sebagai asumsi atau dugaan atau pernyataan sementara yang masih lemah kebenarannya tentang karateristik populasi Oleh karena itu hipotesis perlu di uji kebenarannya Pengujian hipotesis dilakukan berdasarkan hasil sampel yang diambil dari populasi Adapun jenis hipotesis adalah sebagai berikut: 1 Hipotesis penelitian Dalam rangka membuktikan atau pengujian benar atau tidaknya suatu hipotesis penelitian (pernyataan penelitian), maka dilakukan pengujian secara statistik Pada pengujian ini digunakan hipotesis statistik

21 2 Hipotesis statistik Hipotesis statistik merupakan pernyataan atau dugaan mengenai satu atau lebih populasi Ada dua jenis hipotesis statistik, yaitu: a Hipotesis nol atau nihil ( ) Istilah nol atau nihil menunjuk tidak adanya perbedaan pada populasi akan selalu dituliskan dengan tanda kesamaan, sehingga spesifik pada nilai tunggal b Hipotesis alternatif atau tandingan ( ) Merupakan hipotesis tandingan atau isinya berlawanan dengan hipotesis Hipotesis yang mengandung pengertian sama pada pasangan dan adalah: 1, Hipotesis yang mengandung pengertian maksimum pada pasangan dan adalah: Hipotesis yang mengandung pengertian minimum pada pasangan dan adalah:

22 Langkah-langkah uji hipotesis adalah sebagai berikut: 1 Tentukan hipotesis dan, melawan salah satu alternatif 2 Tentukan taraf signifikan/taraf nyata α 3 Tentukan uji statistik yang sesuai dan lakukan perhitungan uji statistik berdasarkan data sampel sumber Variasi Jumlah Kuadrat Derajat Kebebasan Rataan Kuadrat Regresi JKR k RKR Galat JKG n-p RKG Total JKT n-1 F hitung 4 Tentukan wilayah kritis atau wilayah penolakan berdasarkan nilai α Tolak jika F hitung F tabel Terima jika F hitung F tabel 5 Keputusan uji statistik adalah menolak atau menerima 6 Kesimpulan akhir

BAB ΙΙ LANDASAN TEORI

BAB ΙΙ LANDASAN TEORI 7 BAB ΙΙ LANDASAN TEORI Berubahnya nilai suatu variabel tidak selalu terjadi dengan sendirinya, bisa saja berubahnya nilai suatu variabel disebabkan oleh adanya perubahan nilai pada variabel lain yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Analisa Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang 13 BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang terkenal Galton menemukan bahwa meskipun terdapat tendensi atau kecenderungan

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan anak.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang terkenal Galton menemukan bahwa meskipun terdapat tendensi atau kecenderungan bahwa

Lebih terperinci

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan.

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. BAB II KAJIAN TEORI A. Matriks 1. Definisi Matriks Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks (Howard

Lebih terperinci

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Dalam ilmu statistika teknik yang umum digunakan untuk menganalisa hubungan antara dua variabel atau lebih adalah analisa regresi linier. Regresi pertama

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut dengan

Lebih terperinci

Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak

Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak mendapatkan perhatian dan dipelajari oleh ilmuan dari hampir semua ilmu bidang

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, analisis regresi berkenaan dengan studi ketergantungan dari suatu varibel yaitu

Lebih terperinci

BAB 2 LANDASAN TEORI. berkenaan dengan studi ketergantungan dari suatu varibel yaitu variabel tak bebas (dependent

BAB 2 LANDASAN TEORI. berkenaan dengan studi ketergantungan dari suatu varibel yaitu variabel tak bebas (dependent BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, analisis regresi berkenaan dengan studi ketergantungan dari suatu varibel yaitu

Lebih terperinci

BAB II METODE ANALISIS DATA. memerlukan lebih dari satu variabel dalam membentuk suatu model regresi.

