BARISAN DAN DERET ARITMETIKA
|
|
|
- Hartono Setiawan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BARISAN DAN DERET ARITMETIKA Barisan Aritmetika a. Pengertian Barisan Aritmetika Untuk memahami pengertian barisan aritmetika, perhatikan barisan bilangan pada penggaris yang dimiliki Amir berikut ini. 0, 1, 2, 3,, 19, 20 Suku pertama barisan di atas adalah U 1 = 0 dan dapat dilihat bahwa tiap suku dari barisan tersebut bertambah 1 dari suku sebelumnya. Dengan demikian pada barisan tersebut selisih dua suku yang berurutan selalu sama, yaitu +1. Jenis barisan tersebut secara khusus disebut barisan aritmetika. Barisan aritmetika adalah suatu barisan dengan selisih tiap dua suku yang berurutan selalu tetap (konstan). Selanjutnya selisih dua suku yang berurutan tersebut disebut beda dan disimbolkan dengan b. Barisan aritmetika di atas memiliki beda b = 1 0 = 2 1 = 3 2 = = = 1 Secara umum, Pada barisan aritmetika U 1, U 2, U 3,, U n-1, U n mempunyai beda, b = U 2 U 1 = U 3 U 2 = = U n U n-1 CONTOH 1 Tunjukkan bahwa barisan berikut merupakan barisan aritmetika! a. 14, 17, 20, 23, b. 40, 35, 30, 25, c. x, x + 3, x + 6, x + 9, Jawab : Untuk masing-masing barisan di atas tentukan nilai beda terlebih dahulu, a. Dari barisan 14, 17, 20, 23, diperoleh U 2 U 1 = 17 4 = 3 U 3 U 2 = = 3 Karena barisan tersebut mempunyai beda yang tetap, maka barisan tersebut merupakan barisan aritmetika. b. Dari barisan 40, 35, 30, 25, diperoleh U 2 U 1 = = 5 U 3 U 2 = = 5 Karena barisan tersebut mempunyai beda yang tetap, maka barisan tersebut merupakan barisan aritmetika. c. Dari barisan x, x + 3, x + 6, x + 9, diperoleh U 2 U 1 = x + 3 x = 3 U 3 U 2 = x + 6 x + 3 = 3 Karena barisan tersebut mempunyai beda yang tetap, maka barisan tersebut merupakan barisan aritmetika. 1
2 b. Rumus Suku ke-n Misalnya suku pertama dari suatu barisan aritmetika adalah a dan bedanya adalah b, maka berdasarkan definisi barisan aritmetika yang mempunyai beda tetap, diperoleh U 1 = a U 2 U 1 = b U 3 U 2 = b U 4 U 3 = b U 5 U 4 = b U n U n-1 = b U 2 = U 1 + b U 2 = a + b U 3 = U 2 + b U 3 = (a + b) + b U 3 = a + 2b U 4 = U 3 + b U 4 = (a + 2b) + b U 4 = a + 3b U 5 = U 4 + b U 5 = (a + 3b) + b U 5 = a + 4b U n = U n-1 + b U n = a + (n -1) b Dari pola di atas diperoleh bahwa barisan aritmetika yang suku pertamanya a dan beda b dapat dituliskan sebagai: a, a + b, a + 2b, a + 3b,, a + (n -1) b, Rumus suku ke n dari barisan aritmetika yang mempunyai suku pertama a dan beda b adalah U n = a + (n -1) b CONTOH 2 Diketahui barisan aritmetika 1, 7, 13, 19, a. Tentukan suku ke-10 dan rumus suku ke-n barisan tersebut! b. Suku keberapakah yang nilainya sama dengan 115? a. Dari barisan aritmetika 1, 7, 13, 19, diperoleh a = 1 b = 7 1 = 6 U n = a + (n 1) b U 10 = 1 + (10 1) 6 = = 55 U n = a + (n 1) b = 1 + (n 1) 6 = 1 + 6n 6 = 6n 5 2
3 b. Misalnya 115 merupakan suku ke-n barisan tersebut, maka berlaku U n = 115 6n 5 = 115 6n = 120 n = 20 Jadi, dalam barisan tersebut 115 adalah suku ke-20 CONTOH 3 Pada suatu barisan aritmetika diketahui bahwa suku ke-4 adalah 18 dan suku ke-10 adalah 48. a. Tentukan suku pertama dan beda dari barisan tersebut! b. Tentukan rumus suku ke-n barisan tersebut! a. Dengan menggunakan rumus suku ke-n, U n = a + (n 1) b diperoleh U 4 = 18 a + 3b = 18 (1) eliminasi U 10 = 48 a + 9b = 48 (2) diperoleh a + 3b = 18 a + 9b = 48-6b = -30 b = 5 Subtitusikan b = 5 ke persamaan (1), diperoleh a + 3b = 18 a = 18 a + 15 = 18 a = 3 Jadi barisan tersebut mempunyai suku pertama a = 3 dan beda b = 5. b. Berdasarkan hasil (a) diperoleh U n = a + (n 1) b = 3 + (n 1) 5 = 3 + 5n 5 = 5n 2 c. Suku Tengah Perhatikan barisan bilangan berikut! 1, 5, 9, 13, 17 Banyaknya suku pada barisan di atas merupakan bilangan ganjil yaitu 5. Jika banyak suku suatu barisan aritmetika adalah bilangan ganjil yang lebih dari satu, maka terdapat suku yang berada di tengah (suku di tengah). Suku tengah tersebut disimbolkan dengan U t. Pada barisan di atas mempunyai suku tengah U t = U 3 = 9. CONTOH 4 Tentukan suku tengah dari barisan aritmetika 5, 8, 11, 14,, 77. 3
