RUNGE-KUTTA ORDE EMPAT
|
|
|
- Ade Atmadjaja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 RUNGE-KUTTA ORDE EMPAT Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia atau December 30, 00 Pada saat membahas metode Euler untuk penyelesaian persamaan diferensial, kita telah sampai pada kesimpulan bahwa truncation error metode Euler terus membesar seiring dengan bertambahnya iterasi. Dikaitkan dengan hal tersebut, metode Runge-Kutta Orde Empat menawarkan penyelesaian persamaan diferensial dengan pertumbuhan truncation error yang jauh lebih kecil. Persamaan-persamaan yang menyusun metode Runge-Kutta Orde Empat adalah w 0 = α k 1 = hf(t i,w i ) (1) k = hf(t i + h,w i + 1 k 1) () k 3 = hf(t i + h,w i + 1 k ) (3) k 4 = hf(t i+1,w i + k 3 ) (4) w i+1 = w i + 1 (k 1 + k + k 3 + k 4 ) (5) Contoh Diketahui persamaan diferensial y = y t + 1, 0 t, y(0) = 0, 5 dengan mengganti y menjadi w, kita bisa nyatakan f(t i,w i ) sebagai f(t i,w i ) = w i t i + 1 1
2 Jika N = 10, maka dan serta h = b a N = 0 10 = 0, t i = a + ih = 0 + i(0, ) t i = 0, i w 0 = 0, 5 Sekarang mari kita demonstrasikan metode Runge-Kutta Orde Empat ini. Untuk menghitung w 1, tahap-tahap perhitungannya dimulai dari menghitung k 1 k 1 = hf(t 0,w 0 ) = h(w 0 t 0 + 1) = 0, ((0, 5) (0, 0) + 1) = 0, 3 lalu menghitung k k = hf(t 0 + h,w 0 + k 1 = h[(w 0 + k 1 (t 0 + h + 1)] = 0, [(0, 5 + 0, 3 0, ) (0, )] = 0, 38 dilanjutkan dengan k 3 k 3 = hf(t 0 + h,w 0 + k = h[(w 0 + k (t 0 + h + 1)] 0, 38 = 0, [(0, 5 + ) (0, 0 + 0, + 1)] = 0, 3308 kemudian k 4 k 4 = hf(t 1,w 0 + k 3 ) = h[(w 0 + k 3 ) t 1 + 1] = 0, [(0, 5 + 0, 3308) (0, ) + 1] = 0, 3581
3 akhirnya diperoleh w 1 w 1 = w (k 1 + k + k 3 + k 4 ) = 0, (0, 3 + (0, 38) + (0, 3308) + 0, 3581) = 0, (0, 3 + 0, 5 + 0, 1 + 0, 3581) = 0, Dengan cara yang sama, w,w 3,w 4 dan seterusnya dapat dihitung. Tabel berikut menunjukkan hasil perhitungannya. i t i w i y i = y(t i ) w i y i 0 0,0 0, , , , 0, ,8998 0, ,4 1,1407 1, , , 1,4890 1, , ,8,1707,1795 0, ,0,4087, , , 3, , , ,4 3, , , , 4, , , ,8 4, , , ,0 5, , , Dibandingkan dengan metode Euler, tingkat pertumbuhan truncation error, pada kolom w i y i, jauh lebih rendah sehingga metode Runge-Kutta Orde Empat lebih disukai untuk membantu menyelesaikan persamaan-diferensial-biasa. Contoh tadi tampaknya dapat memberikan gambaran yang jelas bahwa metode Runge-Kutta Orde Empat dapat menyelesaikan persamaan diferensial biasa dengan tingkat akurasi yang lebih tinggi. Namun, kalau anda jeli, ada suatu pertanyaan cukup serius yaitu apakah metode ini dapat digunakan bila pada persamaan diferensialnya tidak ada variabel t? Misalnya pada kasus berikut ini Sebuah kapasitor yang tidak bermuatan dihubungkan secara seri dengan sebuah resistor dan baterry (Figure 1). Diketahui ǫ = 1 volt, C = 5,00 µf dan R = 8, Ω. Saat saklar 3