BAB II METODE ANALISIS DATA. memerlukan lebih dari satu variabel dalam membentuk suatu model regresi. 10 BAB II METODE ANALISIS DATA 2.1 Pengertian Regresi Berganda Banyak data pengamatan yang terjadi sebagai akibat lebih dari dua variabel, yaitu memerlukan lebih dari satu variabel dalam membentuk suatu

Lebih terperinci

BAB 2. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, analisis regresi berkenaan dengan studi ketergantungan dari suatu varibel

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Konsep Dasar Statistika Statistik adalah ilmu yang mempelajari tentang seluk beluk data, yaitu tentang pengumpulan, pengolahan, penganalisisa, penafsiran, dan penarikan kesimpulan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Statistik Menurut Sofyan (2013) pengertian statistik berasal dari bahasa Latin, yaitu status yang berarti negara dan digunakan untuk urusan negara. Pada mulanya, statistik

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis regresi linier sederhana 2. Analisis regresi linier berganda. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. 1. Analisis regresi linier sederhana 2. Analisis regresi linier berganda. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Pengertian regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih. Istilah

Lebih terperinci

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan 4 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Matriks 2.1.1 Matriks Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan dalam susunan itu disebut anggota dalam matriks tersebut. Suatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

BAB 2 LANDASAN TEORI. berarti ramalan atau taksiran pertama kali diperkenalkan Sir Francis Galton pada

BAB 2 LANDASAN TEORI. berarti ramalan atau taksiran pertama kali diperkenalkan Sir Francis Galton pada BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi merupakan suatu model matematis yang dapat digunakan untuk mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang berarti

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari tidak terlepas dari data, baik itu bersifat kuantitatif maupun kualitatif. Apabila dikumpulkan data dari seluruh elemen dalam suatu populasi,

Lebih terperinci

BAB 2 LANDASAN TEORI. satu variabel yang disebut variabel tak bebas (dependent variable), pada satu atau

BAB 2 LANDASAN TEORI. satu variabel yang disebut variabel tak bebas (dependent variable), pada satu atau BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi pertama kali digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Gallon, istilah regresi pada mulanya bertujuan untuk membuat perkiraan

Lebih terperinci

BAB 2 LANDASAN TEORI. regresi adalah sebuah teknik statistik untuk membuat model dan menyelediki

BAB 2 LANDASAN TEORI. regresi adalah sebuah teknik statistik untuk membuat model dan menyelediki BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan, dan hal tersebut biasanya diselidiki sifat hubungannya.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi BAB II TINJAUAN PUSTAKA Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi linear, metode kuadrat terkecil, restriksi linear, multikolinearitas, regresi ridge, uang primer, dan koefisien

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun persamaan dan menggunakan persamaan tersebut untuk membuat perkiraan (prediction).

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Matriks Matriks adalah himpunan bilangan real yang disusun secara empat persegi panjang, mempunyai baris dan kolom dengan bentuk umum : Tiap-tiap bilangan yang berada didalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Repeated Measurement Dalam repeated measurement setiap perlakuan menunjukkan pengukuran terhadap satu sampel (unit eksperimen ) atau beberapa sampel yang memiliki karakter sama

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi yang berarti peramalan, penaksiran, atau pendugaan pertama kali diperkenalkan pada tahun 1877 oleh Sir Francis Galton (1822-1911) sehubungan dengan penelitiannya

Lebih terperinci

BAB II LANDASAN TEORI. Analisis regresi (regressison analysis) merupakan suatu teknik untuk membangun persamaan

BAB II LANDASAN TEORI. Analisis regresi (regressison analysis) merupakan suatu teknik untuk membangun persamaan BAB II LANDASAN TEORI 21 Konsep Dasar Analisis Regresi Analisis regresi (regressison analysis) merupakan suatu teknik untuk membangun persamaan dan menggunakan persamaan tersebut untuk membuat perkiraan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier BAB II TINJAUAN PUSTAKA 2.1 Analisis Regresi Linier Berganda Analisis regresi pertama kali dikembangkan oleh Sir Francis Galton pada abad ke-19. Analisis regresi dengan satu peubah prediktor dan satu peubah