4 Barisan aritmetika tersebut mempunyai suku pertama a = 5 dan beda b = 3. Untuk mengetahui suku tengah, terlebih dahulu tentukan banyaknya suku barisan tersebut U n = 77 a + (n 1) b = (n 1) 3 = n 3 = 77 3n 2 = 77 3n = 75 n = 25 Dengan demikian suku tengah barisan tersebut adalah suku ke- (25 + 1) = 13 Jadi, nilai suku tengah barisan tersebut adalah U t = U 13 U t = a + (13 1) b = = = 41 Rumus umum untuk menentukan suku tengah barisan aritmetika dapat dianalogikan dengan contoh sederhana seperti di atas. Misalnya,,,, adalah barisan aritmetika dengan banyaknya suku bilangan ganjil lebih dari satu, maka suku tengah barisan tersebut adalah Jika rumus tersebut digunakan untuk Contoh 4, maka suku tengah dari barisan aritmetika 5, 8, 11, 14,..., 17 adalah = = = 41 CONTOH 5 Jika 13, x, 25, y, merupakan barisan aritmetika, tentukan nilai x dan y. a. Dengan memperhatikan barisan aritmetika 13, x, 25 dan dengan menggunakan rumus suku tengah barisan aritmetika, maka diperoleh b. Dengan memperhatikan barisan aritmetika x, 25, y dan dengan menggunakan rumus suku tengah barisan aritmetika, maka diperoleh 25 =, dengan mensubtitusikan x = 19, maka 50 = 19 + y y = 31 4
5 d. Sisipan Pada suatu barisan aritmetika dapat disisipan beberapa bilangan antara tiap dua suku yang berurutan, sehingga bilangan semula bersama-sama dengan bilangan yang disisipkan tersebut membentuk barisan aritmetika baru. Misalnya : Pada barisan 2, 11, 20 disisipkan 2 buah bilangan antara tiap dua suku yang berurutan sehingga membentuk barisan aritmetika baru Barisan aritmetika semula 2, 11, 20???? Barisan aritmetika baru 2,,, 11,,, 20 Perhatikan bahwa suku pertama barisan aritmetika yang baru sama dengan suku pertama barisan semula, yaitu a = 2, sedangkan suku ke-4 adalah 11, sehingga U 4 = 11 a + (4 1) b = 11 ( b menyatakan beda barisan yang baru) 2 + 3b = 11 3b = 9 b = 3 Jadi, barisan aritmetika yang baru adalah 2, 5, 8, 11, 14, 17, 20 Dengan analogi cara di atas diperoleh, Jika antara dua suku yang berurutan dari suatu barisan aritmetika disisipkan k buah bilangan, sehingga terbentuk barisan aritmetika baru, maka berlaku b = dengan b adalah beda barisan aritmetika baru b adalah beda barisan aritmetika semula k adalah banyaknya bilangan yang disisipkan CONTOH 5 Diketahui barisan aritmetika 3, 19, 35, dan antara tiap dua suku yang berurutan disisipkan 3 buah bilangan sehingga terbentuk barisan aritmetika baru a. Tentukan beda barisan aritmetika baru! b. Tentukan suku ke-10 dari barisan aritmetika baru! a. Dari barisan aritmetika 3, 19, 35, diperoleh suku pertama a = 3 dan beda b = 19 3 = 16 Dengan menggunakan rumus sisipan untuk k = 3, maka diperoleh b = b = b = 4 Jadi, beda barisan aritmetika baru adalah 4. 5
6 b. Suku ke-10 barisan aritmetika yang baru ditentukan dengan rumus U 10 = a + (10 1) b = = 39 Jadi, suku ke-10 barisan aritmetika baru adalah 39. Deret Aritmetika Sebelumnya telah dipelajari tentang barisan bilangan aritmetika dan sekarang akan dipelajari tentang jumlah dari bilangan-bilangan tersebut. Sebagai contoh, jika ingin mengetahui berapa jumlah bilangan pada penggaris Amir, maka kita jumlahkan saja bilangan-bilangan pada barisan tersebut yaitu: Nilai peenjumlahan deret aritmetika di atas dapat dihitung dengan menggunakan rumus yang akan diturunkan berikut ini Misal U 1, U 2, U 3,, U n adalah suku-suku suatu barisan, maka deret yang bersesuaian dengan barisan tersebut adalah U 1 + U 2 + U U n. Penjumlahan tersebut disimbolkan dengan S n = U 1 + U 2 + U U n. Untuk menentukan rumus S n, nyatakan S n kedalam dua cara : a. Misalnya suku pertama barisan aritmetika adalah a dan beda b serta suku ke-n adalah U n, maka S n = U 1 + U 2 + U U n-2 + U n-1 + U n S n = a + (a + b) + (a +2b) + + (U n 2b) + (U n b) + U n (1) b. Dengan menuliskan S n tersebut dengan urutan terbalik dari penjumlahan suku terakhir U n sampai suku pertama a, diperoleh S n = (U n 2b) + (U n b) + U n + + (a + b) + (a +2b) + a (2) Jumlahkan persamaan (1) dan (2), maka diperoleh S n = a + (a + b) + (a +2b) + + (U n 2b) + (U n b) + U n S n = (U n 2b) + (U n b) + U n + + (a + b) + (a +2b) + a + 2 S n = (a + U n ) + (a + U n ) + (a + U n ) + + (a + U n ) + (a + U n ) + (a + U n ) 2 S n = n (a + U n ) n suku S n = (a + U n ) dengan mengganti U n = a + (n 1) b, maka diperoleh S n = (a + a + (n 1) b) S n = (2a + (n 1) b) 6
7 Dari hasil tersebut dapat disimpulkan sebagai berikut. Jika U 1, U 2, U 3,, U n adalah barisan aritmetika, maka jumlah n suku pertama barisan tersebut adalah S n = (a + U n ) atau S n = (2a + (n 1) b) dengan U n adalah suku ke-n a adalah suku pertama, dan b adalah beda Dari pengertian jumlah n suku pertama barisan aritmetika diperoleh sifat berikut ini S n-1 = U 1 + U 2 + U U n S n = U 1 + U 2 + U U n-1 + U n, sehingga S n = S n-1 + U n U n = S n S n-1 Jadi dapat disimpulkan sebagai berikut, Jika U n adalah suku ke-n suatu barisan aritmetika dan S n adalah jumlah n suku pertama barisan tersebut, maka berlaku U n = S n S n-1 CONTOH 6 Diketahui deret aritmetika a. Tentukan rumus jumlah n suku pertama! b. Tentukan jumlah 20 suku pertama Dari deret tersebut diperoleh suku pertama a = 2 dan beda b = 6 2 = 4 a. Rumus jumlah n suku pertama adalah S n = (2a + (n 1) b) = ( (n 1) 4) = (4 + 4n 4) = (4n) = 2n 2 b. Jumlah 20 suku pertama adalah S n = 2n 2 S 20 = 2 (20) 2 S 20 = 800 7