4 Figure 1: Rangkaian RC dihubungkan (t=0), muatan belum ada (q=0). Solusi exact persamaan () adalah dq dt = ǫ R q RC () q exact = q(t) = Cǫ ( 1 e t/rc) (7) Anda bisa lihat semua suku di ruas kanan persamaan () tidak mengandung variabel t. Padahal persamaan-persamaan penyusun metode Runge-Kutta selalu mencantumkan variabel t. Apakah persamaan () tidak bisa diselesaikan dengan metode Runge-Kutta? Belum tentu. Sekarang, kita coba selesaikan, pertama kita nyatakan sehingga persamaan () dimodifikasi menjadi m 1 = ǫ = 1, R m = 1 = 0, 5 RC dq dt = f(q i) = m 1 q i m t i = a + ih Jika t 0 = 0, maka a = 0, dan pada saat itu (secara fisis) diketahui q 0 = 0, 0. Lalu jika ditetapkan h = 0, 1 maka t 1 = 0, 1 dan kita bisa mulai menghitung k 1 dengan menggunakan q 0 = 0, 0, 4
5 walaupun t 1 tidak dilibatkan dalam perhitungan ini k 1 = hf(q 0 ) = h(m 1 q 0 m = 0, 1((1, ) (0, 0)(0, 5)) = 0, lalu menghitung k k = hf(q 0 + k 1 = h[(m 1 (q 0 + k 1 m )] = 0, 1[(1, ((0, 0) + = 0, , )(0, 5)] dilanjutkan dengan k 3 k 3 = hf(q 0 + k = h[(m 1 (q 0 + k m )] = 0, 1[(1, ((0, 0) + = 0, , )(0, 5)] kemudian k 4 k 4 = hf(q 0 + k 3 ) = h[(m 1 (q 0 + k 3 )m ] = 0, 1[(1, ((0, 0) + 0, )(0, 5)] = 0, akhirnya diperoleh q 1 q 1 = q (k 1 + k + k 3 + k 4 ) = 0, (0, (0, 14813) + (0, 14815) + 0, 1430) 10 5 = 0,
6 Selanjutnya q dihitung. Tentu saja pada saat t, dimana t = 0,, namun sekali lagi, t tidak terlibat dalam perhitungan ini. Dimulai menghitung k 1 kembali k 1 = hf(q 1 ) = h(m 1 q 1 m = 0, 1((1, ) (0, )(0, 5)) = 0, lalu menghitung k k = hf(q 1 + k 1 = h[(m 1 (q 1 + k 1 m )] = 0, 1[(1, ((0, ) + = 0, , )(0, 5)] dilanjutkan dengan k 3 k 3 = hf(q 1 + k = h[(m 1 (q 1 + k m )] = 0, 1[(1, ((0, ) + = 0, , )(0, 5)] kemudian k 4 k 4 = hf(q 1 + k 3 ) = h[(m 1 (q 1 + k 3 )m ] = 0, 1[(1, ((0, ) + 0, )(0, 5)] = 0, akhirnya diperoleh q q = q (k 1 + k + k 3 + k 4 ) = 0, (0, (0, 14447) + (0, 14449) + 0, 148) 10 5 = 0,
7 i t i q i q exact = q(t i ) q i q exact 0 0,0 0, , , ,1 0, , , , 0, , , ,3 0, , , ,4 0, , , ,5 0, , , , 0, , , ,7 0, , , ,8 1, , , ,9 1, , , ,0 1, , ,00000 Dengan cara yang sama, q 3,q 4,q 5 dan seterusnya dapat dihitung. Tabel di atas menunjukkan hasil perhitungannya. Kolom q exact diperoleh dari persamaan (7). Luar biasa!! Tak ada error sama sekali. Mungkin, kalau kita buat 7 angka dibelakang koma, errornya akan terlihat. Tapi kalau anda cukup puas dengan 5 angka dibelakang koma, hasil ini sangat memuaskan. Figure memperlihatkan kurva penumpukan muatan q terhadap waktu t. Berikut ini adalah script dalam matlab yang dipakai untuk menghitung q clear all clc E=1; R=800000; C=5e-; m1=e/r; m=1/(r*c); b=0.0; a=0.0; h=0.1; n=(b-a)/h; q0=0.0; t0=0.0; for i=1:n 7
8 x Figure : Kurva muatan q terhadap waktu t t(i)=a+i*h; end for i=1:n if i==1 k1=h*(m1-(m*q0)); k=h*(m1-(m*(q0+(k1/)))); k3=h*(m1-(m*(q0+(k/)))); k4=h*(m1-(m*(q0+k3))); q(i)=q0+(k1+(*k)+(*k3)+k4)/; else k1=h*(m1-(m*q(i-1))); k=h*(m1-(m*(q(i-1)+(k1/)))); k3=h*(m1-(m*(q(i-1)+(k/)))); k4=h*(m1-(m*(q(i-1)+k3))); q(i)=q(i-1)+(k1+(*k)+(*k3)+k4)/; end 8
