LOGIKA INFORMATIKA. Bahan Ajar
|
|
|
- Suryadi Darmali
- 8 tahun lalu
- Tontonan:
Transkripsi
1 LOGIKA INFORMATIKA Bahan Ajar Digunakan sebagai salah satu bahan ajar mata kuliah Logika Informatika Oleh Achmad Fauzan TEKNIK INFORMATIKA POLITEKNIK HARAPAN BERSAMA TEGAL 2016
2 Daftar Isi Daftar Isi ii Daftar Gambar iii Daftar Tabel iv 1 Pengantar Logika Proposisional & Operator Logika Definisi Kesetaraan Logis Dan Relasi Ekivalensi Pernyataan dan Bukan Pernyataan Argumen & Validitas 8 4 Pohon Semantik 9 5 Kuantor Pernyataan Dan Induksi Matematika 10 6 Logika Predikat 11 7 Aljabar Boolean 12 8 Gerbang Logika 13 ii
3 Daftar Isi 9 Penyederhanaan Fungsi Boolean Secara Aljabar & Peta Karnaugh Penyederhanaan Fungsi Boolean Dengan Metode Quine-Mccluskey 15 A Perhitungan Mean dan Variansi Pada Model 17 Daftar Pustaka 17 iii
4 Daftar Gambar iv
5 Daftar Tabel 1.1 Tabel kebenaran Inclusive or Tabel kebenaran Exclusive or Tabel kebenaran Exclusive or v
6 Bab 1 Pengantar Logika Proposisional & Operator Logika 1.1 Definisi Logika adalah suatu sistem berbasis proposisi. Sistem adalah kesatuan yang terdiri dari komponen atau elemen yang dihubungkan bersama untuk memudahkan aliran informasi, materi, atau energi untuk mencapai suatu tujuan. Proposisi adalah suatu pernyataan (statement) yang dapat bernilai benar (true) atau salah (false), tetapi tidak keduanya. Dikatakan bahwa nilai kebenaran suatu proposisi adalah salah satu dari Benar (True) disajikan dengan T atau Salah (False) disajikan dengan F. Dalam untaian digital (digital circuits) disajikan dengan 0 dan 1. Jika proposisi-proposisi akan dikombinasikan untuk memperoleh proposisi baru maka diperlukan operator logika yang dilambangkan sebagai berikut. 1. : not tau negasi 2. : and atau konjungsi 1
7 BAB 1 : Pengantar Logika Proposisional & Operator Logika 3. : or atau disjungsi atau inclusive or 4. : implies, atau Jika... maka..., atau implikasi kondisional 5. : jika dan hanya jika, atau bikondisional 1. Negasi Jika p sebarang proposisi, penyataan not p atau negasi daripada p akan bernilai F jika p bernailai T dan sebaliknya. Ditulis dengan p 2. Konjungsi / conjunction (and) Konjungsi adalah suatu operator binary atau diadika (diadic). Jika p dan q suatu proposisi, pernyataan p dan q akan benilai kebenaran T jika dan hanya jika kedua p dan q mempunyai nilai kebenaran T, dan ditulis dengan p q. Sifat: (a) Komutatif (p q = q p) (b) Asosiatif ((p q) r = p (q r)) 3. Disjungsi (or) Pernyataan p or q bernilai T jika dan hanya jika salah satu p atau q (atau keduanya) bernilai T ditulis dengan p q. Sifat: (a) Komutatif (p q = q p) (b) Asosiatif ((p q) r = p (q r)) Terdapat dua pengertian or yaitu inclusive or dan exclusive or. Inclusive or peristiwanya dapat terjadi keduanya bersamaan. Exclusive or peristiwanya tidak dapat terjadi keduanya bersamaan. Tabel 1.1: Tabel kebenaran Inclusive or p q T T T T T T F T T F F F 2