8 CONTOH 7 Hitunglah nilai dari deret aritmetika Dari deret di atas diperoleh suku pertama a = 1 dan beda b = 3 1 = 2, dan suku ke-n adalah U n = 153. Banyaknya suku deret tersebut dicari dengan cara sebagai berikut. U n = 153 a + (n 1) b = (n 1) 2 = n 2 = 153 2n 1 = 153 2n = 154 n = 77 Jumlah 77 suku pertamanya adalah S n = (a + U n ) S 77 = ( ) = (154) = = 5929 Jadi jumlah deret tersebut adalah
NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits
NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan
1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku
NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan
Materi W6b BARISAN DAN DERET. Kelas X, Semester 2. B. Barisan dan Deret Aritmatika.
Materi W6b BARISAN DAN DERET Kelas X, Semester 2 B. Barisan dan Deret Aritmatika www.yudarwi.com B. Barisan dan Deret Aritmatika Barisan adalah kumpulan objek-objek yang disusun menurut pola tertentu U
Barisan dan Deret Aritmetika. U 1, U 2, U 3,...,U n-1, U n. 1. Barisan Bilangan
Barisan dan Deret Aritmetika 1 Barisan Bilangan Untuk memahami pengertian suatu barisan bilangan, perhatikan contoh urutan bilangan berikut ini :, 4, 6, 8, 10, Urutan bilangan di atas mempunyai aturan
KHAIRUL MUKMIN LUBIS
Barisan dan Deret Eni Sumarminingsih, SSi, MM Elizal A. Barisan Aritmetika Definisi Barisan aritmetik adalah suatu barisan bilangan yang selisih setiap dua suku berturutan selalu merupakan bilangan tetap
BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang :
BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang : 1. Barisan dan deret aritmatika 2. Barisan dan deret geometri 3. Sisipan SOAL DAN PEMBAHASAN 14.1 Soal dan
BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika
Jurnal Peta Konsep Daftar Hadir MateriA SoalLatihan Materi Umum BARISAN DAN DERET 1 Kelas X, Semester A. Barisan dan Deret Aritmatika Barisan dan Deret Aritmatika Barisan dan Deret Soal Aplikasi dalam
Sri Purwaningsih. Modul ke: Fakultas EKONOMI BISNIS. Program Studi Manajemen dan Akuntansi.
Modul ke: Fakultas EKONOMI BISNIS MATEMATIKA BISNIS Sesi 2 ini akan membahasteori Deret Hiutung dan Deret Ukur pada Matematika Bisnis sehingga Mahasiswa mempunyai dasar yang kuat untuk melakukan pengukuran
K13 Revisi Antiremed Kelas 11 Matematika Wajib
K13 Revisi Antiremed Kelas 11 Matematika Wajib Baris dan Deret Aritmatika - Latihan Soal Ulangan Doc. Name: RK13AR11MATWJB0603 Version : 2016-11 halaman 1 01. Suku ke-20 pada barisan 3, 9, 15, 21,. Adalah
MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen
MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut
BY : DRS. ABD. SALAM, MM
BY : DRS. ABD. SALAM, MM Page 1 of 26 KOMPETENSI DASAR Pola Barisan dan Deret Bilangan a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menunjukkan pola bilangan dari suatu barisan
Pada barisan bilangan 2, 7, 12, 17,., b = 7 2 = 12 7 = = 5. Pada barisan bilangan 3, 7, 11, 15,., b = 7 3 = 11 7 = = 4
Materi : Barisan Bilangan Perhatikan urutan bilangan-bilangan berikut ini a. 1, 5, 9, 13,. b. 15, 1, 9, 6,. c., 6, 18, 54,. d. 3, 16, 8, 4,. Tiap-tiap urutan di atas mempunyai aturan/pola tertentu, misalnya
Barisan adalah su,sunan bilangan bilangan atau angka angka yang ditulis dengan dipisahkan tanda koma dengan mempunyai pola tersendiri.
Pengertian barisan B A R I S A N Barisan adalah su,sunan bilangan bilangan atau angka angka yang ditulis dengan dipisahkan tanda koma dengan mempunyai pola tersendiri. Berikut ini contoh beberapa barisan
BARISAN DAN DERET. AFLICH YUSNITA F, M.Pd. STKIP SILIWANGI BANDUNG
BARISAN DAN DERET AFLICH YUSNITA F, M.Pd. STKIP SILIWANGI BANDUNG . Pola Bilangan Adalah: susunan bilangan yang memiliki aturan atau pola tertentu Contoh:,,,4,5 mempunyai pola bilangan ditambah satu dari
Matematika Bahan Ajar & LKS
Matematika Bahan Ajar & LKS Pola Bilangan, Barisan & Deret = + ( 1) Un = ar^(n-1) Nama : NIS : Kelas : Sekolah : Pengantar Bahan ajar ini sekaligus merupakan Lembar Kerja Siswa. Untuk mempelajarinya, Anda
BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah
BILANGAN BERPANGKAT Jika a bilangan real dan n bilangan bulat positif, maka a n adalah perkalian a sebanyak n faktor. Bilangan berpangkat, a disebut bilangan pokok dan n disebut pangkat atau eksponen.