9 end q Sampai disini mudah-mudahan jelas dan bisa dimengerti. Silakan anda coba untuk kasus yang lain, misalnya proses pembuangan (discharging) q pada rangkaian yang sama, atau bisa juga anda berlatih dengan rangkaian RL dan RLC. Saya akhiri dulu uraian saya sampai disini. 9
METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR
METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: [email protected] atau [email protected] November 12, 2006 Suatu
Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon 2 ABSTRAK
Jurnal Barekeng Vol. 8 No. 1 Hal. 39 43 (2014) APLIKASI METODE RUNGE KUTTA ORDE EMPAT PADA PENYELESAIAN RANGKAIAN LISTRIK RLC Application of Fourth Order Runge Kutta methods on Completion of the Electrical
Interpolasi Cubic Spline
Interpolasi Cubic Spline Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: [email protected] atau [email protected] December 13, 2006 Figure 1: Fungsi f(x) dengan
KAJIAN SEJUMLAH METODE UNTUK MENCARI SOLUSI NUMERIK PERSAMAAN DIFERENSIAL
KAJIAN SEJUMLAH METODE UNTUK MENCARI SOLUSI NUMERIK PERSAMAAN DIFERENSIAL Mulyono 1) 1) Program StudiSistemKomputer FMIPA UNJ [email protected] Abstrak Penelitian ini bertujuan untuk membandingkan
PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng
PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng Dua fenomena fisik berbeda (yaitu: sistem gerak benda pada pegas dan rangkaian listrik) menghasilkan model persamaan matematika
KARAKTERISTIK KAPASITOR. Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya, Tangerang 2014
KARAKTERISTIK KAPASITOR Ayu Deshiana(20020008) Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya, Tangerang 204. Pendahuluan. Kapasitor adalah komponen elektronika yang dapat
KAPASITOR : ANTARA MODEL DAN REALITA oleh : Sugata Pikatan
Kristal no.11/desember/1994 1 KAPASITOR : ANTARA MODEL DAN REALITA oleh : Sugata Pikatan Kita semua tahu bahwa kapasitor merupakan salah satu piranti elektronika yang terpenting. Rasanya tak ada untai
R +1 R= UR V+1 R= ( ) R +1 R= ( )
Penyelesaian Model Rangkaian Listrik orde-2 Dua fenomena fisik berbeda (yaitu: sistem gerak benda pada pegas dan rangkaian listrik) menghasilkan model persamaan matematika dan solusi yang sama. Perilaku
MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA
MATERI MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA 1 Tujuan 1. Dapat menyelesaikan persamaan diferensial orde dua.. Dapat menyelesaikan suatu Sistem Linier dengan menggunakan metode Eliminasi atau
KARAKTERISTIK KAPASITOR M. Raynaldo Sandita Powa ( )
KARAKTERISTIK KAPASITOR M. Raynaldo Sandita Powa (20020047) Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya, Tangerang 204. Pendahuluan Pada percobaan kali ini, akan dilakukan
MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU
MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU 1 Persamaan diferensial orde satu Persamaan diferensial menyatakan hubungan dinamik antara variabel bebas dan variabel tak bebas, maksudnya
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis
PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng.
PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng. 1 Teknik Elektro, http://[email protected] Pengantar: Modul ini menjelaskan pemodelan rangkaian listrik RL dan
BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU
BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: = f(x, y) M(x, y) + N(x, y) = 0 Penyelesaian PDB orde satu dengan integrasi secara langsung Jika
Komputasi untuk Sains dan Teknik -Menggunakan Matlab-
Komputasi untuk Sains dan Teknik -Menggunakan Matlab- Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: [email protected] atau [email protected] ) Edisi III Revisi terakhir tgl:
METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR
METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR Penulis: Dr. Eng. Supriyanto, M.Sc, email: [email protected] Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Penulisan vektor-kolom Sebelum
JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK
JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK Kasus-kasus fisika yang diangkat pada mata kuliah Fisika Komputasi akan dijawab secara numerik. Validasi jawaban
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan
Arus Listrik & Rangkaian Arus DC
Arus Listrik & Rangkaian Arus DC Arus listrik, I didefinisikan sebagai laju aliran muatan listrik, Q yang melalui suatu penampang dalam waktu tertentu, t I = Q t = Q t satuan arus listrik adalah ampere.
BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK
BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK 41 METODE EULER Pertimbangkan masalah menentukan nilai uang saat ini dan akan datang dengan menggunakan suku bunga misalkan pada saat $ didepositokan
Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II
Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka
BANK SOAL METODE KOMPUTASI
BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....
MENGGUNAKAN METODE TRANSFORMASI LAPLACE. Kristo Dantes Lingga 1, Abil Mansyur 2.
STUDI PENYELESAIAN PERSAMAAN DIFERENSIAL MENGGUNAKAN METODE TRANSFORMASI LAPLACE Kristo Dantes Lingga 1, Abil Mansyur 2 1 Mahasiswa Program Studi Matematika, FMIPA, Universitas Negeri Medan e-mail: [email protected]
Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam)
Kumpulan Soal Fisika Dasar II Universitas Pertamina (16-04-2017, 2 jam) Materi Hukum Biot-Savart Hukum Ampere GGL imbas Rangkaian AC 16-04-2017 Tutorial FiDas II [Agus Suroso] 2 Hukum Biot-Savart Hukum
BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU
BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: Penyelesaian PDB orde satu dengan integrasi secara langsung Jika PDB dapat disusun dalam bentuk,
E 8 Pengisian dan Pengosongan Kapasitor
E 8 Pengisian dan Pengosongan Kapasitor 1. Tujuan Praktikum Praktikum ini bertujuan untuk mempelajari proses pengisian dan pengosongan muatan listrik pada kapasitor elektrolit. Beberapa hal yang akan dipelajari
GAYA GERAK LISTRIK KELOMPOK 5
GAYA GERAK LISTRIK KELOMPOK 5 Tujuan Dapat memahami prinsip kerja ggl dan fungsinya dalam suatu rangkaian tertutup. Dapat mencari arus dan tegangan dalam suatu rangkaian rumit dengan memakai hukum kirchoff
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan
Komputasi untuk Sains dan Teknik -Dalam Matlab-
Komputasi untuk Sains dan Teknik -Dalam Matlab- Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: [email protected] atau [email protected] ) Edisi III Revisi terakhir tgl: 25
Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung
([email protected]) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Materi 1 Sumber arus bolak-balik (alternating current, AC) 2 Resistor pada rangkaian AC 3 Induktor
Komputasi untuk Sains dan Teknik -Menggunakan Matlab-
Komputasi untuk Sains dan Teknik -Menggunakan Matlab- Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.ac.id ) ( Email: [email protected] atau [email protected] ) Edisi IV Revisi terakhir
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah
BAB 1 PENDAHULUAN. perumusan persamaan integral tidak memerlukan syarat awal dan syarat batas.