8 BAB 1 : Pengantar Logika Proposisional & Operator Logika Tabel 1.2: Tabel kebenaran Exclusive or p q T F T T T F F T T F F F 4. Implikasi (Implication) Arti daripada pernyataan if p then q atau q if p atau p hanya jika q atau q syarat perlu untuk p atau p syarat cukup untuk q adalah T jika salh satu dari p bernilai T dan q bernilai T atau jika p benilai F. Ilustrasi dari implikasi adalah sebagai berikut Jika Anita pergi keluar negeri maka ia mempunyai passport Penjelasannya adalah sebagai berikut. (a) Jika Anita keluar negeri (T) dan Ia mempunyai passport (T), maka legal (T) (b) Jika Anita keluar negeri (T) dan Ia tidak mempunyai passport (F), maka ilegal (F) (c) Jika Anita tidak keluar negeri (F) dan Ia mempunyai passport (T), maka legl (T) (d) Jika Anita tidak keluar negeri (F) dan Ia tidak memiliki passport (F), maka legal (T) Pernyataan p q selalu mempunyai tabel kebenaran ( p) q dan juga dengan (p q) 5. Ekuivalensi Pernyataan p ekuivalen dengan q mempunyai nilai kebenaran T jika dan hanya jika p dan q mempunyai nilai kebenaran yang sama ditulis dengan simbol p q. Sifat: 3
9 BAB 1 : Pengantar Logika Proposisional & Operator Logika (a) Komutatif (p q = q p) (b) Asosiatif ((p q) r = p (q r)) (c) Pernyataan (p q) mempunyai tabel kebenaran yang sama dengan pernyataan p q (d) Perhatikam bahwa ia juga dapat dipikirkan sebagai pernyataan p jika dan hanya jika q (e) Bikondisial : p q = (p q) (q p) Prioritas Operator Seperti pada ungkapan dalam ilmu hitung, maka operator logika pun terdapat prioritas sebagai berikut. 1. Operator ( ) prioritas tertinggi 2. Operator ( ) berprioritas berikutnya 3. Operator ( ) berprioritas berikutnya 4. Operator ( ) berprioritas berikutnya 5. Operator ( ) berprioritas berikutnya 6. dan seterusnya operator yang lain Contoh: 1. Saya lapar dan Saya malas atau Saya bahagia dan Saya telah makan enak, berarti (Saya lapar dan saya malas) atau (Saya bahagia dan saya telah makan enak) 2. Saya lapar saya sedih saya bahagia saya telah kekenyangan, berarti (Saya lapar saya sedih) (Saya bahagia saya telah kekenyangan) 4
10 BAB 1 : Pengantar Logika Proposisional & Operator Logika 3. p q r s p r t Diartikan sebagai (((p ( q)) r) s) (p ( r)) t Kalimat yang bukan pernyataan diantaranya kalimat perintah, kaimat pertanyaan, kalimat keheranan, kalimat harapan Logika Proporsional (Notasi Operator logis/ functor) Tabel 1.3: Tabel kebenaran Exclusive or Operator Prof. Suhakso Peano Russel Hilbert Burke Kuliah Polandia Konjungsi p & q p. q p & q p q p q K p q Disjungsi p q p q p q p q p q p q Negasi p ;p p p p p N p Implikasi p q p q p q p q p q C p q Bi-implikasi p q p q p q p q p q E p q Contoh 1. Notasi Polandia: E p q Disajikan dalam notasi yag lain: p q = p q = p q 2. Polandia: C K p q r Disajikan dalam notasi lain: C (p & q) r = (p & q) r 3. Notasi Operator logika biasa: (p q) Disajikan dalam notasi polandia : N A p q 4. Notasi Operator Logika Biasa : ((p q) r) Disajikan dalam notasi polandia : N C A p q r 5. Notasi operator logika biasa: ((p q) r (p q ) Disajikan dalam notasi polandia E C A p q r K p q 5
11 BAB 1 : Pengantar Logika Proposisional & Operator Logika 6. Notasi opertaor logika biasa : ((p q) (q r)) (p r ) Disajikan dalam notasi polandia: E C A p q K q r N C A p N r q 7. Notasi Operator Logika Biasa: ((p q) r) ((p r) q) ((Kpq) r) ((p r) ) q) C(Kpq)r ((p r) q) C(Kpq)r ((p (Nr)) q) C(kpq)r (Kp(Nr) q) C(Kpq)r (Kp(Nr) (Nq)) C(Kpq)r (C(Kp(N r)(n q)) ECKpqrCKpN rn q 6
12 Bab 2 Kesetaraan Logis Dan Relasi Ekivalensi 2.1 Pernyataan dan Bukan Pernyataan Mana yang pernyataan dan mana yang bukan pernyataan: 1. Ngawi adalah ibukota propinisi Jawa Timur 2. Dilarang merokok 3. Sesama Cabup tidak boleh saling mendahului 7
13 Bab 3 Argumen & Validitas 8
14 Bab 4 Pohon Semantik 9
15 Bab 5 Kuantor Pernyataan Dan Induksi Matematika 10
16 Bab 6 Logika Predikat 11
17 Bab 7 Aljabar Boolean 12
18 Bab 8 Gerbang Logika 13