BAB 5 Bilangan Berpangkat dan Bentuk Akar
BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi
BARISAN ARITMETIKA DAN DERET ARITMETIKA
BARISAN ARITMETIKA DAN DERET ARITMETIKA BARISAN DAN DERET BILANGAN Penyusun: Atmini Dhoruri, MS Kode: Jenjang: SMP T/P: 1/2 A. Kompetensi yang diharapkan 1. Menentukan suku ke-n barisan aritmatika dan
LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 2 LATIHAN 1. Jawab: Jawab:
NAMA : KELAS : C. BARISAN DAN DERET GEOMETRI 1. BARISAN GEOMETRI (B.G) Barisan Geometri adalah suatu barisan dengan rasio antara dua suku yang berurutan selalu tetap dan sama. 1) Perhatikan bentuk di bawah:
Uji Komptensi. 2. Tentukan jumlah semua bilangan-bilangan bulat di antara 100 dan 200 yang habis dibagi 5
Uji Komptensi Barisan dan Deret "Aljabar Linear Elementer". Diketahui barisan 84,80,77,... Suku ke-n akan menjadi 0 bila n =... Tentukan jumlah semua bilangan-bilangan bulat di antara 00 dan 00 yang habis
BARISAN DAN DERET. A. Pola Bilangan
BARISAN DAN DERET A. Pola Bilangan Perhatikan deretan bilangan-bilangan berikut: a. 1 2 3... b. 4 9 16... c. 31 40 21 30 16... Deretan bilangan di atas mempunyai pola tertentu. Dapatkah anda menentukan
12. BARISAN DAN DERET
. BARISAN DAN DERET A. BARISAN ARITMETIKA DAN GEOMETRI U, U, U 3,,U n adalah barisan suatu bilangan yang memiliki ciri khusus sebagai berikut Barisan Ciri utama Rumus suku ke-n Suku tengah Sisipan k bilangan
Diusulkan oleh: Nama : Pita Suci Rahayu Nim : Kelas/Semester: C/1
Diusulkan oleh: Nama : Pita Suci Rahayu Nim : 1384202092 Kelas/Semester: C/1 BARISAN DAN DERET Barisan bilangan adalah himpunan bilangan yang diurutkan menurut suatu aturan/pola tertentu yang dihubungkan
2. Suku pertama dan suku kedua suatu deret geometri berturut-turut adalah a -4 dan a x. Jika suku kedelapan adalah a 52, maka berapa nilai x?
1. Jika Un suku ke-n dari sutu deret geometri dengan U 1 = x 1/3 dan U 2 = x 1/2, maka suku ke lima dari deret tersebut adalah r = U 2/U 1 = x 1/2 : x 1/3 = x (1/2-1/3) = x 1/6 U 5 = a. (r)4 U 5 = x 1/3.
CONTOH SOAL UAN BARIS DAN DERET
CONTOH SOAL UAN BARIS DAN DERET 1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah. a. 840 b. 660 c. 640
B. POLA BILANGAN 1. Pengertian pola bilangan Pola bilangan adalah aturan terbentuknya sebuah kelompok bilangan.
A. PENGERTIAN BARISAN DAN DERET 1. Pengertian barisan bilangan Barisan bilangan adalah urutan suatu bilangan yang diurutkan menurut aturan tertentu. Contoh barisan bilangan genap : 2, 4, 6, 8,... 2. Pengertian
BARISAN DAN DERET. Romli Shodikin, M.Pd. Prepared By : LANJUT
BARISAN DAN DERET Prepared By : Romli Shodikin, M.Pd www.fskromli.blogspot.com [email protected] LANJUT Standar Kompetensi : Menggunakan konsep notasi sigma, barisan dan deret dalam pemecahan masalah
MATEMATIKA SEKOLAH 2. MENENTUKAN POLA BARISAN BILANGAN & SUKU KE-n. Oleh : Novi Diah Wayuni ( ) Riswoto ( )
MATEMATIKA SEKOLAH 2 MENENTUKAN POLA BARISAN BILANGAN & SUKU KE-n Oleh : Novi Diah Wayuni ( 1001060083) Riswoto ( 1001060085 ) A. Menentukan Pola barisan bilangan Sederhana B. Menentukan suku ke-n barisan
MATEMATIKA BISNIS. Model Perkembangan Usaha (Kaidah-Kaidah Deret Hitung) Sitti Rakhman, SP., MM. Modul ke: Fakultas FEB. Program Studi Manajemen
Modul ke: MATEMATIKA BISNIS Model Perkembangan Usaha (Kaidah-Kaidah Deret Hitung) Fakultas FEB Sitti Rakhman, SP., MM. Program Studi Manajemen www.mercubuana.ac.id PENDAHULUAN Matematika salah satu ilmu
Matematika Bahan Ajar & LKS
Matematika Bahan Ajar & LKS Pola Bilangan, Barisan & Deret = + ( 1) Un = ar^(n-1) Nama : NIS : Kelas : Sekolah : Pengantar Bahan ajar ini sekaligus merupakan Lembar Kerja Siswa. Untuk mempelajarinya, Anda
21. BARISAN DAN DERET
2. BARISAN DAN DERET A. BARISAN ARITMETIKA DAN GEOMETRI U, U 2, U 3,,U n adalah barisan suatu bilangan yang memiliki ciri khusus sebagai berikut Barisan Ciri utama Rumus suku ke-n Suku tengah Sisipan k
Matematika Dasar : BARISAN DAN DERET
Matematika Dasar : BARISAN DAN DERET. Suku ke-n pada barisan, 6, 0, 4, bisa dinyatakan dengan (A) Un = n (B) Un = 6n 4 (C) Un = 4n + (D) Un = 4n (E) Un = n + 4. Suku ke-5 pada barisan, 0, 7, 4,.. (A) 65