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Banyak masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan diferensial adalah salah satu model matematika yang banyak digunakan pada
LU DECOMPOSITION (FAKTORISASI MATRIK)
LU DECOMPOSITION (FAKTORISASI MATRIK) Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: [email protected] atau [email protected] 5 Februari 2005 Pada semua catatan
BAB 1 Konsep Dasar 1
BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial 2 BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal
PEMBENTUKAN MODEL RANGKAIAN LISTRIK
PEMBENTUKAN MODEL RANGKAIAN LISTRIK Pada sub bab ini akan membahas tentang sistem listrik. Pembahasan ini berperan sebagai suatu contoh yang mengesankan dari kenyataan penting, bahwa sistem fisis yang
MEMPERSEMBAHKAN. Kelompok. Achmad Ferdiyan R Anne Farida R U ( ) ( )
MEMPERSEMBAHKAN Kelompok Achmad Ferdiyan R Anne Farida R U (0602421) (0605860) Problem 1 : Pengisian kapasitor Problem 2 : Kapasitor disusun seri dan paralel Problem 3 : Pengaruh hambatan terhadap waktu
SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS
SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: [email protected] atau [email protected] 5 Februari 2005 Abstract
BAB II PERSAMAAN DIFERENSIAL BIASA (PDB) ORDE SATU
BAB II PERSAMAAN DIFERENSIAL BIASA (PDB) ORDE SATU Tujuan Instruksional: Mampu memahami dan menyelesaikan PD orde-1 dg integrasi langsung, pemisahan variael. Mampu memahami dan menyelesaikan Persamaan
REGRESI LINEAR DAN ELIMINASI GAUSS
REGRESI LINEAR DAN ELIMINASI GAUSS Penulis: Supriyanto, email: [email protected] Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Diketahui data eksperimen tersaji dalam tabel berikut ini
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering
METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1
METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim
BAB I PENDAHULUAN. Karena penyelesaian partikular tidak diketahui, maka diadakan subtitusi: = = +
BAB I PENDAHULUAN 1.1 Latar Belakang Peran matematika sebagai suatu ilmu pada dasarnya tidak dapat dipisahkan dari ilmu lainnya. Dalam ilmu fisika, industri, ekonomi, keuangan, teknik sipil peran matematika
IMPLEMENTASI RANGKAIAN RLC DENGAN METODE RUNGE KUTTA ORDE 4 Weni Setia Murjannah S1 Fisika, MIPA, Universitas Negeri Surabaya,
IMPLEMENTASI RANGKAIAN RLC DENGAN METODE RUNGE KUTTA ORDE 4 Weni Setia Murjannah S1 Fisika, MIPA, Universitas Negeri Surabaya, [email protected] Agus Prihanto Universitas Negeri Surabaya, [email protected]
Metode Matematika untuk Geofisika
Metode Matematika untuk Geofisika Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.ac.id ) ( Email: [email protected] atau [email protected] ) Edisi I Revisi terakhir tgl: Desember 009 Departemen
PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI. Islamiani Safitri* dan Neny Kurniasih
PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI Islamiani Safitri* dan Neny Kurniasih STKIP Universitas Labuhan Batu Email: [email protected] Abstrak
BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa
1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu Pengetahuan memberikan landasan teori bagi perkembangan teknologi, salah satunya adalah matematika. Cabang matematika modern yang mempunyai cakupan wilayah penelitian
SOAL DAN PEMBAHASAN ARUS BOLAK BALIK
SOAL DAN PEMBAHASAN ARUS BOLAK BALIK Berikut ini ditampilkan beberapa soal dan pembahasan materi Fisika Listrik Arus Bolak- Balik (AC) yang dibahas di kelas 12 SMA. (1) Diberikan sebuah gambar rangkaian
KATA PENGANTAR. FisikaKomputasi i -FST Undana