19 Bab 9 Penyederhanaan Fungsi Boolean Secara Aljabar & Peta Karnaugh 14
20 Bab 10 Penyederhanaan Fungsi Boolean Dengan Metode Quine-Mccluskey 15
21 Daftar Pustaka 1. Heri Sismoro Pengantar Logika Informatika, Algoritma dan Pemrograman Komputer. Penerbit ANDI : Yogyakarta 2. Program Studi Teknik Informatika (2014). Bahan Ajar Logika Informatika. Universitas Negeri Semarang 3. Retno Hendrowati dan Bambang Hariyanto Logika Matematika. Penerbit Informatika : Bandung 4. Setiadji Logika Informatika. Penerbit Graha Ilmu : Yogyakarta. 5. Soesianto, F & Djoni Dwijono Logika Matematika untuk Ilmu Komputer. Andi. Yogyakarta 16
22 Lampiran A Perhitungan Mean dan Variansi Pada Model 17
LOGIKA INFORMATIKA. Bahan Ajar
LOGIKA INFORMATIKA Bahan Ajar Digunakan sebagai salah satu bahan ajar mata kuliah Logika Informatika Oleh Achmad Fauzan TEKNIK INFORMATIKA POLITEKNIK HARAPAN BERSAMA TEGAL 2016 Bab 1 Pengantar Logika Proposisional
Teknik Informatika POLITEKNIK NEGERI TANAH LAUT BY: VJ REFERENSI: UNIV TRUNOJOYO & PTIIK
Teknik Informatika POLITEKNIK NEGERI TANAH LAUT BY: VJ REFERENSI: UNIV TRUNOJOYO & PTIIK Fika Hastarita R - UTM 2012 Pengenalan Informal Penghubung Logis (Operator, Functor) Tabel Kebenaran dp Formula.
TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8
P a g e 8 TABEL KEBENARAN A. Logika Proposisional dan Predikat Logika proposional adalah logika dasar yang harus dipahami programmer karena logika ini yang menjadi dasar dalam penentuan nilai kebenaran
DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit
DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi
Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I)
Berpikir Komputasi Sisilia Thya Safitri, MT Citra Wiguna, M.Kom 3 Logika Proposisional (I) Capaian Sub Pembelajaran Mahasiswa dapat memahami logika proposisional sebagai dasar penerapan algoritma. Outline
Logika Proposisi. Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic)
Logika Proposisi Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic) Logika Proposisional Tujuan pembicaraan kali ini adalah untuk menampilkan suatu bahasa daripada kalimat abstrak
Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C
MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda
SINTAKS DAN SEMANTIK PADA LOGIKA PROPOSISI. Matematika Logika Semester Ganjil 2011/2012
SINTAKS DAN SEMANTIK PADA LOGIKA PROPOSISI Matematika Logika Semester Ganjil 2011/2012 PROPOSISI Proposisi atau kalimat dalam logika proposisi bisa berupa Atom/kalimat sederhana Kalimat kompleks, komposisi
Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika
Pengantar Logika 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika. Tetapi,
SILABUS, RPP, RPS LOGIKA INFORMATIKA. Program Studi Informatika FAKULTAS TEKNIK- UNIVERSITAS PGRI SEMARANG
SILABUS,, RPS LOGIKA INFORMATIKA Program Studi Informatika FAKULTAS TEKNIK- FORMULIR No.Dokumen FM-01-AKD-1516 No. Revisi FORMAT SILABUS Halaman 1 dari 1 SILABUS PEMBELAJARAN Fakultas/Program studi : TEKNIK
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
MATEMATIKA DISKRIT LOGIKA
MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.
RENCANA PEMBELAJARAN
ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Logika Informatika Semester : Kode :
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
Logika hanya berhubngan dengan bentukbentuk logika dari argumen-argumen, serta penarikan kesimpulan tentang validitas dari argumen tersebut.