BARISAN DAN DERET. Drs. CARNOTO, M.Pd. NIP Pola Barisan Bilangan
BARISAN DAN DERET Drs. CARNOTO, M.Pd. NIP. 19640121 199010 1 001 Pola Barisan Bilangan Beberapa urutan bilangan yang sering kita pergunakan mempunyai pola tertentu. Pola ini Sering digunakan untuk menentukan
Antiremed Kelas 09 Matematika
Antiremed Kelas 09 Matematika Deret Bilangan - Latihan Soal Doc. Name: AR09MAT0613 Version: 2013-10 halaman 1 01a Berapakah nilai deret aritmatika di bawah (A) 1 + 2 + 3 + 4 + + 100 01b Berapakah nilai
MATEMATIKA SEKOLAH 2
MATEMATIKA SEKOLAH 2 Menentukan pola barisan bilangan sederhana Menentukan suku ke-n barisan aritmetika dan barisan geometri Disusun oleh : Novi Diah Wahyuni 1001060083 Riswoto 1001060085 PROGRAM STUDI
Bahan Ajar Matematika. Kelas X SMA Semester 1 Barisan dan Deret Waktu : 15 x 45 Menit (5 x Pertemuan) Kelompok :..
Bahan Ajar Matematika Kelas X SMA Semester 1 Barisan dan Deret Waktu : 15 x 45 Menit (5 x Pertemuan) Nama Nis Kelas : : : Kelompok : 1 PETUNJUK PENGGUNAAN BAHAN AJAR 1 Bacalah Setiap masalah yang diberikan
18. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
8. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA UN00.Nilai (n 6). n A. 88 B. 00 C. 00 D. 97 E. 060 n (n 6) (. 6) + (. 6) + (. 6)+ + (. 6) + 9 + +...+ 99 a b 9 9 n n(akhir) (n(awal)-) (-)
BARISAN DAN DERET. U t = 2 1 (a + U 2k 1 ), U n = ar n 1 U t = a Un
BARISAN DAN DERET A. BARISAN ARITMETIKA DAN GEOMETRI U 1, U 2, U 3,,U n adalah barisan suatu bilangan yang memiliki ciri khusus sebagai berikut Barisan Ciri utama Rumus suku ke-n Suku tengah Sisipan k
BAB II KEMAMPUAN REPRESENTASI DAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA DALAMMATERI BARISAN DAN DERET ARITMATIKA
BAB II KEMAMPUAN REPRESENTASI DAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA DALAMMATERI BARISAN DAN DERET ARITMATIKA A. Kemampuan Representasi Matematis Terdapat beberapa definisi yang dikemukakan para
Barisan dan Deret. Matematika dapat dikatakan sebagai bahasa simbol. Hal ini. A. Barisan dan Deret Aritmetika B. Barisan dan Deret Geometri
Bab 3 Sumber: www.jakarta.go.id Barisan dan Deret Matematika dapat dikatakan sebagai bahasa simbol. Hal ini dikarenakan matematika banyak menggunakan simbol-simbol. Dengan menggunakan simbol-simbol tersebut,
KARTU SOAL URAIAN. KOMPETENSI DASAR (KD): 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmatika dan geometri
. Siswa dapat menentukan suku pertama, beda/rasio, rumus suku ke-n dan suku ke-n, jika diberikan barisan bilangannya NO. SOAL: 31 Tentukan suku pertama, beda atau rasio, rumus suku ke-n, dan suku ke-10
Modul ke: Matematika Ekonomi. Deret. Bahan Ajar dan E-learning
Modul ke: 02 Pusat Matematika Ekonomi Deret Bahan Ajar dan E-learning BANJAR / BARISAN Banjar ialah suatu fungsi yang wilayahnya ialah set bilangan alam. Banjar ialah suatu set bilangan bernomor satu,
LKS I. Jumlah barsel suku yang terbentuk... yaitu barsel suku ke... Nilai salah satu suku konstanta adalah...
LKS I 1. Buat enam suku pertama dari masing-masing barisan dengan menggunakan rumus umum suku masing-masing. 2. Amati masing-masing barisan, jika barisan bukan barisan bilangan konstanta buatlah barisan
MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT
MATEMATIKA EKONOMI DAN BISNIS Pengertian BARIS DAN DERET Baris dapat didefinisikan sebagai suatu fungsi yang wilayahnya merupakan himpunan bilangan alam. Setiap bilangan yang merupakan anggota suatu banjar
Hikmah Agustin, SP.,MM
Hikmah Agustin, SP.,MM Barisan : Susunan bilangan terurut menggunakan pola tertentu (rumus tertentu) Deret : Penjumlahan suku-suku barisan Barisan aritmatika adalah suatu barisan bilangan yang selisih
BARISAN & DERET GEOMETRI
BARISAN & DERET GEOMETRI TJAN PEMBELAJARAN Siswa dapat menjelaskan pengertian barisan dan deret geometri Siswa dapat menjelaskan syarat suatu barisan geometri Siswa dapat menentukan rumus suku ke-n suatu
POLA, BARISAN DAN DERET BILANGAN SERTA BUNGA. VENY TRIYANA ANDIKA SARI, M.Pd.