Disertai Flowchart, Algoritma, Script Program dalam Pascal, Matlab5 dan Mathematica5 Ali Warsito, S.Si, M.Si Jurusan Fisika, Fakultas Sains & Teknik Universitas Nusa Cendana 2009 KATA PENGANTAR Buku ajar
A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC
Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 8 A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC B. Sub Kompetensi 1. Mengukur besarnya arus dan daya pada beban RLC pada sumber tenaga tegangan
Ikhtisar: Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial
ISSN 979-867 (print) Electrical Engineering Journal Vol. 4 (4) No., pp. -3 Ikhtisar Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial Tio Dewantho Sunoto Jurusan Teknik Elektro, Universitas
BAB 1 PENDAHULUAN. Metode Numerik
Metode Numerik BAB 1 PENDAHULUAN Metode numerik adalah metode menggunakan komputer untuk mengaproksimasi solusi masalah matematika melalui kinerja dari sejumlah operasi dasar pada angka. Alasan penggunaan
PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH
MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN
MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN 1. PENDAHULUAN 1.1 Rencana Perkuliahan Mata Kuliah : Rangkaian Listrik 2 Dosen : Trie Maya Kadarina ST, MT. Perkuliahan : PKK Semester
Pengantar Rangkaian Listrik
Pengantar Rangkaian Listrik Slide-01 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 28 Materi Kuliah 1 Pendahuluan Perkenalan Rangkaian Listrik Pemecahan Problem Sistem Satuan 2 Definisi Besaran Listrik
dy dx B. Tujuan Adapun tujuan dari praktikum ini adalah
BAB I PENDAHULUAN 1. Latar Belakang Persamaan diferensial berperang penting di alam, sebab kebanyakan fenomena alam dirumuskan dalam bentuk diferensial. Persamaan diferensial sering digunakan sebagai model
RANGKAIAN ARUS BOLAK-BALIK.
Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas
Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I.
Untai Elektrik I Untai Orde Tinggi & Frekuensi Kompleks Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Pada bagian sebelumnya, dibahas untai RC dan RL dengan hanya satu elemen penyimpan
FAKTOR INTEGRASI PERSAMAAN DIFERENSIAL LINIER ORDE-1 UNTUK MENYELESAIKAN RANGKAIAN RC SIGIT KUSMARYANTO
FAKTOR INTEGRASI PERSAMAAN DIFERENSIAL LINIER ORDE- UNTUK MENYELESAIKAN RANGKAIAN RC SIGIT KUSMARYANTO http://sigitkus.lecture.ub.ac.id Persamaan Diferensial Linier Orde- yang berbentuk + PPPP = QQ, P
MODUL 8 RESISTOR & HUKUM OHM
MODUL 8 RESISTOR & HUKUM OHM TUJUAN PRAKTIKUM 1. Mengukur nilai tahan suatu resistor menggunakan ohmmeter dan pembacaan kode warna resistor 2. Menentukan tahanan dalam dari voltmeter dan amperemeter 3.
Perkuliahan Fisika Dasar II FI-331. Oleh Endi Suhendi 1
Perkuliahan Fisika Dasar II FI-331 Oleh Endi Suhendi 1 Menu hari ini (2 minggu): Hambatan & Arus Listrik Rangkaian DC Oleh Endi Suhendi 2 Last Time: Kapasitor & Dielektrik Oleh Endi Suhendi 3 Kapasitor
METODE ITERASI SEDERHANA
METODE ITERASI SEDERHANA Kelompok 4 Adnan Widya I (M0513003) Bara Okta P. J. (M0513012) Moh. Alvan P. U (M0513032) Shofwah Dinillah (M0513043) METODE EULER Bentuk umum: menghitung penyelesaian persamaan
Komputasi untuk Sains dan Teknik
Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: [email protected] atau [email protected] ) Edisi II Revisi terakhir tgl: 28 April 2008 Departemen
Bab 16. Model Pemangsa-Mangsa
Bab 16. Model Pemangsa-Mangsa Pada Bab ini akan dipelajari model matematis dari masalah dua spesies hidup dalam habitat yang sama, yang dalam hal ini keduanya berinteraksi dalam hubungan pemangsa dan mangsa.