TABEL KEBENARAN Logika hanya berhubngan dengan bentukbentuk logika dari argumen-argumen, serta penarikan kesimpulan tentang validitas dari argumen tersebut. Logika tidak mempermasalahkan arti sebenarnya
Refreshing Materi Kuliah Semester Pendek 2010/2011. Logika dan Algoritma. Heri Sismoro, M.Kom.
Refreshing Materi Kuliah Semester Pendek 2010/2011 Logika dan Algoritma Heri Sismoro, M.Kom. STMIK AMIKOM YOGYAKARTA 2011 Materi 1. Logika Informatika Adalah logika dasar dalam pembuatan algoritma pada
MATERI 1 PROPOSITIONAL LOGIC
MATERI 1 PROPOSITIONAL LOGIC 1.1 Pengantar Beberapa pernyataan (statement) dapat langsung diterima kebenarannya tanpa harus tahu kebenaran pembentuknya Ada kehidupan di Bulan atau tidak ada kehidupan di
BAB 7 PENYEDERHANAAN
BAB 7 PENYEDERHANAAN 1. Pendahuluan Bab ini membahaspenggunaan hukum-hukum logika pada operasi logika yang dinamakan penyederhaan (simplifying). Berbagai macam ekuivalensi dari berbagai ekpresi logika
LOGIKA. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.
Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi
Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono
Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono [email protected] Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Logika Klasik Matematika Diskret (TKE132107) - Program Studi Teknik
BAB 3 TABEL KEBENARAN
BAB 3 TABEL KEBENARAN 1. Pendahuluan Logika adalah ilmu tentang penalaran (reasoning). Penalaran berarti mencari bukti validitas dari suatu argumen, mencari konsistensi dan pernyataan-pernyataan, dan membahas
LOGIKA PROPOSISI 3.1 Proposisi logika proposisional. Contoh : tautologi yaitu proposisi-proposisi yang nilainya selalu benar. Contoh 3.
LOGIKA PROPOSISI 3.1 Proposisi Proposisi adalah suatu pernyataan yang bernilai benar atau salah, tetapi tidak dapat sekaligus keduanya. Kebenaran atau kesalahan dari sebuah kalimat disebut nilai kebenarannya.
LOGIKA. Ratna Wardani Pendidikan Teknik Informatika. 2 September 2007 Pertemuan-1-2 1
LOGIKA Ratna Wardani Pendidikan Teknik Informatika 2 September 2007 Pertemuan-1-2 1 Materi Perkuliahan Logical Connectives Tabel Kebenaran 2 September 2007 Pertemuan-1-2 2 Arti Kalimat Arti kalimat = nilai
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
SILABUS MATA KULIAH MATEMATIKA DISKRIT
Kode Formulir : FM-STMIK MDP-KUL-04.02/R3 SILABUS MATA KULIAH MATEMATIKA DISKRIT A. IDENTITAS MATA KULIAH Program Studi : Sistem Informasi Mata Kuliah : Matematika Diskrit Kode : SP 245 Bobot : 4 (empat)
MODUL 3 OPERATOR LOGIKA
STMIK STIKOM BALIKPAPAN 1 MODUL 3 OPERATOR LOGIKA 1. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Operator Logika 2. Fokus Pembahasan Materi Pokok : 1. Operator Logika Konjungsi 2. Operator Logika Disjungsi
PENGENALAN LOGIKA MATEMATIKA
LOGIKA MATEMATIKA By Faradillah [email protected] Sumber : Logika Matematika untuk Ilmu Komputer, F. Soesianto dan Djoni Dwijono, Penerbit Andi ofset PENGENALAN LOGIKA MATEMATIKA Pendahuluan Logika
PERNYATAAN (PROPOSISI)
Logika Gambaran Umum Logika : - Logika Pernyataan membicarakan tentang pernyataan tunggal dan kata hubungnya sehingga didapat kalimat majemuk yang berupa kalimat deklaratif. - Logika Predikat menelaah
BAB I DASAR-DASAR LOGIKA
BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah
Logika Proposisional Ema Utami STMIK AMIKOM Yogyakarta
Logika Proposisional Ema Utami STMIK AMIKOM Yogyakarta Logika proposisional merupakan ilmu dasar untuk mempelajari algoritma dan logika yang terkait di dalamnya yang berperanan sangat penting dalam pemrograman.