POLA, BARISAN DAN DERET BILANGAN SERTA BUNGA VENY TRIYANA ANDIKA SARI, M.Pd. POLA BILANGAN PENGERTIAN Pola bilangan adalah aturan yang digunakan untuk membentuk kelompok bilangan Contoh : 1, 3, 6, 10,...
BARISAN DAN DERET. Matematika Dasar
BARISAN DAN DERET 8.1 BARISAN BILANGAN A. Mengenal pengertian barisan suatu bilangan Perhatikan ilustrasi berikut! Seorang karyawan pada awalnya memperoleh gaji sebesar Rp.600.000,00. Selanjutnya, setiap
9. BARISAN DAN DERET
9. BARISAN DAN DERET A. BARISAN ARITMETIKA DAN GEOMETRI U, U, U,,U n adalah barisan suatu bilangan yang memiliki ciri khusus sebagai berikut Barisan Ciri utama Rumus suku ke n Suku tengah Sisipan k bilangan
Pola dan Barisan Bilangan
Pola dan Barisan Bilangan Pola dan barisan bilangan meliputi pola bilangan dan barisan bilangan Pola bilangan yaitu susunan angka-angka yang mempunyai pola-pola tertentu Misalnya pada kalender terdapat
MAKALAH PPM WORKSHOP PEMECAHAN MASALAH MATEMATIKA PADA TOPIK ARITMETIKA BAGI GURU-GURU SMP DI YOGYAKARTA. Oleh : Nila Mareta Murdiyani, M.
MAKALAH PPM WORKSHOP PEMECAHAN MASALAH MATEMATIKA PADA TOPIK ARITMETIKA BAGI GURU-GURU SMP DI YOGYAKARTA Oleh : Nila Mareta Murdiyani, M.Sc NIP. 987032520222002 JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA
Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember
Penalaran Dalam Matematika Drs. Slamin, M.Comp.Sc., Ph.D Program Studi Sistem Informasi Universitas Jember Outline Berpikir Kritis 1 p 2 Penalaran Induktif 3 Bekerja dengan Pola Pola Bilangan Pola Geometri
Materi Olimpiade Tingkat Sekolah Dasar BIDANG ALJABAR
Materi Olimpiade Tingkat Sekolah Dasar BIDANG ALJABAR Caturiyati M.Si. Jurdik Matematika FMIPA NY [email protected] Operasi Dasar (penjumlahan pengurangan perkalian pembagian) Hal-hal yang perlu diperhatikan
Multifungsional Sasaran Materi yang kami sajikan meliputi menentukan jumlah sudut dalam; rumus barisan dan deret aritmatika; dan luas polygon.
Multifungsional Sasaran Materi yang kami sajikan meliputi menentukan jumlah sudut dalam; rumus barisan dan deret aritmatika; dan luas polygon. Polygon yang disajikan meliputi segitiga sampai segienam.
BARIS. tttt. (Winston Chucill)
BARIS tttt (Winston Chucill) 1 Tujuan Pembelajaran Dengan mempelajari materi barisan dan deret diharapkan siswa dapat : 1. Menjelaskan pengertian barisan dan deret 2. Menemukan konsep barisan aritmatika
RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK Negeri 1 Surabaya Program Keahlian : Mata Pelajaran : Matematika Kelas / Semester : Standar Kompetensi : Menerapkan konsep barisan dan deret dalam
20. JUMLAH N SUKU PERTAMA DERET ARITMETIKA DINYATAKAN DENGAN 2 4. SUKU KE-9 DARI DERET ARITMETIKA TERSEBUT ADALAH... A. 30 B. 34 C. 38 D.
20. JUMLAH N SUKU PERTAMA DERET ARITMETIKA DINYATAKAN DENGAN 2 4. SUKU KE-9 DARI DERET ARITMETIKA TERSEBUT ADALAH... A. 30 B. 34 C. 38 D. 42 E Program Studi : IPA PAKET : A63 - IPA 20. Jumlah n suku pertama
SILABUS. 5. Memahami sifat-sifat bilangan berpangkat dan bentuk akar serta penggunaannya dalam pemecahan masalah sederhana
Sekolah : SILABUS Kelas Mata Pelajaran Semester : IX : Matematika : II(dua) Standar Kompetensi : BILANGAN 5. Memahami sifat-sifat berpangkat dan bentuk serta penggunaannya dalam pemecahan masalah sederhana
KATA PENGANTAR. Puji Syukur atas kehadirat Allah S.W.T, karena atas karunia-nya kami
KATA PENGANTAR Puji Syukur atas kehadirat Allah S.W.T, karena atas karunia-nya kami dapat menyelesaikan buku ajar matematika yang juga merupakan tugas kelompok mata kuliah program komputer. Buku ajar ini
BARIS. tttt. (Winston Chucill)
BARIS tttt (Winston Chucill) 1 Tujuan Pembelajaran Dengan mempelajari materi barisan dan deret diharapkan siswa dapat : 1. Menjelaskan pengertian barisan dan deret. Menemukan konsep barisan aritmatika
Barisan dan Deret. Bab. Pola Bilangan Beda Rasio Suku Jumlah n suku pertama A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
Bab Barisan dan Deret A KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran barisan dan deret, siswa mampu: Memiliki motivasi internal, kemampuan bekerjasama, konsisten,
KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN
KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN Diskripsi Mata Kuliah Tujuan : Memberikan gambaran dan dasardasar pengertian serta pola pikir yang logis. Barisan dan deret : Bilangan yang tersusun secara
Pembahasan Soal Barisan dan Deret Geometri UN SMA
Pembahasan Soal Barisan dan Deret Geometri UN SMA 1. Sebuah mobil dibeli dengan haga Rp. 80.000.000,00. Setiap tahun nilai jualnya menjadi ¾ dari harga sebelumnya. Berapa nilai jual setelah dipakai 3 tahun?
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.