Lebih terperinci

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan 4 II. TINJAUAN PUSTAKA 2.1 Definisi Pencilan Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan yang bervariasi (beragam). Keberagaman data ini, di satu sisi sangat dibutuhkan dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam BAB 2 TINJAUAN TEORITIS 21 Pengertian Regresi Linier Pengertian regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih

Lebih terperinci

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4 Regresi Linier Sederhana dan Korelasi Pertemuan ke 4 Pengertian Regresi merupakan teknik statistika yang digunakan untuk mempelajari hubungan fungsional dari satu atau beberapa variabel bebas (variabel

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Hubungan antara variabel terikat Y dengan variabel bebas biasanya dilukiskan dalam sebuah garis, yang disebut dengan garis regresi. Garis regresi ada yang berbentuk

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

MATRIK dan RUANG VEKTOR

MATRIK dan RUANG VEKTOR MATRIK dan RUANG VEKTOR A. Matrik. Pendahuluan Sebuah matrik didefinisikan sebagai susunan persegi panjang dari bilangan bilangan yang diatur dalam baris dan kolom. Matrik ditulis sebagai berikut: a a

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 9 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada variabel - variabel lain yang mempengaruhinya. Misalnya pada kinerja

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 19 BAB LANDASAN TEORI.1 Analisis Regresi Analisis regresi dalam statistika adalah salah satu metode untuk menentukan hubungan sebab-akibat antara satu variabel dengan variabel yang lain. Variabel penjelas,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 14 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Kata regresi (regression) diperkenalkan pertama kali oleh Francis Dalton pada tahun 1886. Menurut Dalton, analisis regresi berkenaan dengan studi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton.

BAB 2 TINJAUAN TEORITIS. Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton. BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Regresi Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton. Beliau memperkenalkan model peramalan, penaksiran, atau pendugaan,

Lebih terperinci

BAB Ι PENDAHULUAN. 1.1 Latar Belakang

BAB Ι PENDAHULUAN. 1.1 Latar Belakang 1 BAB Ι PENDAHULUAN 1.1 Latar Belakang Belakangan ini peranan metode peramalan sangat diperlukan untuk dapat memberikan gambaran di kemudian hari dalam berbagai bidang, baik itu ekonomi, keuangan, pertanian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Dalam ilmu statistika teknik yang umum digunakan untuk menganalisa hubungan anatara dua variabel atau lebih adalah analisa regresi linier. Regresi pertama digunakan

Lebih terperinci

BAB 2 LANDASAN TEORI. mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang

BAB 2 LANDASAN TEORI. mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi merupakan suatu model matematis yang dapat di gunakan untuk mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pengertian Analisis Regresi Regresi pertama-tama dipergunakan sebagai konsep statistik pada tahun 877 oleh Sir Francis Galton yang melakukan studi tentang kecenderungan tinggi badan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel

Lebih terperinci

BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat

BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat BAB II LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian ini yang berhubungan dengan kecukupan sampel maka langkah awal yang harus dilakukan adalah pengujian terhadap jumlah sampel. Pengujian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Regresi Linier Berganda

Regresi Linier Berganda Regresi Linier Berganda Regresi Berganda Contoh Menguji hubungan linier antara variabel dependen (y) dan atau lebih variabel independen (x n ) Hubungan antara suhu warehouse dan viskositas cat dengan jumlah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, analisis regresi berkenaan dengan studi ketergantungan dari suatu variabel yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Konsep Dasar Statistika Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, menyusun atau mengatur, menyajikan, menganalisa dan memberi interpretasi terhadap

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan

BAB 2 LANDASAN TEORI. 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan BAB 2 LANDASAN TEORI 2.1 Defenisi Analisis Regresi dan Korelasi 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan kuatnya atau derajat hubungan linier antara dua variabel atau