LOGIKA PROPOSISI. Bagian Keempat : Logika Proposisi
LOGIKA PROPOSISI Bagian Keempat : Logika Proposisi ARI FADLI, S.T. Logika Proposisi Tujuan : Mahasiswa dapat menyebutkan tentang logika proposisi, operator dan sifat proposisi Proposisi Definisi : Setiap
PROPOSISI MATEMATIKA SISTEM INFORMASI 1
PROPOSISI MATEMATIKA SISTEM INFORMASI 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat
SATUAN ACARA PERKULIAHAN. ( Logika Informatika ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN LOGIKA INFORMATIKA
Pengesahan Nama Dokumen : LOGIKA INFORMATIKA No Dokumen : No ISO 91:28/IWA 2 1dari 6 Diajukan oleh Imelda Saluza, S.Si., M.Sc. (Dosen Pengampu) Diperiksa oleh Ir. Dedi Hermanto, MT (GPM) Disetujui oleh
Selamat Datang. MA 2151 Matematika Diskrit. Semester I, 2012/2013. Rinovia Simanjuntak & Edy Tri Baskoro
Selamat Datang di MA 2151 Matematika Diskrit Semester I, 2012/2013 Rinovia Simanjuntak & Edy Tri Baskoro 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition, 2007.
Logika Informatika. Bambang Pujiarto
Logika Informatika Bambang Pujiarto LOGIKA mempelajari atau berkaitan dengan prinsip-prinsip dari penalaran argument yang valid studi tentang kriteria-kriteria untuk mengevaluasi argumenargumen dengan
LOGIKA Pendidikan Teknik Informatika
LOGIKA Materi Perkuliahan Konsep Logika, Sejarah dan Peranannya Bentuk Formal Logika dan Kaidah-kaidah Dasarnya Logika Proposisi Bentuk Argumen dan validitasnya Variabel dan Konstanta proposional Logical
LOGIKA. Ratna Wardani Pendidikan Teknik Informatika. 2 September 2007 Pertemuan-1-2 1
LOGIKA Ratna Wardani Pendidikan Teknik Informatika 2 September 2007 Pertemuan-1-2 1 Materi Perkuliahan Konsep Logika, Sejarah dan Peranannya Bentuk Formal Logika dan Kaidah-kaidah Dasarnya Logika Proposisi
KOMPARASI PENGGUNAAN METODE TRUTH TABLE DAN PROOF BY FALSIFICATION DALAM PENENTUAN VALIDITAS ARGUMEN. Abstrak
Komparasi Penggunaan Metode Truth Table Dan Proof By Falsification Untuk Penentuan Validitas Argumen (Yani Prihati) KOMPARASI PENGGUNAAN METODE TRUTH TABLE DAN PROOF BY FALSIFICATION DALAM PENENTUAN VALIDITAS
Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi
Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.
PERTEMUAN 2 TABEL KEBENARAN DADANG MULYANA. TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi.