MATEMATIKA untuk SD dan MI Kelas III
Nurul Masitoch dkk. Gemar MATEMATIKA untuk SD dan MI Kelas III Nurul Masitoch Siti Mukaromah Zaenal Abidin Siti Julaeha Gemar MATEMATIKA untuk SD dan MI Kelas III 3 Unit 1 BILANGAN Standar Kompetensi Melakukan
Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.
Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Distributed By : WWW.E-SBMPTN.COM Kumpulan SMART SOLUTION dan TRIK
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembilan) Mata Pelajaran : Matematika Semester : II (dua) BILANGAN Standar :. Memahami sifat-sifat dan bentuk serta penggunaannya dalam pemecahan masalah sederhana
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : Mata Pelajaran : Matematika Kelas / Program : XII Semester : Genap
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : Mata Pelajaran : Matematika Kelas / Program : XII Semester : Genap Standar Kompetensi : 4. Menggunakan konsep barisan dan deret dalam pemecahan masalah.
SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU
SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep
Barisan dan Deret. Bab. Pola Bilangan Beda Rasio Suku Jumlah n suku pertama A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
Bab Barisan dan Deret A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran barisan dan deret, siswa mampu:. menghayati pola hidup disiplin, kritis, bertanggungjawab,
Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.
Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Disusun Oleh : Pak Anang (http://pak-anang.blogspot.com) Kumpulan
KARTU SOAL PILIHAN GANDA
4. Menggunakan konsep barisan dan deret dalam pemecahan masalah 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmetika dan geometri Barisan dan deret aritmatika Siswa dapat menentukan nilai
tanya-tanya.com Barisan dan Deret Aritmetika Barisan dan Deret Geometri
Barisan dan Deret Aritmetika 1. Barisan Aritmetika Barisan aritmetika adalah suatu barisan dengan selisih (beda) antara dua suku yang berurutan selalu tetap. Berlaku: Un - Un - 1 = b atau Un = Un - 1 +
Barisan dan Deret. Bab. Di unduh dari : Bukupaket.com. Pola Bilangan Beda Rasio Suku Jumlah n suku pertama A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
Bab Barisan dan Deret A KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran barisan dan deret, siswa mampu: Memiliki motivasi internal, kemampuan bekerjasama, konsisten,
TINGKAT SMP KOMET 2018 SE-JAWA TIMUR. c. 6 d. 7 e Jika n memenuhi Jika x = 2
. Jika x = + + 06 08 08 08 08 08 dan y = maka nilai xy x - - -. Jika a, b, c, d, e, f, 7, h,...,7, z adalah barisan aritmetika, maka nilai k+o+m+e+t 0 77 80 7 77. Jika z = 57 88 57 87 dan a = 57 87, maka
SPMB 2004 Matematika Dasar Kode Soal
SPMB 00 Matematika Dasar Kode Soal Doc. Name: SPMB00MATDAS999 Version : 0- halaman 0. Nilai x yang memenuhi persamaan : 3 x ( ) adalah. 0 - - 0. Dalam bentuk pangkat positif dan bentuk akar, x y x y...
Matematika Bahan Ajar & LKS
Matematika Bahan Ajar & LKS Pola Bilangan, Barisan & Deret = + ( 1) Un = ar^(n-1) Nama : NIS : Kelas : Sekolah : Pengantar Bahan ajar ini sekaligus merupakan Lembar Kerja Siswa. Untuk mempelajarinya, Anda
BAB V BARISAN DAN DERET BILANGAN
BAB V BARISAN DAN DERET BILANGAN Peta Konsep Barisan dan Deret Bilangan mempelajari Pola bilangan Barisan bilangan Deret bilangan jenis jenis Aritmatika Geometri Aritmatika Geometri mempelajari Sifat Rumus
Tujuan Pembelajaran : Setelah mempelajari bab ini, diharapkan kalian dapat
Contoh Soal Barisan dan Deret Aritmatika Geometri, Pengertian, Rumus, Sifat-sifat Notasi Sigma, Tak Hingga, Hitung Keuangan, Bunga Tunggal Majemuk Anuitas, Matematika 4:00 PM Pernahkah kalian mengamati
BAB III BANJAR DAN DERET
BAB III BANJAR DAN DERET ILUSTRASI 3.1 Berbicara masalah kependudukan sudah sangat jamak kita mendengar ramalan yang dilakukan oleh Malthus, bahwa pertumbuhan pangan mengikuti deret hitung sementara pertumbuhan
RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. IDENTITAS Satuan Pendidikan Kelas / Semester Mata Pelajaran Program Pokok Bahasan Alokasi Waktu : Sekolah Menengah Atas : X / 2 (dua) : Matematika : Umum : Barisan
BAHAN AJAR. Bisnis Manajemen dan Parwisata Mata Pelajaran. Menerapkan konsep barisan dan deret dalam pemecahan masalah Kompetensi Dasar
BAHAN AJAR Kelompok : Bisnis Manajemen dan Parwisata Mata Pelajaran : Matematika Kelas / Semester : XI / 3 Standar Kompetensi : 5 Menerapkan konsep barisan dan deret dalam pemecahan masalah Kompetensi
2. Jumlah deret geometri tak hingga adalah 7, sedangkan jumlah suku suku yang bernomor genap adalah 3. Suku pertama deret tersebut adalah
SOAL GEOMETRI 1. Jumlah deret geometri tak hingga + 1 + + ½ + = PEMBAHASAN : r = u / u 1 = 1 / = ½ = = x = = = ( + 1$. Jumlah deret geometri tak hingga adalah 7, sedangkan jumlah suku suku yang bernomor
2.3 Algoritma Tidak Berhubungan dengan Bahasa Pemrograman Tertentu
DAFTAR ISI BAB 1 Pengantar Sistem Komputer Dan Pemrograman 1.1 Sistem Komputer 1.2 Program, Aplikasi, Pemrogram, dan Pemrograman 1.3 Kompiler dan Interpreter 1.4 Kesalahan Program BAB 2 Pengantar Algoritma
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Tahun 2012
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Tahun 2012 Bidang Matematika Dasar Kode Paket 623 Oleh : Fendi Alfi Fauzi 1. Jika a dan b adalah bilangan bulat positif yang memenuhi
ANALISIS KESULITAN SISWA KELAS IX SMP DALAM MENYELESAIKAN SOAL PADA MATERI BARISAN DAN DERET
ANALISIS KESULITAN SISWA KELAS IX SMP DALAM MENYELESAIKAN SOAL PADA MATERI BARISAN DAN DERET Arif Hardiyanti Pascasarjana FKIP Matematika, Universitas Sebelas Maret Surakarta Email : [email protected]
OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP)
Pembahasan Soal OSK SMP 2017 OLIMPIADE SAINS KABUPATEN SMP 2017 OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP) Disusun oleh: Pak Anang Halaman 2 dari 20 PEMBAHASAN SOAL OLIMPIADE SAINS MATEMATIKA
PEMANTAPAN MATERI UAN SMP/MTs. Oleh: Dr. Rizky Rosjanuardi, M.Si. Jurusan Pendidikan Matematika FPMIPA UPI Bandung
PEMANTAPAN MATERI UAN SMP/MTs Oleh: Dr. Rizky Rosjanuardi, M.Si. Jurusan Pendidikan Matematika FPMIPA UPI Bandung [email protected] SKL 1: Contoh Spesifikasi Ujian Nasional STANDAR KOMPETENSI LULUSAN 1.