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor

BAB 2 LANDASAN TEORI. Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor (variabel independent) dengan variabel outcome (variabel dependen) untuk

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Pengertian Regresi Linier Pengertian Regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih Analisis

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

BAB II LANDASAN TEORI. metode kuadrat terkecil (MKT), outlier, regresi robust, koefisien determinasi,

BAB II LANDASAN TEORI. metode kuadrat terkecil (MKT), outlier, regresi robust, koefisien determinasi, BAB II LANDASAN TEORI Beberapa teori yang diperlukan untuk mendukung pembahasan diantaranya adalah regresi linear berganda, pengujian asumsi analisis regresi, metode kuadrat terkecil (MKT), outlier, regresi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep dan Definisi Pendapatan Regional adalah tingkat (besarnya) pendapatan masyarakat pada wilayah analisis. Tingkat pendapatan dapat diukur dari total pendapatan wilayah maupun

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Nilai Matematika Nilai matematika dalam penelitian ini adalah hasil belajar siswa yang telah diberi nilai atau bobot. Penilaian hasil belajar merupakan kegiatan atau cara yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Analisis Regresi Tidak jarang dihadapkan dengan persoalaan yang melibatkan dua atau lebih peubah atau variabel yang ada atau diduga ada dalam suatu hubungan tertentu. Misalnya

Lebih terperinci

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama.

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama. MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital (huruf besar)

Lebih terperinci

PENGGUNAAN METODE NUMERIK DAN METODE MATRIKS DALAM PERHITUNGAN PARAMETER PADA REGRESI LINIER BERGANDA SKRIPSI ZULIVA EVASARI SILALAHI

PENGGUNAAN METODE NUMERIK DAN METODE MATRIKS DALAM PERHITUNGAN PARAMETER PADA REGRESI LINIER BERGANDA SKRIPSI ZULIVA EVASARI SILALAHI PENGGUNAAN METODE NUMERIK DAN METODE MATRIKS DALAM PERHITUNGAN PARAMETER PADA REGRESI LINIER BERGANDA SKRIPSI ZULIVA EVASARI SILALAHI 090823004 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

REGRESI LINIER BERGANDA. Debrina Puspita Andriani /

REGRESI LINIER BERGANDA. Debrina Puspita Andriani    / REGRESI LINIER BERGANDA 9 Debrina Puspita Andriani E-mail : [email protected] / [email protected] Outline 03//04 Regresi Berganda : PENGERTIAN 3 Menguji hubungan linier antara variabel dependen (y) dan

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

BAB 2 LANDASAN TEORI. Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada

BAB 2 LANDASAN TEORI. Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada 19 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada variabel-variabel lain yang mempengaruhinya.misalnya pada seorang

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemenelemen yang disusun secara teratur menurut baris dan kolom berbentuk

Lebih terperinci

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat BAB II KAJIAN PUSTAKA 2.1 Konsep Dasar Runtun Waktu Data runtun waktu (time series) merupakan data yang dikumpulkan, dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat berupa

Lebih terperinci

KORELASI DAN REGRESI LINIER SEDERHANA

KORELASI DAN REGRESI LINIER SEDERHANA KORELASI DAN REGRESI LINIER SEDERHANA 1. Pendahuluan Istilah "regresi" pertama kali diperkenalkan oleh Sir Francis Galton pada tahun 1886. Galton menemukan adanya tendensi bahwa orang tua yang memiliki

Lebih terperinci

BAB III METODE THEIL. menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan

BAB III METODE THEIL. menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan 28 BAB III METODE THEIL Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan dalam sebuah persamaan regresi. Dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan

BAB 2 LANDASAN TEORI. 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan 7 BAB 2 LANDASAN TEORI 2.1 Defenisi Analisis Regresi dan Korelasi 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan kuatnya atau derajat hubungan linier antara dua variabel