PEREMUAN 2 ABEL KEBENARAN DADANG MULYANA ABEL KEBENARAN (B) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. ABEL 1 : B untuk proposisi dan negasinya p p MASALAH LOGIKA 1
KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA
Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS : 2 Mata Kuliah Prasyarat : -- Dosen Pengampu Deskripsi Mata Kuliah KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA
Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB
Materi Kuliah IF2091 Struktur Diskrit Pengantar Logika Oleh: Rinaldi Munir Program Studi Informatika STEI - ITB 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti
KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks
KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat
Soal Ujian Akhir Semester Pendek TA. 2006/2007 D3-Manajemen Informatika
Soal Ujian Akhir Semester Pendek TA. 2006/2007 D3-Manajemen Informatika Mata Ujian : Logika dan Algoritma Dosen : Heri Sismoro, S.Kom., M.Kom. Hari, tanggal : Selasa, 07 Agustus 2007 Waktu : 100 menit
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan (statements). Proposisi kalimat deklaratif yang bernilai benar (true)
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA SILABUS LOGIKA
No. SIL/EKA/PTI 206/01 Revisi : 00 Tgl : 1 April 2008 Hal 1 dari 5 MATA KULIAH : Logika KODE MATA KULIAH : PTI 206 SEMESTER : 1 PROGRAM STUDI : Pendidikan Teknik Informatika DOSEN PENGAMPU : Ratna Wardani,
SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN
SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : LOGIKA HIMPUNAN Kode Mata : DK - 11206 Jurusan / Jenjang : S1 SISTEM INFORMASI Tujuan Instruksional Umum : Agar
Konvers, Invers dan Kontraposisi
MODUL 5 Konvers, Invers dan Kontraposisi Represented by : Firmansyah,.Kom A. TEMA DAN TUJUAN KEGIATAN PEMELAJARAN 1. Tema Konvers, Invers dan Kontraposisi 2. Fokus Pembahasan Materi Pokok 1. Konvers, invers
Selamat Datang. MA 2151 Matematika Diskrit. Semester I 2008/2009
Selamat Datang di MA 2151 Matematika Diskrit Semester I 2008/2009 Hilda Assiyatun & Djoko Suprijanto 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 5 th edition. On the
FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN
I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product
LOGIKA INFORMATIKA PROPOSITION LOGIC. Materi 1. Proposition Sentences Notation Interpretation Exercise
Materi 1 PROPOSITION LOGIC Proposition Sentences Notation Interpretation Exercise LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2010 1 Propositions Komponen dasar pembentuk kalimat logika
Logika Proposisi. Adri Priadana ilkomadri.com
Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:
REPRESENTASI PENGETAHUAN. Pertemuan 6 Diema Hernyka Satyareni, M. Kom
REPRESENTASI PENGETAHUAN Pertemuan 6 Diema Hernyka Satyareni, M. Kom KOMPETENSI DASAR Mahasiswa dapat merepresentasi pengetahuan dalam Sistem Intelegensia MATERI BAHASAN Logika Jaringan Semantik Frame
UNIVERSITAS MERCU BUANA
UNIVERSITAS MERCU BUANA FAKULTAS PROGRAM STUDI : Ilmu Komputer : Sistem Informasi No. Dokumen 02 3.04.1.02 Distribusi Tgl. Efektif RENCANA PEMBELAJARAN SEMESTER Mata Kuliah Kode Rumpun MK Bobot (SKS) Semester
Program Studi Teknik Informatika STMIK Tasikmalaya
Materi Kuliah Logika Matematika Oleh: Dadang Mulyana Program Studi Teknik Informatika STMIK Tasikmalaya 1 Info Dosen Nama : Dadang Mulyana Alamat : Ciamis HP. :- E-mail tugas : [email protected] Web
PDE - ALJABAR BOOLEAN 1
LJR OOLEN PE - LJR OOLEN EFINISI dalah aljabar logika. Sifat biner proposisi / dalil logis (TRUE or FLSE) menunjukkan mempunyai aplikasi dalam komputasi. Pelopornya George oole PE - LJR OOLEN 2 PROPOSISI
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu? Logika... 1
Daftar Isi Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu?... iii v xi 1. Logika... 1 1.1 Proposisi... 2 1.2 Mengkombinasikan Proposisi... 4 1.3 Tabel kebenaran... 6 1.4 Disjungsi Eksklusif...
BAB I1 : DASAR-DASAR LOGIKA
DAFTAR ISI BAB 1 : PENDAHULUAN 1.1. Pengertian Logika 1.2. Logika dan Komputer BAB I1 : DASAR-DASAR LOGIKA 2.1 Pengertian Umum Logika 2.2 Logika dan Pernyataan 2.2.1 Logika 2.2.2 Pernyataan (Proposisi)
Modul Praktikum. Logika Dasar. Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun:
Daftar Isi Modul Praktikum Logika Dasar Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun: Arif munandar Dinora Refiasari Gandi Laksana Putra Muhammad Saleh Firmansyah Feri Krisnanto Muammar Rizki F.I.