perpindahan, kita peroleh persamaan differensial berikut :
1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan
PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK
PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK 1. Konsep Dasar a. Arus dan Rapat Arus Sebuah arus listrik i dihasilkan jika sebuah
TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017
A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET RANGKAIAN LISTRIK. Pengukuran Daya 3 Fasa Beban Semester I
Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 8 A. Kompetensi Mengukur daya tiga fasa pada beban seimbang dan tak seimbang B. Sub Kompetensi 1. Mengukur daya dengan menggunakan metode 1 watt meter, 2 watt
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
Komputasi untuk Sains dan Teknik
Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: [email protected] atau [email protected] ) Edisi II Revisi terakhir tgl: 12 Februari 2008 Departemen
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini
MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN
MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN PENDAHULUAN Proses pengukuran dalam elektronika instrumentasi bertujuan untuk memperoleh data-data besaran listrik yang selanjutnya diolah menjadi informasi.
Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO
Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.
I. PENDAHULUAN 1.1. Latar Belakang Untuk mengungkapkan perilaku dinamik suatu sistem fisik seperti mekanik, listrik, hidrolik dan lain sebagainya, umumnya sistem fisik dimaksud dimodelkan dengan sistem
Komputasi untuk Sains dan Teknik
Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: [email protected] atau [email protected] ) Edisi III Revisi terakhir tgl: 9 Desember 2008 Departemen
Komputasi untuk Sains dan Teknik
Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: [email protected] atau [email protected] ) Edisi III Revisi terakhir tgl: 13 Oktober 2008 Departemen
BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL
BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu
E-Tutorial: Pemodelan Dan Simulasi Respon Transien Arus Dan Tegangan Pada Rangkaian RLC Menggunakan ATPDraw
E-Tutorial: Pemodelan Dan Simulasi Respon Transien Arus Dan Tegangan Pada Rangkaian RLC Menggunakan Iswadi HR 1,2 dan Suwitno 1 1. Jurusan Teknik Elektro, Fakultas Teknik, Universitas Riau, Indonesia,
Bab 7 Persamaan Differensial Non-homogen
Bab 7 Persamaan Differensial Non-homogen Persamaan Differensial Orde- Non Homogen Bentuk hukum : d y dy + p( ) + Q( ) y R( ) (*) Dimana, P(), Q(), dan R() dapat juga berwujud suatu leoust Solusinya : y
Rangkaian Listrik II
Rangkaian Listrik II OLEH : Ir. Rachman Hasibuan dan Naemah Mubarakah,ST file:///d /E-Learning/Rangkaian%20listrik%20II/Bahan%20Buku/Rangkaian%20Listrik.htm (1 of 216)5/8/2007 3:26:21 PM Departemen Teknik
ANALISIS RANGKAIAN RLC ARUS BOLAK-BALIK
ANALISIS RANGKAIAN RLC ARUS BOLAK-BALIK 1. Tujuan Menera skala induktor variabel, mengamati keadaan resonansi dari rangkaian seri RLC arus bolak-balik, dan menera kapasitan dengan metode jembatan wheatstone.