MATERI PELATIHAN TRAINING OF TRAINER OLIMPIADE NASIONAL MATEMATIKA TINGKAT SEKOLAH DASAR DI KECAMATAN SRANDAKAN BANTUL. Oleh :
MATERI PELATIHAN TRAINING OF TRAINER OLIMPIADE NASIONAL MATEMATIKA TINGKAT SEKOLAH DASAR DI KECAMATAN SRANDAKAN BANTUL Oleh : Musthofa, M.Sc Nikenasih Binatari, M.Si FAKULTAS MATEMATIKA DAN ILMUPENGETAHUAN
7. Bentuk sederhana dari. adalah.. 4. Jika log 2 = a dan log 3 = b, maka nilai log 18 = a. a + 2b b. 2a + b c. a + b d. a 2 + b e.
1. Suatu pekerjaan jika dikerjakan 15 orang dapat diselesaikan dalam waktu 30 hari. Apabila pekerjaan tersebut ingin diselesaikan dalam waktu 25 hari, jumlah pekerja yang harus ditambah a. 3 orang b. 5
Selamat Datang di Media Pembelajaran Berbasis Website. Pada Materi Barisan dan deret aritmatika
Selamat Datang di Media Pembelajaran Berbasis Website Pada Materi Barisan dan deret aritmatika L O A D I N G... Created : Novialdi Bengkalis, 12 November 1993 A. Barisan Aritmaitka Apa anda sudah mengetahui
BARIS DAN DERET P R O F I L. Pola dan Barisan Bilangan. Barisan Arimatika dan Barisan Geometri. Deret Aritmetika dan Deret Geometri.
BARIS DAN DERET Pola dan Barisan Bilangan P R O F I L Barisan Arimatika dan Barisan Geometri Deret Aritmetika dan Deret Geometri Sifat-sifat Deret POLA DAN BARISAN BILANGAN Pola Bilangan Pola bilangan
BARISAN DAN DERET TAK BERHINGGA
BARISAN DAN DERET TAK BERHINGGA MATERI KULIAH 1 Kalkulus Lanjut BARISAN DAN DERET TAK BERHINGGA Sahid, MSc. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2010 BARISAN DAN
Doc. Name: SPMB2007MATDAS999 Doc. Version :
SPMB 007 Matematika Kode Soal Doc. Name: SPMB007MATDAS999 Doc. Version : 0-0 halaman 0. Solusi persamaan 5 ( x ) adalah (D) 4 5 6 5 5 0. Jika x dan x adalah akar-akar persamaan : (5 - log x) log x = log
SPMB 2003 Matematika Dasar Kode Soal
SPMB 003 Matematika Dasar Kode Soal Do. Name: SPMB003MATDAS999 Version : 0- halaman 3 (-a) (a) 0. Jika a 0, maka 3 (6a ) (A) - a (B) -a -a a (E) a 3... 0. Jika salah satu akar persamaan kuadrat - 3 - p
Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,
STRATEGI PEMBELAJARAN MATEMATIKA SMA SESUAI KURIKULUM 2004 disampaikan pada
STRATEGI PEMBELAJARAN MATEMATIKA SMA SESUAI KURIKULUM 004 disampaikan pada 6 Agustus s.d. 9 Agustus 004 di PPPG Matematika Yogyakarta DISAJIKAN OLEH DRA. PUJI IRYANTI, M.Sc. Ed DEPARTEMEN PENDIDIKAN NASIONAL
MODUL BARISAN DAN DERET
SMK Negeri 5 Malang MGMPS Bidang Studi Matematika MODUL BARISAN DAN DERET Disusun Oleh Syaiful Hamzah Nasution, S.Si, M.Pd. Explore. Your Potency From Now. 2012 Pengertian Barisan dan Deret Barisan dan
Program Intensif SBMPTN Matematika Dasar KAJI LATIH 13 (STATISTIKA)
KAJI LATIH 13 (STATISTIKA) 1. SBMPTN 2016 Rata-rata nilai ujian matematika siswa di suatu kelas dengan 50 siswa tetap sam meskipun nilai terendah dan tertinggi dikeluarkan. Jumlah nilai-nilai tersebut