Selamat Datang. MA 2251 Matematika Diskrit. Semester II, 2016/2017. Rinovia Simanjuntak & Saladin Uttunggadewa
Selamat Datang di MA 2251 Matematika Diskrit Semester II, 2016/2017 Rinovia Simanjuntak & Saladin Uttunggadewa 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition,
- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat
LOGIKA Tujuan umum : - Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat Tujuan Khusus: - mahasiswa diharapkan dapat : 1. memahami pengertian proposisi,
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
BAB 6 EKUIVALENSI LOGIS
BAB 6 EKUIVALENSI LOGIS 1. Pendahuluan Bab ini akan membahas persamaan-persamaan antara dua buah ekspresi logika yang mungkin ekuivalen (sama), mungkin berbeda, yang kesamaan atau perbedaan tadi akan dibuktikan
Berdasarkan tabel 1 diperoleh bahwa p q = q p.
PEMAHAAN 1. Pengertian Kata LOGIKA mengacu pada suatu metode atau cara yang sistematis dalam berpikir (reasoning), dan terdapat dua sistem khusus yaitu : suatu metode dasar yang disebut dengan Kalkulus
Dasar-dasar Logika. (Review)
Dasar-dasar Logika (Review) Intro Logika berhubungan dengan kalimat-kalimat dan hubungan antar kalimat. Tujuan: menentukan apakah suatu kalimat / masalah bernilai benar (TRUE) atau salah (FALSE) Kalimat
Hukum-hukum Logika 2/8/ Hukum komutatif: p q q p p q q p. 8. Hukum asosiatif: p (q r) (p q) r p (q r) (p q) r
Hukum-hukum Logika Disebut juga hukum-hukum aljabar proposisi. 1. Hukum identitas: p F p p T p 3. Hukum negasi: p ~p T p ~p F 5. Hukum involusi (negasi ganda): ~(~p) p 2. Hukum null/dominasi: p F F p T
DESKRIPSI MATA KULIAH
DESKRIPSI MATA KULIAH Nama Mata Kuliah : Logika Matematika Kode Mata Kuliah : IF33216 (Strata 1) Kredit : 3 SKS (3 x 45 menit) Deskripsi: Mata Kuliah logika matematika ini membahas mengenai himpunan, Aljabar
Representasi Pengetahuan (Bagian 3) Logika dan Himpunan. Pertemuan 6
Representasi Pengetahuan (Bagian 3) Logika dan Himpunan Pertemuan 6 Syllogisme Adalah logika formal pertama yang dikembangkan oleh filsuf Yunani, Aristotle pada abad ke-4 SM. Syllogisme mempunyai dua premises
ALGORITMA STRUCTURED ENGLISH DAN PSEUDOCODE
ALGORITMA Algoritma adalah pola pikir yang terstruktur yang berisi tahap-tahap atau langkah-langkah penyelesaian suatu masalah; merupakan satu set proses yang diaktifkan menurut langkah demi langkah dengan
BAHAN KULIAH LOGIKA MATEMATIKA
BAHAN KULIAH LOGIKA MATEMATIKA O L E H A. Rahman H., S.Si, MT & Muhammad Khaidir STTIKOM Insan unggul Jl. S.A. tirtayasa no. 146 Komp. Istana Cilegon blok B 25-28 Cilegon Banten 42414 http://didir.co.cc
MAKALAH RANGKUMAN MATERI LOGIKA MATEMATIKA : NURHIDAYAT NIM : DBC
MAKALAH RANGKUMAN MATERI LOGIKA MATEMATIKA Nama : NURHIDAYAT NIM : DC 113 055 JURUAN TEKNIK INFORMATIKA FAKULTA TEKNIK UNIVERITA PALANGKA RAYA 2013 A I PENGERTIAN Logika adalah dasar dan alat berpikir
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi
LOGIKA MATEMATIKA MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM Definisi Proposisi adalah suatu kalimat yang bernilai benar atau salah dan tidak keduanya Proposisi Kalimat Deklaratif Proposisi
PERTEMUAN 3 DASAR-DASAR LOGIKA
PERTEMUAN 3 DASAR-DASAR LOGIKA 1.1 PENGERTIAN UMUM LOGIKA Filsafat dan matematika adalah bidang pengetahuan rasional yang ada sejak dahulu. Jauh sebelum matematika berkembang seperti sekarang ini dan penerapannya
BAB IV LOGIKA A. Pernyataan B. Operasi uner
BAB IV LOGIKA A. Pernyataan Pernyataan adalah kalimat matematika tertutup yang benar atau yang salah, tetapi tidak kedua-duanya pada saat yang bersamaan. Pernyataan biasa dilambangkan dengan p, q, r,...