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Indeks Pembangunan Manusia Pembangunan manusia merupakan salah satu cara yang dilakukan untuk memperbaiki kualitas penduduk, hal ini dapat ditempuh dengan cara meningkatkan kapasitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak mendapatkan perhatian dan dipelajari oleh ilmuan dari hampir semua ilmu bidang pengetahuan,

Lebih terperinci

BAB III REGRESI PADA DATA SIRKULAR

BAB III REGRESI PADA DATA SIRKULAR BAB III REGRESI PADA DATA SIRKULAR Variabel dalam suatu regresi secara umum terdiri atas variabel bebas (independent variable dan variabel terikat (dependent variable. Jenis data pada variabel-variabel

Lebih terperinci

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Dalam ilmu statistika teknik yang umum digunakan untuk menganalisa hubungan antara dua variabel atau lebih adalah analisa regresi linier. Regresi pertama

Lebih terperinci

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y.

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y. REGRESI LINIER 1. Hubungan Fungsional Antara Variabel Variabel dibedakan dalam dua jenis dalam analisis regresi: a. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia.

Lebih terperinci

MODEL-MODEL LEBIH RUMIT

MODEL-MODEL LEBIH RUMIT MAKALAH MODEL-MODEL LEBIH RUMIT DISUSUN OLEH : SRI SISKA WIRDANIYATI 65 JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 04 BAB I PENDAHULUAN. Latar Belakang

Lebih terperinci

BAB 2 LANDASAN TEORI. bermacam-macam istilah: variabel penjelas, variabel eksplanatorik, variabel

BAB 2 LANDASAN TEORI. bermacam-macam istilah: variabel penjelas, variabel eksplanatorik, variabel BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA = (2.2) =

BAB 2 TINJAUAN PUSTAKA = (2.2) = BAB 2 TINJAUAN PUSTAKA 2.1. Regresi Linear Berganda Regresi linear berganda adalah regresi dimana variabel terikatnya dihubungkan atau dijelaskan dengan lebih dari satu variabel bebas,,, dengan syarat

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Data Data merupakan kumpulan keterangan atau fakta yang diperoleh dari satu populasi atau lebih. Data yang baik, benar dan sesuai dengan model menentukan kualitas kebijakan

Lebih terperinci

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan BAB II LANDASAN TEORI 2.1 Data Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan datum yang berisi fakta-fakta serta gambaran suatu fenomena yang dikumpulkan, dirangkum, dianalisis, dan

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 = NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep matriks

STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep matriks Page 1 of 25 Materi Matriks yang dipelajari A. Pengertian dan Jenis Matriks B. Operasi Aljabar pada Matriks C. Determinan dan Invers Matriks D. Aplikasi Matriks dalam Penyelesaian Sistem PersamaanLinear

Lebih terperinci

BAB III : SISTEM PERSAMAAN LINIER

BAB III : SISTEM PERSAMAAN LINIER 3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

PENERAPAN KONSEP MATRIKS DALAM KEHIDUPAN SEHARI-HARI

PENERAPAN KONSEP MATRIKS DALAM KEHIDUPAN SEHARI-HARI PENERAPAN KONSEP MATRIKS DALAM KEHIDUPAN SEHARI-HARI Oleh : Gede Edy Priyadnya 93 VII.C Jurusan S Pendidikan Teknik Informatika Fakultas Teknik dan Kejuruan Universitas Pendidikan Ganesha Singaraja 9 PENGERTIAN

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

= parameter regresi = variabel gangguan Model persamaan regresi linier pada persamaan (2.2) dapat dinyatakan dalam bentuk matriks berikut:

= parameter regresi = variabel gangguan Model persamaan regresi linier pada persamaan (2.2) dapat dinyatakan dalam bentuk matriks berikut: BAB II LANDASAN TEORI 2. Analisis Regresi Linier Berganda Analisis regresi merupakan salah satu analisis statistik yang sering digunakan untuk menganalisis hubungan antara dua variabel atau lebih. Menurut

Lebih terperinci