Komputasi untuk Sains dan Teknik -Menggunakan Matlab-
Komputasi untuk Sains dan Teknik -Menggunakan Matlab- Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.ac.id ) ( Email: [email protected] atau [email protected] ) Edisi Pertama Revisi terakhir
BAB IV HASIL DAN PEMBAHASAN
BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat
Disusun oleh: RIZKY AMALIA NURLELA (060151)
RANGKAIAN RC PENGISIAN KAPASITOR Disusun oleh: RIZKY AMALIA (060114) NURLELA (060151) BAB I DASAR TEORI PENGERTIAN KAPASITOR PENGERTIAN KAPASITOR o Kapasitor merupakan piranti atau komponen pasif elektronika
EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI
JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika
INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA. Jl. Ganesha No 10 Bandung Indonesia SOLUSI
INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA Jl. Ganesha No 10 Bandung 4013 Indonesia A. PERTANYAAN SOLUSI MODUL TUTORIAL FISIKA DASAR IIA (FI-101) KE 0
BAB I PENDAHULUAN. Kompetensi
BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan
ANALISIS FAKTOR YANG MEMPENGARUHI SINERGI ANTARA PERHITUNGAN RANGKAIAN LISTRIK AC DENGAN FUNGSI EKSPONEN KOMPLEKS
ANALISIS FAKTOR YANG MEMPENGARUHI SINERGI ANTARA PERHITUNGAN RANGKAIAN LISTRIK AC DENGAN FUNGSI EKSPONEN KOMPLEKS Yulia Pratiwi Siregar Jurusan Pendidikan Matematika, STKIP Tapanuli Selatan, Sumatera Utara
Rangkaian RL dan RC Dengan Sumber
Rangkaian RL dan RC Dengan Sumber Slide-07 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 32 Materi Kuliah 1 Pengantar Rangkaian Sebelumnya Fungsi Undak Satuan Sumber Ekivalen Fungsi Pulsa 2 Rangkaian
PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK
PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK 1. Konsep Dasar a. Arus dan Rapat Arus Sebuah arus listrik i dihasilkan jika sebuah muatan netto q lewat melalui suatu penampang penghantar selama
Keep running VEKTOR. 3/8/2007 Fisika I 1
VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor
K13 Revisi Antiremed Kelas 12 Fisika
K13 Revisi Antiremed Kelas 12 Fisika Listrik Arus Bolak-balik - Soal Doc. Name: RK13AR12FIS0401 Version: 2016-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi
BAB I PENDAHULUAN. Kompetensi
BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan
HAMBATAN & ARUS LISTRIK MINGGU KE-6 2 X PERTEMUAN
HAMBATAN & ARUS LISTRIK MINGGU KE-6 2 X PERTEMUAN Arus: Aliran muatan Arus rata-rata I av : Muatan ΔQ yang mengalir melalui luas A dalam waktu Δt Arus sesaat : limit Δt 0 darii av Satuan arus: Coulomb/sekon
PENYEARAH TIGA FASA. JURUSAN : TEKNIK ELEKTRO NOMOR : XI PROGRAM STUDI :DIV WAKTU : 2 x 50 MENIT MATA KULIAH /KODE : ELEKTRONIKA DAYA 1/ TEI051
FAKULTAS TEKNIK UNP PENYEARAH TIGA FASA JOBSHEET/LABSHEET JURUSAN : TEKNIK ELEKTRO NOMOR : XI PROGRAM STUDI :DIV WAKTU : x 5 MENIT MATA KULIAH /KODE : ELEKTRONIKA DAYA 1/ TEI51 TOPIK : PENYEARAH TIGA FASA
Prakata Hibah Penulisan Buku Teks
Prakata Syukur Alhamdulillah kami panjatkan ke hadhirat Allah SwT, atas hidayah dan kekuatan yang diberikannya kepada penulis sehingga penulis dapat menyelesaikan buku Pengantar Komputasi Numerik dengan
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET RANGKAIAN LISTRIK. Pengisian dan Pengosongan Kapasitor dan Induktor
Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 5 A. Kompetensi Menggambarkan grafik pengisian dan pengosongan kapasitor dan induktor maupun pengaruh R dan C. B. Sub Kompetensi 1. Menggambarkan grafik pengisian
Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan
Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan
Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan
(Pendahuluan) 1D untuk syarat batas Robin 2D dengan syarat batas Dirichlet Fisika Komputasi Jurusan Fisika Universitas Padjadjaran http://phys.unpad.ac.id/jurusan/staff/dharmawan email : [email protected]