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan
Matematika Komputasional. Pengantar Logika. Oleh: M. Ali Fauzi PTIIK - UB
Matematika Komputasional Pengantar Logika Oleh: M. Ali Fauzi PTIIK - UB 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti belajar Bahasa Java. Jika anda tidak suka
Diktat Kuliah LOGIKA INFORMATIKA. Oleh : Didin Astriani Prasetyowati, M.Stat
Diktat Kuliah LOGIKA INFORMATIKA Oleh : Didin Astriani Prasetyowati, M.Stat PROGRAM STUDI INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS INDO GLOBAL MANDIRI TAHUN AJARAN 2015/2016 DAFTAR ISI BAB 1 : DASAR-DASAR
PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.
BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
Matematika Diskrit. Nelly Indriani Widiastuti S.Si., M.T Prodi Teknik Informatika UNIKOM
Matematika Diskrit Nelly Indriani Widiastuti S.Si., M.T Prodi Teknik Informatika UNIKOM 1 Kontrak Belajar Prasyarat : Logika Matematika & Kalkulus II Jadwal: 3 SKS: 3 jam kuliah Toleransi keterlambatan??
LOGIKA DAN PEMBUKTIAN
BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran
Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali
Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika
PERTEMUAN Logika Matematika
1-1 PERTEMUAN 1 Nama Mata Kuliah : Matematika Diskrit ( 3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : [email protected] HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 1. Logika Matematika
LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek
ALGORITMA STRUCTURED ENGLISH DAN PSEUDOCODE
ALGORITMA Algoritma adalah pola pikir yang terstruktur yang berisi tahaptahap atau langkah-langkah penyelesaian suatu masalah; merupakan satu set proses yang diaktifkan menurut langkah demi langkah dengan
LOGIKA. Ratna Wardani Pendidikan Teknik Informatika. 10/28/2008> Pertemuan-1-2 1
LOGIKA Ratna Wardani Pendidikan Teknik Informatika 10/28/2008> Pertemuan-1-2 1 Materi Perkuliahan Konsep Proposisi Majemuk Manfaat Skema Parsing Precedence Rules Tautologi, Kontradiksi dan Contingen 10/28/2008>
LOGIKA DAN BUKTI. Drs. C. Jacob, M.Pd
LOGIKA DAN UKTI Drs. C. Jacob, M.Pd Email: [email protected] Untuk mampu mengerti matematika dan argumen matematis perlu memiliki suatu pengertian mendalam logika dan cara di mana mengenal fakta-fakta yang
IT105 MATEMATIKA DISKRIT. Ramos Somya, S.Kom., M.Cs.
IT105 MATEMATIKA DISKRIT Ramos Somya, S.Kom., M.Cs. TUJUAN Mahasiswa Memahami dan menguasai konsep dasar logika matematika Mahasiswa mempunyai daya nalar yang semakin tajam. POKOK BAHASAN Pernyataan dan
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
Suatu pernyataan akan memiliki bentuk susunan minimal terdiri dari subjek diikuti predikat, baru kemudian dapat diikuti objeknya.
1 Suatu pernyataan akan memiliki bentuk susunan minimal terdiri dari subjek diikuti predikat, baru kemudian dapat diikuti objeknya. Setiap kalimat atau pernyataan tetap dapat dianggap satu buah proposisi.
Matematika diskrit Bagian dari matematika yang mempelajari objek diskrit.
Matematika diskrit Bagian dari matematika yang mempelajari objek diskrit. Banyak masalah yang dapat diatasi dengan menggunakan konsep yang ada di MATDIS, antara lain : 1. Berapa besar kemungkinan kita
BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran
BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Proposisi adalah pernyataan yang dapat ditentukan nilai kebenarannya, bernilai benar atau salah tetapi tidak keduanya. Sedangkan, Kalkulus Proposisi (Propositional
Pertemuan 1. Pendahuluan Proposisi Jenis-Jenis Proposisi
Pertemuan 1 Pendahuluan Proposisi Jenis-Jenis Proposisi Sejarah Pekembangan Logika Logika dalam ilmu komputer digunakan sebagai dasar dalam belajar bahasa pemrograman, struktur data, kecerdasan buatan,
Matematika Diskrit LOGIKA
Matematika Diskrit LOGIKA 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif
